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Abstract—This paper presents a novel method for recovering consistent depth maps from a video sequence. We propose a bundle

optimization framework to address the major difficulties in stereo reconstruction, such as dealing with image noise, occlusions, and

outliers. Different from the typical multiview stereo methods, our approach not only imposes the photo-consistency constraint, but also

explicitly associates the geometric coherence with multiple frames in a statistical way. It thus can naturally maintain the temporal

coherence of the recovered dense depth maps without oversmoothing. To make the inference tractable, we introduce an iterative

optimization scheme by first initializing the disparity maps using a segmentation prior and then refining the disparities by means of

bundle optimization. Instead of defining the visibility parameters, our method implicitly models the reconstruction noise as well as the

probabilistic visibility. After bundle optimization, we introduce an efficient space-time fusion algorithm to further reduce the

reconstruction noise. Our automatic depth recovery is evaluated using a variety of challenging video examples.

Index Terms—Consistent depth maps recovery, multiview stereo, bundle optimization, space-time fusion.

Ç

1 INTRODUCTION

STEREO reconstruction of dense depth maps from natural
video sequences is a fundamentally important and

challenging problem in computer vision. The reconstructed
depths usually serve as a valuable source of information,
and facilitate applications in various fields, including
3D modeling, layer separation, image-based rendering,
and video editing. Although the stereo matching problem
[31], [19], [32], [52] has been extensively studied during the
past decades, automatically computing high-quality dense
depths is still difficult on account of the influence of image
noise, textureless regions, and occlusions that are inherent
in the captured image/video data.

Given an input video sequence taken by a freely moving

camera, we propose a novel method to automatically

construct a view-dependent depth map for each frame

with the following two objectives. One is to make the

corresponding depth values in multiple frames consistent.

The other goal is to assign distinctive depth values for pixels

that fall in different depth layers. To accomplish these goals,

this paper contributes a global optimization scheme, which

we call bundle optimization, to resolve most of the aforemen-

tioned difficulties in disparity estimation. This framework

allows us to produce sharp and temporal consistent object

boundaries among different frames.

Our method does not explicitly model the binary
visibility (or occlusion). Instead, it is encoded naturally in
a statistical way with our energy definition. Our model also
does not distinguish among image noise, occlusions, and
estimation outliers, so as to achieve a unified framework for
modeling the matching ambiguities. The photo-consistency
and geometric coherence constraints associating different
views are combined in a global energy minimization
framework. They help reliably reduce the influence of
image noise and occlusions with the multiframe data, and
consequently, make our optimization free from the over-
smoothing or blending artifacts.

In order to get an accurate disparity estimate in the
textureless region and reduce the problem of false segmen-
tation especially for the fine object structures, we confine
the effect of color segmentation only in the disparity
initialization step. Then, our iterative optimization algo-
rithm refines the disparities in a pixelwise manner.

We have conducted experiments on a variety of
challenging examples and found that our method is robust
against occlusions, noise, and estimation outliers. The
automatically computed depth maps contain very little
noise and preserve fine structures. One challenging exam-
ple is shown in Fig. 1, in which the scene contains large
textureless regions, objects with strong occlusions, grassplot
with smooth depth change, and a narrow bench. Our
method faithfully reconstructs all these structures. Readers
are referred to our supplementary video (http://
www.cad.zju.edu.cn/home/gfzhang/projects/videodepth)
for inspecting the preserved temporal consistency among
the recovered dense depth maps.

2 RELATED WORK

Since our system contains several components, such as global

optimization, image segmentation, bundle optimization, and
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space-time fusion, we separately discuss the relevant
previous work in the following sections.

2.1 Global and Local Optimization
in Multiview Stereo

Multiview stereo algorithms [28], [6], [19], [52], [16]
estimate depth (or disparity) with the input of multiple
images. Early approaches [28], [6] used local and window-
based methods, and employed a local “winner-takes-all”
(WTA) strategy in depth estimation. Later on, several
global methods [22], [39], [19] formulate the depth
estimation as an energy-minimization problem and use
graph cuts or belief propagation to solve it. Most of these
methods adopt the first-order smoothness priors. For the
slanted and curved 3D surfaces, methods in [44], [26], [46]
incorporate the second-order smoothness prior for stereo
reconstruction. Recently, Woodford et al. [46] proposed an
effective optimization strategy that employs triple cliques
to estimate depth.

However, it is known that the global optimum is not
always computationally reachable. Even the state-of-the-art
numerical optimizers, such as loopy belief propagation and
multilabel graph cuts, cannot guarantee to produce the
globally optimal solution in energy minimization [4], [23],
[43]. In addition, given the matching ambiguity in the
textureless regions or occlusion boundaries, the key to
improving the depth estimates is an appropriate energy
definition. For an oversimplified (or problematic) defini-
tion, even using the method that can yield the global
optimum cannot improve much the depth estimates. With
this observation, in this paper, we introduce a novel data
term that combines the photo-consistency and geometric
coherence constraints in a statistical way. Our experiments
demonstrate that it is rather effective to improve the depth
estimation around the occlusion boundaries and in the
textureless regions.

2.2 Segmentation-Based Approaches

By assuming that the neighboring pixels with similar colors
have similar depth values, segmentation-based approaches
[42], [8], [47], [21], [40] were proposed to improve the depth
estimation for large textureless regions. These methods
typically model each segment as a 3D plane and estimate
the plane parameters by matching small patches in
neighboring views [47], [21], or using a robust fitting
algorithm [42]. In [2], non-fronto-parallel planes are

constructed on sparse 3D points obtained by structure-
from-motion. Gallup et al. [13] used the sparse points to
determine the plane directions for the three orthogonal
sweeping directions. Zitnick and Kang [52] proposed an
oversegmentation method to lower the risk of spanning a
segment over multiple layers. However, even with over-
segmentation or soft segmentation, accurate disparity
estimate is still difficult to obtain especially in the textured
regions and along the segment boundaries.

2.3 Occlusion Handling

Occlusion handling is another major issue in stereo
matching. Methods in [20], [19], [35], [38], [36] explicitly
detect occlusions in disparity estimation. Kang and Szeliski
[19] proposed a hybrid method that combines shiftable
windows, temporal selection, and explicit occluded-pixel
labeling, to handle occlusions in dense multiview stereo
within a global energy minimization framework.

Visibility maps are commonly used to indicate whether a
pixel in one image is also visible in another. Each pixel in
the map has a value of 0 or 1, indicating being occluded or
not, respectively. Several algorithms [35], [19], [38] itera-
tively estimate the disparities (or depths) and visibilities.
This strategy is effective if the amount of occlusions or
outliers is relatively small. Strecha et al. [36] jointly modeled
depth and visibility in a hidden Markov random field, and
solved the problem using an expectation-maximization
algorithm. The state of each pixel is represented as a
combination of discrete depth and visibility. This method
yields a good performance given a small set of wide-
baseline images. However, for a video sequence containing
many frames, a large amount of state variables makes the
inference intractable.

2.4 Multiview Stereo Methods for
Reconstructing 3D Models

Multiview stereo (MVS) methods were developed to
reconstruct 3D object models from multiple input images.
A survey can be found in [32]. Many of these methods (e.g.,
voxel-based approaches [33], [45]) aim to build a 3D model
for a single object and are usually not applicable to large-
scale sceneries due to the high computational complexity
and memory space requirement. The approaches based on
multiple depth maps [35], [36], [5] are more flexible,
requiring fusing view-dependent depth maps into a
3D model. In these methods, the visibility or geometric
coherence constraint is typically used only for fusion. To
obtain a 3D surface representation of an object, Hernández
et al. [18] proposed a probabilistic framework to model
geometric occlusion in a probabilistic way. Recently, Merrell
et al. [27] described a quick depth map fusion method to
construct a consistent surface among multiple frames. They
introduced two fusion strategies, namely, the stability-based
and confidence-based fusions, based on the visibility con-
straint and confidences. Zach et al. [48] proposed a range
image integrating method based on minimizing an energy
functional incorporating a total variation (TV) regularization
term and an L1 data fidelity term. This method is globally
convergent. For some MVS methods using level-set or
deformable polygonal meshes [9], [49], the geometric
coherence constraint is incorporated and formulated in 3D.
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Fig. 1. High-quality depth maps recovered from the “Lawn” sequence.
(a) An input video sequence taken by a moving camera. (b) The depth
maps automatically estimated by our method. The sharp boundary of the
statue, as well as the grassplot with smooth depth transition, are
accurately constructed in the depth maps.
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However, these methods typically need a good starting point
(e.g., a visual hull model [25]).

2.5 Recovering Consistent View-Dependent
Depth Maps

Instead of reconstructing a complete 3D model, we focus on
recovering a set of consistent view-dependent depth maps
from a video sequence in this paper. It is mainly motivated
by applications such as view interpolation, depth-based
segmentation, and video enhancement. Our work is closely
related to that of [19], [15], which also aims to infer
consistent depth maps from multiple images. Kang and
Szeliski [19] proposed simultaneously optimizing a set of
depth maps at multiple key frames by adding a temporal
smoothness term. This method makes the disparities across
frames vary smoothly. However, it is sensitive to outliers
and may cause the blending artifacts around object
boundaries. Gargallo and Sturm [15] formulated
3D modeling from images as a Bayesian MAP problem,
and solved it using the expectation-maximization (EM)
algorithm. They use the estimated depth map to determine
the visibility prior. Hidden variables are computed in a
probabilistic way to deal with occlusions and outliers. A
multiple-depth-map prior is finally used to smooth and
merge the depths while preserving discontinuities. In
comparison, our method statistically incorporates the
photo-consistency and geometric coherence constraints in
the data term definition. This scheme is especially effective
for processing video data because it can effectively suppress
temporal outliers by making use of the statistical informa-
tion available from multiple frames. Moreover, we use
efficient loopy belief propagation [10] to perform the overall
optimization. By combining the photo-consistency and
geometric coherence constraints, the distribution of our
data cost becomes distinctive, making the BP optimization
stable and converge quickly.

The temporal coherence constraints were also used in
optical flow estimation [1] and occlusion detection [30], [37].
Larsen et al. [24] presented an approach for 3D reconstruc-
tion from multiple synchronized video streams. In order to
improve the final reconstruction quality, they used optical
flow to find corresponding pixels in the subsequent frames
of the same camera, and enforced the temporal consistency
in reconstructing successive frames. With the observation
that the depth error in conventional stereo methods grows
quadratically with depth, Gallup et al. [14] proposed a
multibaseline and multiresolution stereo method to achieve
constant depth accuracy by varying the baseline and
resolution proportionally to depth.

In summary, although many approaches have been
proposed to model 3D objects or to estimate depths using
multiple input images, the problem of how to appropriately
extract information and recover consistent depths from a
video remains challenging. In this paper, we show that by
appropriately maintaining the temporal coherence, surpris-
ingly consistent and accurate dense depth maps can be
obtained from the video sequences. The recovered depth
maps have high quality and are readily usable in many
applications such as 3D modeling, view interpolation, layer
separation, and video enhancement.

3 FRAMEWORK OVERVIEW

Given a video sequence Î with n frames taken by a freely
moving camera, we denote Î ¼ fIt j t ¼ 1; . . . ; ng, where
ItðxÞ represents the color (or intensity) of pixel x in frame t.
It is either a 3-vector in a color image or a scalar in a
grayscale image. In our experiments, we assume it is an
RGB color vector. Our objective is to estimate a set of
disparity maps D̂ ¼ fDt j t ¼ 1; . . . ; ng. By convention,
disparity DtðxÞ (dx for short) is defined as dx ¼ 1=zx, where
zx is the depth value of pixel x in frame t. For simplicity, the
terms “depth” and “disparity” are used interchangeably in
the following sections.

The set of camera parameters for frame t in a video
sequence is denoted as Ct ¼ fKt;Rt;Ttg, where Kt is the
intrinsic matrix, Rt is the rotation matrix, and Tt is the
translation vector. The parameters for all frames can be
estimated reliably by the structure from motion (SFM)
techniques [17], [29], [50]. Our system employs the SFM
method of Zhang et al. [50].

In order to robustly estimate a set of disparity maps, we
define the following energy in a video:

EðD̂; ÎÞ ¼
Xn
t¼1

ðEdðDt; Î; D̂nDtÞ þ EsðDtÞÞ; ð1Þ

where the data term Ed measures how well disparity D̂
fits the given sequence Î and the smoothness term Es

encodes the disparity smoothness. For each pixel in
disparity map Dt, because it maps to one point in 3D,
there should exist corresponding pixels in other nearby
frames. These pixels not only satisfy the photo-consis-
tency constraint, but also have their geometric informa-
tion consistent. We thus propose a bundle optimization
framework to model the explicit correlation among the
pixels and use the collected statistics to optimize the
disparities jointly.

Fig. 2 gives an overview of our framework. With an
input video sequence, we first employ the SFM method to
recover the camera parameters. Then, we initialize the
disparity map for each frame independently. Segmentation
prior is incorporated into initialization for improving the
disparity estimation in large textureless regions. After
initialization, we perform bundle optimization to iteratively
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Fig. 2. Overview of our method.
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refine the disparity maps. Finally, we use a space-time
fusion to further reduce the reconstruction noise.

4 DISPARITY INITIALIZATION

With a video sequence input, we first initialize the disparity
map for each frame independently. Denoting the disparity
range as ½dmin; dmax�, we equally quantize the disparity into
mþ 1 levels, where the kth level dk ¼ ðm� kÞ=m � dmin þ
k=m � dmax, k ¼ 0; . . . ;m. So, the task in this step is to estimate
an initial disparity d for each pixel. Similar to the traditional
multiview stereo methods, using the photo-consistency
constraint, we define the disparity likelihood as

Linitðx; DtðxÞÞ ¼
X
t0
pcðx; DtðxÞ; It; It0 Þ;

where pcðx; d; It; It0 Þ measures the color similarity between
pixel x and the corresponding pixel x0 (given disparity d) in
frame t0. It is defined as

pcðx; d; It; It0 Þ ¼
�c

�c þ kItðxÞ � It0 ðlt;t0 ðx; dÞÞk
; ð2Þ

where �c controls the shape of our differentiable robust
function. kItðxÞ � It0 ðlt;t0 ðx; dÞÞk is the color L-2 norm.
With these definitions, for each frame t, data term Et

d is
expressed as

Et
dðDt; ÎÞ ¼

X
x

1� uðxÞ � Linitðx; DtðxÞÞ; ð3Þ

where uðxÞ is an adaptive normalization factor, and is
written as

uðxÞ ¼ 1=max
DtðxÞ

Linitðx; DtðxÞÞ:

It makes the largest likelihood of each pixel always one,
which is equivalent to imposing stronger smoothness
constraint in the flat regions than in the textured ones.

The spatial smoothness term for frame t can be
defined as

EsðDtÞ ¼
X

x

X
y2NðxÞ

�ðx;yÞ � �ðDtðxÞ; DtðyÞÞ; ð4Þ

where NðxÞ denotes the set of neighbors of pixel x, and � is
the smoothness weight. �ð�Þ is a robust function:

�ðDtðxÞ; DtðyÞÞ ¼ minfjDtðxÞ �DtðyÞj; �g;

where � determines the upper limit of the cost.
In order to preserve discontinuity, �ðx;yÞ is usually

defined in an anisotropic way, encouraging the disparity
discontinuity to be coincident with abrupt intensity/color
change [11], [3], [4], [31], [35]. Our adaptive smoothness
weight is defined as

�ðx;yÞ ¼ ws �
u�ðxÞ

kItðxÞ � ItðyÞk þ "
;

where u�ðxÞ is a normalization factor:

u�ðxÞ ¼ jNðxÞj
� X

y02NðxÞ

1

kItðxÞ � Itðy0Þk þ "
:

ws denotes the smoothness strength and " controls the
contrast sensitivity. Our adaptive smoothness term imposes
smoothness in flat regions while preserving edges in
textured ones.

Finally, the initial energy function for each frame t can be
written as

Et
initðDt; ÎÞ ¼

X
x

�
1� uðxÞ � Linitðx; DtðxÞÞ

þ
X

y2NðxÞ
�ðx;yÞ � �ðDtðxÞ; DtðyÞÞ

�
:

ð5Þ

We minimize Et
init to get the initial disparity estimates.

Taking into account the possible occlusions, we employ the
temporal selection method proposed in [19] to only select
the frames in which the pixels are visible for matching. For
each frame t, we then use loopy belief propagation [10] to
estimate Dt by minimizing (5). Fig. 3b shows one frame
result obtained in this step (i.e., step 2.1 in Fig. 2).

In order to better handle textureless regions, we
incorporate the segmentation information into the disparity
estimation. The segments of each frame are obtained by
mean-shift color segmentation [7]. Similar to the nonfronto-
parallel techniques [42], [38], we model each disparity
segment as a 3D plane and introduce plane parameters
½ai; bi; ci� for each segment si. Then, for each pixel
x ¼ ½x; y� 2 si, the corresponding disparity is given by
dx ¼ aixþ biyþ ci. Taking dx into (5), Et

init is formulated
as a nonlinear continuous function w.r.t. the variables ai, bi,
and ci, i ¼ 1; 2; . . . . The partial derivatives over ai, bi, and ci
are required to be computed when applying a nonlinear
continuous optimization method to estimate all 3D plane
parameters. Note that Linitðx; dxÞ does not directly depend
on the plane parameters. We, therefore, apply the following
chain rule:

@Linitðx; dxÞ
@ai

¼ @Linitðx; dxÞ
@dx

� @dx

@ai
¼ x @Linitðx; dxÞ

@dx
:

Similarly, @Linitðx;dxÞ
@bi

¼ y @Linitðx;dxÞ
@dx

and @Linitðx;dxÞ
@ci

¼ @Linitðx;dxÞ
@dx

. In

these equations, gradient @Linitðx;dxÞ
@dx

is first computed on the

quantized disparity levels:

@Linitðx; dxÞ
@dx

����
dk

¼ Linitðx; dkþ1Þ � Linitðx; dk�1Þ
dkþ1 � dk�1

;

where k ¼ 1; . . . ;m. Then, a continuous version of
Linitðx; dxÞ (denoted as Lcinitðx; dx)) is constructed by
cubic-Hermite interpolation. Finally, the continuous partial
derivatives are calculated on Lcinitðx; dxÞ.

With the parametric form dx ¼ aixþ biyþ ci, estimating
disparity dx is equivalent to optimizing plane parameters
½ai; bi; ci�. It is thus possible to use a nonlinear continuous
optimization method to minimize the energy in (5). Initial
3D plane parameters can be obtained by the nonfrontopar-
allel plane extraction method [42]. In experiments, we adopt
a simpler method which can produce sufficiently satisfac-
tory plane parameters with less computational time.
Particularly, for each segment si, we first set ai ¼ 0 and
bi ¼ 0 by assuming a frontoparallel plane. The disparity
values in all other segments are fixed. Then, we compute a

ZHANG ET AL.: CONSISTENT DEPTH MAPS RECOVERY FROM A VIDEO SEQUENCE 977

Authorized licensed use limited to: Zhejiang University. Downloaded on April 25, 2009 at 11:39 from IEEE Xplore.  Restrictions apply.



set of ci with different assignments of dk, where
k ¼ 0; . . . ;m, and select the best c�i that minimizes (5). After
getting c�i , we unfreeze ai and bi, for i ¼ 0; 1; 2; . . . , and use
the Levenberg-Marquardt method to reestimate them by
solving the function in (5). When all plane parameters are
estimated, the disparities in each segment can be obtained
accordingly. We show in Fig. 3 one frame from the “Road”
example. Fig. 3c shows the incorporated segmentation in
initialization. The disparity estimated from the initialization
step is shown in Fig. 3d.

5 BUNDLE OPTIMIZATION

In the disparity initialization step, we perform color
segmentation and estimate the disparity map for each
frame independently. It is widely known that segmentation
is a double-edged sword. On one hand, segmentation-based
approaches regularize the disparity estimate in large
textureless regions. On the other hand, they inevitably
introduce errors in textured regions and do not handle well
the situation that similar-color pixels are with different
disparity values. Figs. 3d and 3g show that there are visual
artifacts along the occlusion boundaries. Our initialization
independently estimates the disparity maps, which are not
necessarily consistent among each other. This easily causes
flicker during video playback.

In this section, we propose using the geometric coher-
ence constraint to associate each video frame to others, and
introduce bundle optimization to refine the disparity maps.
The corresponding disparity estimate is iteratively refined
by simultaneously imposing the photo-consistency and
geometric coherence constraints.

5.1 The Energy Function

We define a new energy function for (1). Compared to (5),
only the data term is largely modified. This is based on a

common observation that data term usually plays an
essential role in energy minimization. If the data costs for
the majority of the pixels are not informative, the
corresponding solution to the stereo problem will be
ambiguous since the resultant minimal cost in (1) may
refer simultaneously to multiple results that are quantita-
tively and visually quite different. For example, if the data
term only measures color similarity, strong matching
ambiguity for pixels in the textureless areas will be the
result. One may argue that the smoothness term has an
effect of regularizing the solver. However, this term only
functions as compromising the disparity of one pixel to its
neighborhood and does not contribute much to inferring
the true disparity values.

One objective of defining the new data term is to handle
occlusion. In our approach, we reduce the influence of
occlusions and outliers by collecting both the color and
geometry information statistically over multiple frames.
More specifically, in a video sequence, if the disparity of a
pixel in a frame is mistakenly estimated due to either
occlusion or other problems, the projection of this pixel to
other frames using this incorrect disparity has a small
probability of satisfying both the photo-consistency and
geometric coherence constraints simultaneously. With
this intuition in mind, we define the data term in the
following way.

Considering a pixel x in frame t, by epipolar geometry,
the matching pixel in frame t0 should lie on the conjugate
epipolar line. Given the estimated camera parameters and
the disparity dx for pixel x, we compute the conjugate pixel
location in It0 by multiview geometry and express it as

x0
h � Kt0R

>
t0 RtK

�1
t xh þ dxKt0R

>
t0 ðTt �Tt0 Þ; ð6Þ

where the superscript h denotes the vector in the homo-
geneous coordinate system. The 2D point x0 is computed by
dividing x0h by the third homogeneous coordinate. We
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Fig. 3. Disparity estimation illustration. (a) One frame from the “Road” sequence. (b) The initial estimate after solving (5) by belief propagation without

incorporating segmentation. (c) Segmentation prior incorporated in our initialization. (d) Disparity initialization with segmentation and plane fitting

using a nonlinear continuous optimization. (e) Our refined disparities after bundle optimization. (f)-(h) Magnified regions from (a), (d), and (e),

showing that our bundle optimization improves disparity estimate significantly on object boundaries.
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denote the mapping pixel in frame t0 of x as x0 ¼ lt;t0 ðx; dxÞ.
The mapping lt0;t is symmetrically defined. So, we also have
xt
0!t ¼ lt0;tðx0; dx0 Þ, as illustrated in Fig. 4.
If there is no occlusion or matching error, ideally, we

have xt
0!t ¼ x. So, we define the likelihood of disparity d

for any pixel x in It by combining two constraints:

Lðx; dÞ ¼
X
t0
pcðx; d; It; It0 Þ � pvðx; d;Dt0 Þ; ð7Þ

where pvðx; d;Dt0 Þ is the proposed geometric coherence
term measuring how close pixels x and xt

0!t are, as shown
in Fig. 4. It is defined as

pvðx; d;Dt0 Þ ¼ exp �kx� lt
0;tðx0; Dt0 ðx0ÞÞk2

2�2
d

 !
ð8Þ

in the form of a Gaussian distribution, where �d denotes the
standard deviation. The definition of pc is given in (2). Our
geometric coherence term is similar to the symmetric
constraint used in two-view stereo [38] and the geometric
visibility prior in [15].

Both the photo-consistency and geometric coherence
constraints make use of the information of the correspond-
ing pixels mapped from t0 to t. But, they constrain the
disparity from two different aspects. In the following
paragraphs, we briefly explain why there is no need to
explicitly model occlusion or visibility.

Our likelihood requires a correct disparity estimate to
satisfy two conditions simultaneously, i.e., high photo-
consistency as well as high geometric coherence for the
corresponding pixels. We use the following example to
explain how the data term ensures the reliable depth
estimation. Suppose we compute the disparity likelihood
of pixel x in frame t. A correct disparity d makes
pcðx; d; It; It0 Þ � pvðx; d;Dt0 Þ output a large value for several
neighboring frames t0. An arbitrary d other than that has
small chance to find similar consistent support from
neighboring frames and, thus, can be regarded as noise.

Combining the computed likelihood for all possible dis-
parities, a highly nonuniform cost distribution for each
pixel can be obtained favoring the correct disparity.

We also found that this model performs satisfactorily
around depth discontinuous boundaries. The reason is
similar to that given above. Specifically, we use color
segmentation and plane fitting to initialize depths indepen-
dently on each frame. So, the corresponding pixels in
multiple frames are possibly assigned to the correct or
incorrect depth segments. Even if we only obtain a few correct
depth estimates for the corresponding pixels, it sufficiently
makes

P
t0 pcðx; d; It; It0 Þ � pvðx; d;Dt0 Þ output a relatively

large value for the correct disparity d. Therefore, our data
energy, in many cases, can form a highly nonuniform cost
distribution where the likelihood of the correct depth is large.

In [19], an extratemporal smoothness term is introduced
outside the data term, which functions similarly to the
spatial smoothness constraint. It compromises the dispa-
rities temporally, but does not essentially help the inference
of true disparity values.

To fit the energy minimization framework, our data term
Ed is finally defined as

EdðDt; Î; D̂nDtÞ ¼
X

x

1� uðxÞ � Lðx; DtðxÞÞ; ð9Þ

where uðxÞ is an adaptive normalization factor, and is
expressed as

uðxÞ ¼ 1=max
DtðxÞ

Lðx; DtðxÞÞ:

It makes the largest likelihood of each pixel always one.

5.2 Iterative Optimization

With the above energy definition, we iteratively refine the
depth estimate using loopy belief propagation. The seg-
mentation prior is not used in this step and we, instead,
perform pixel-wise disparity refinement to correct the error.

Each pass starts from frame 1. With the concern of
computational complexity, in refining disparity map Dt, we
fix the disparity values in all other frames. The data term
only associates frame t with about 30-40 neighboring
frames. One pass completes when the disparity map of
frame n is optimized. In our experiments, after the first-pass
optimization, the noise and estimation errors are dramati-
cally reduced. Fig. 3e shows one depth map. Two passes are
usually sufficient to generate temporally consistent depth
maps in our experiments.

6 SPACE-TIME FUSION

Bundle optimization can largely improve the quality of the
recovered disparity maps in a video sequence. But, it does
not completely eliminate the reconstruction noise. In this
section, we describe a space-time fusion algorithm to reduce
the remaining noise due to inevitable disparity quantiza-
tion, video resolution, and other estimation problems. The
disparity consistency error, after space-time fusion, can be
decreased to an even lower fraction.

Our space-time fusion makes use of the sparse feature
points in 3D computed by structure-from-motion and the
depth correspondences from multiview geometry. Based on
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Fig. 4. Geometric coherence. The conjugate pixel of x in frame t0 is
denoted as x0 and lies on the conjugate epipolar line. Ideally, when we
project x0 from frame t0 back to t, the projected pixel should satisfy
xt
0!t ¼ x. However, in disparity estimation, because of the the matching

error, xt
0!t and x are possibly in different positions.
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the estimated Dtðx; yÞ for each pixel Itðx; yÞ from the bundle
optimization step, we attempt to compute the fused
disparity maps D� ¼ fD�t j t ¼ 1; . . . ; ng with three groups
of constraints.

6.1.1 Spatial Continuity

Depths computed by bundle optimization contain many
correctly inferred depth structures, such as edges and
smooth transitions. To preserve them in the final depth
results, we require the first-order derivatives of the space-
time fused depths to be similar to those from bundle
optimization. So, the spatial constraints for every two
neighboring pixels in D�t are defined as

D�t ðxþ 1; yÞ �D�t ðx; yÞ ¼ Dtðxþ 1; yÞ �Dtðx; yÞ;
D�t ðx; yþ 1Þ �D�t ðx; yÞ ¼ Dtðx; yþ 1Þ �Dtðx; yÞ:

ð10Þ

6.1.2 Temporal Coherence

Because depth values are view-dependent, one point in 3D
is possibly projected to multiple frames. Using Fig. 5 as an
example, if a 3D point X projects to x and x0 in frames t and
t0, respectively, the corresponding depth values zx and zx0

should be correlated by a transformation with the com-
puted camera parameters. It is written as

ðxx0 ; yx0 ; zx0 Þ> ¼ zxR>t0 RtK
�1
t xh þR>t0 ðTt �Tt0 Þ; ð11Þ

where K is the intrinsic matrix, R is the rotation matrix, and
T is the translation vector. The transformation can be
simplified to zx0 ¼ AðxÞ � zx þB, where AðxÞ and B are
determined by pixel x and the camera parameters.

Our temporal constraint is based on the above depth
correlation in multiframes. Considering frames t and tþ 1,
we denote the corresponding pixel in frame tþ 1 to Itðx; yÞ
as ðxt!tþ1; yt!tþ1Þ. We accordingly define the disparity
consistency error as

e ¼ 1

Aðx; yÞ þB �Dtðx; yÞ
Dtðx; yÞ �Dtþ1ðxt!tþ1; yt!tþ1Þ

����
����;

which measures the disparity consistency error between
Dt andDtþ1. We plot in Figs. 6a and 6b the average disparity
consistency errors for different frames in the “Angkor Wat”
and “Road” sequences. It shows that the recovered disparities
after bundle optimization are already temporally consistent.

The average error is only about 0:003 � ðdmax � dminÞ. By
visual inspection, the pixels that cause abnormally large
errors are mostly occlusions. If the error is above a threshold �
(i.e., e > �), we regard the correspondence as “unreliable.”

Finally, the temporal constraint is defined for each
reliable correspondence as

� � D�t ðx; yÞ
Aðx; yÞ þB �D�t ðx; yÞ

�D�tþ1ðxt!tþ1; yt!tþ1Þ
� �

¼ 0;

ð12Þ

where � is a weight, and is set to 2 in our experiments.

6.1.3 Sparse Feature Correspondences

Our SFM step has estimated a sparse set of 3D feature
points S. These 3D points are view-independent, and
therefore, can be used as anchors to constrain different
views with the geometric correlations.

For a 3D point X 2 S, its projection and the correspond-
ing disparity in frame t are, respectively, denoted as utX and
dXt . utX is given by

utX ¼ Kt

�
R>t X �R>t Tt

�
;

with the estimated camera parameters Kt, Rt, and Tt for
frame t. We similarly define “reliable” projection from X to
frame t if kDtðutXÞ � dXt k < �, where � is a threshold. The
feature correspondence requires, for all pixels that corre-
spond to reliable 3D features, the refined disparity values
should be similar to those of the features in each frame. The
constraint is thus written as

	 �
�
D�t ðutXÞ � dXt

�
¼ 0; ð13Þ

where 	 ¼ 100 in all our experiments. It should be noted
that the above three constraints are all necessary to make
space-time fusion solvable. The spatial continuity constraint
is to preserve depth structures, such as edges and depth
details. The temporal coherence constraint is to make the
disparity temporally consistent. The sparse feature corre-
spondences help refine the depths making use of the
reliable 3D point information.

Because (12) is nonlinear, to make the computation
efficient, we employ an iterative optimization method and
introduce a substitute for (12) that is defined as

� � D�t ðx; yÞ
Aðx; yÞ þB � ~D�t ðx; yÞ

�D�tþ1ðxt!tþ1; yt!tþ1Þ
 !

¼ 0;

ð14Þ

where ~D�t ðx; yÞ is the estimate of D�t ðx; yÞ from the previous
iteration and is initialized as Dtðx; yÞ.

With (10), (13), and (14), in each iteration, we solve a
linear system using the conjugate gradient solver. With the
concern of the memory consumption, each time we perform
space-time fusion in a slab of 5-10 frames. For example,
with an interval of 5 frames, we first fuse frames 1 to 5, then
we fix frames 1 to 4 and fuse frames 5 to 9, etc.

We analyze the disparity errors using the “Angkor Wat”
and “Road” sequences, and plot them in Fig. 6. We
introduce two measures—that is, the disparity consistency
error between adjacent frames and the disparity error with
respect to the sparse 3D feature points. Figs. 6a and 6b show
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Fig. 5. Illustration of multiview geometry. X is a 3D point. x and x0 are its

projections in frames t and t0, respectively. zx and zx0 are the

corresponding depth values.
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the average disparity consistency error for each frame. In

computing the disparity errors, since we do not have the

ground truth disparity maps, the computed sparse

3D points in the SFM step are regarded as “correct”

coordinates. For all reliable projections from the 3D points

to a frame, average disparity error kDtðutXÞ � dXt k is

calculated. The plot is shown in Figs. 6c and 6d. The

comparison of the average errors shows that the space-time

fusion is effective. It reduces the reconstruction noise and

makes the recovered depth temporally more consistent.

7 RESULTS AND ANALYSIS

To evaluate the performance of the proposed method, we
have conducted experiments on several challenging video
sequences. Table 1 lists the statistics of the tested sequences.
All our experiments are conducted on a desktop PC with Intel
Core2Duo 2.0 GHz CPU. Most of the parameters in our
system use fixed values. Specifically, ws ¼ 5=ðdmax � dminÞ,
� ¼ 0:05ðdmax � dminÞ, " ¼ 50,�c ¼ 10,� ¼ 2,	 ¼ 100. We also
found 2 � �d � 3 works well in our experiments. Its default
value is 2.5. For depth estimation from a video sequence, we
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Fig. 6. Disparity error measures on the “Angkor Wat” and “Road” examples. The red/blue curve shows the average errors without/with space-time

fusion. (a) and (b) Disparity consistency error. We compute the average error between consecutive frames. Without space-time fusion, the average

disparity consistency error of these two examples is around 0:3% � ðdmax � dminÞ. After our space-time fusion, both of them are reduced to around

0:1% � ðdmax � dminÞ. (c) and (d) Disparity error w.r.t. the sparse 3D points obtained in the SFM step. Our space-time fusion also largely reduces it.

TABLE 1
The Statistics of the Tested Sequences Shown in This Paper
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set the thresholds � ¼ 0:03 � ðdmax � dminÞ, � ¼ 0:01 � ðdmax �
dminÞ. For the “Statue” (Fig. 14) and “Fountain-P11” (Fig. 15)
examples, since they only contain a sparse set of input images,
we set � ¼ 0:005 � ðdmax � dminÞ and � ¼ 0:003 � ðdmax � dminÞ.
The maximum disparity level m is usually with value 300.

The running time of our method for different steps on
three tested sequences is shown in Table 2. It is approxi-
mately proportional to the video resolution. For a sequence
with frame resolution 576� 352, our initialization needs
3 minutes for each frame. Bundle optimization with two
passes takes about 8 minutes per frame and the major
computation is spent on the data cost estimation consider-
ing all pixels in multiple frames. Space-time fusion is quick
and only consumes about 3 seconds per frame.

7.1 Workflow Illustration

We first illustrate how our system recovers the depths for
the “Angkor Wat” sequence in Fig. 7. The “Angkor Wat”
sequence contains textureless regions with complex

occlusions. In initialization, we first solve the energy
function in (5) without incorporating segmentation. The
estimated disparity map is shown in Fig. 7b. Then, we use
the mean shift algorithm to segment each frame indepen-
dently. Fig. 7c shows the segmentation result of one
frame. By incorporating the segmentation prior and using
plane fitting, the disparities are refined as shown in
Fig. 7d. To eliminate the erroneous disparities introduced
by segmentation, we perform bundle optimization. The
result is shown in Fig. 7e. Our supplementary video
contains the recovered disparity maps for the whole
sequence, in which the temporal consistency is main-
tained. To further reduce the reconstruction noise, we
finally perform space-time fusion. The result is shown in
Fig. 7f. Due to the limited 256 gray levels reproduced in
the figure, the visual difference of the maps produced
using and without using space-time fusion is not obvious.
Readers are referred to Fig. 6 for a numerical comparison.

7.2 Results of Ordinary Video Sequences

The “Road” sequence shown in Fig. 8 is taken by a
handheld video camera. The scene contains textureless sky
and road. Different objects occlude each other and the road
is with smooth depth change. The video even contains the
thin posts of the traffic sign and street lamp. Our method
faithfully reconstructs all these structures. To verify the
quality of the recovered depth, we synthesize new images
from different views using the 3D warping technique. Since
the depth information is available for every pixel, we can
create a dense grid where each grid point corresponds to a
pixel. Then, we connect the neighboring grids for triangula-
tion, excluding the discontinuous edges where the disparity
contrast is larger than a threshold. With the grids, we build
the texture-mapped scene surface, and render novel images
by projecting the pixels in one frame to a new view. The
synthesized images are shown in Fig. 9. They accurately
preserve object boundary and the relation of occlusions.

Another “Flower” example is shown in Fig. 10. The
sequence contains 229 frames. It is also challenging for depth
estimation because the occlusion is complex and there exist
narrow stems and small leaves in different depth layers. Our
recovered depth maps are shown in Fig. 10b. Similar to the
previous example, to demonstrate how accurate our depth
estimates are, we construct the texture-mapped scene surface
with the computed depth map, and synthesize novel views
from different viewpoints, as shown in Fig. 11.
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TABLE 2
Running Time of Three Tested Sequences

Fig. 8. “Road” sequence taken by a hand-held DV camera moving along

a road. Row (a) shows a few frames, and row (b) shows the

correspondingly estimated depth maps.

Fig. 7. Workflow illustration. (a) One frame from the “Angkor Wat”

sequence. (b) Disparity initialization after only solving energy function

(5). (c) Segmentation prior incorporated in our initialization.

(d) Initialization result after segmentation and plane fitting. (e) The

disparity result of bundle optimization. The estimate is improved

significantly on object boundary. (f) The final disparity map after

space-time fusion.
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Fig. 12 shows the depth results of the “Angkor Wat” and
“Temple” sequences. The image resolution is 576� 352.
Two more examples are shown in Fig. 13. They demonstrate
how our method can robustly handle different types of
camera motion besides sideways panning. The “Stair”
sequence is taken by a vertically moving camera. In the
“Great Wall” sequence, the camera moves surrounding the
beacon on the mountain. Similar to all other examples, both
of these sequences contain video noise and complex

occlusions. Our recovered dense depth maps demonstrate

the robustness of the proposed method.

7.3 Results of Low-Frame-Rate Sequences

Though our method is developed to solve the video depth

estimation problem, it can also handle sequences that only

contain a small number of frames and the baselines between

consecutive frames are moderately wide. The “Statue”
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Fig. 10. “Flower” sequence. (a) Extracted frames from the input sequence. (b) The estimated depth maps.

Fig. 9. Novel view synthesis with the recovered depth maps. (a) One frame extracted from the “Road” sequence. (b) The estimated depth map.

(c) and (d) With the depth information, we build the texture-mapped scene surface, and synthesize new images with different view angles.

Fig. 11. Novel view synthesis. (a) and (b) One frame with the recovered depth map. (c), (d), (e), and (f) The synthesized views.
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sequence shown in Fig. 14 contains only 11 images. Three
consecutive frames (i.e., frames 4-6) are shown in Figs. 14a,
14b, 14c. The small number of frames degrades the
effectiveness of our method. However, the recovered depth
maps still preserve sufficient fine structures as well as
smooth depth transition, as shown in Figs. 14d, 14e, 14f. The
reconstruction quality can be evaluated by synthesizing
novel views. In experiments, with the computed depth maps
for all frames, we project frames 4 and 6 onto frame 5, and
linearly blend them to obtain the interpolated frame 5. The
result is shown in Fig. 14j. It is very similar to the ground
truth frame even on the discontinuous statue boundary.

7.4 Results of Standard Multiview Data

For quantitative evaluation on ground truth data, we test
our method on the “Fountain-P11” example (http://
cvlab.epfl.ch/~strecha/multiview/denseMVS.html) and
show the result in Fig. 15. This example only contains
11 images and the baselines are relatively wide. Due to the
limited memory space, we downsample the images to 768�
512 (the original resolution is 3;072� 2;048). The recovered
depth maps preserve many fine structures. Note that our
method is originally proposed to solve the video depth
estimation problem. It does not perform similarly well
given sparse image input. This is because the statistically
computed data cost may not be sufficiently informative for
obtaining good estimates.

Strecha et al. [34] provide quantitative evaluation for this
scene dataset, given a single triangle mesh. However, for
constructing a complete 3D model, we need to integrate
individual depth maps. As model building is out of the

scope of this paper, we simply construct a triangular mesh
from an arbitrarily selected depth map (frame 5 in Fig. 15)
and upload it to the evaluation Website to obtain the error
histograms for this particular frame (Fig. 16). Sigma denotes
the standard deviation of the depth estimated using the
laser range scanner [34]. After bundle optimization, about
41 percent of our depth estimates are within the 3 � sigma
range of the LIDAR data. After space-time fusion, the
percentage within the 3 � sigma range is further increased
to about 48 percent. It indicates that the fusion step
quantitatively reduces the depth reconstruction errors.

8 DISCUSSION

We have demonstrated, with our experiments, that our
algorithm can successfully and robustly handle different
video sequences. However, if there is no sufficient camera
motion, the recovered depths could be less accurate. This
problem has been observed and widely studied in
multiview geometry [17]. In addition, similar to most
conventional stereo algorithms, our method assumes
approximately view-independent pixel intensities, that is,
with Lambertian surfaces. Therefore, if the scene contains
reflection and translucency, the depth estimate in these
regions may be erroneous.

Another limitation of our algorithm is that, if the scene
contains extremely textureless regions, there exists inherent
ambiguity for depth inference and our method could be stuck
in a local optimum due to an unsatisfactory initialization. Our
current initialization is by using color segmentation and
plane fitting. Fig. 17 shows an example. The color in the
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Fig. 12. Video depth results of the (a) “Angkor Wat” and (b) “Temple” sequences.

Fig. 13. Video depth results of the “Stair” and “Great Wall” sequences. (a) “Stair” sequence with camera moving vertically. (b) “Great Wall” sequence

with camera surrounding the beacon on the mountain.
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background sky is almost constant. The depths around the
tree branches have inherent ambiguity for inference. These
regions can be interpreted as either in the background sky, or
in a foreground layer with unknown disparities, both
satisfying the multiview geometry constraint. So, without
extra prior knowledge, inferring true depth values in these
regions is extremely difficult.

In addition, our method is mainly developed for
recovering consistent depth maps from a video sequence.
For a small number of wide-baseline images, the effective-
ness of our method could possibly be degraded.

9 CONCLUSIONS AND FUTURE WORK

To conclude this paper, we have proposed a novel method for
constructing high-quality depth maps from a video sequence.
Our method advances multiview stereo reconstruction in a

few ways. First, based on the geometry and photo-consis-
tency constraints, we cope with visibility and reconstruction
noise using the statistical information simultaneously from
multiple frames. This model considers occlusions, noise, and
outliers in a unified framework. Second, our method only
uses segmentation in system initialization, and performs
pixel-wise disparity refinement in the following iterative
bundle optimization. By incorporating the photo-consistency
and geometric coherence constraints, the depth estimate can
be effectively improved. This process makes the optimization
in both the textured and textureless regions reliable. Experi-
mental results show that this process is rather effective in
estimating temporally consistent disparities while faithfully
preserving fine structures.

Our future work includes extending our method to
estimating depths from sparse images. With a very small
number of input images, occlusion handling and outlier
rejection will be a more difficult problem. We expect to
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Fig. 14. “Statue” example. (a)-(c) Frames 4, 5, and 6 of the “Statue” sequence. (d)-(f) The estimated depth maps for (a)-(c). (g)-(i) The synthesized
three different views from frame 5. The purely black pixels are the missing pixels. (j) Interpolated frame 5, using the depth information of frames 4
and 6. (k) Close-up of (j). (l) Close-up of (b). Our interpolation result, even near discontinuous object boundary, is natural. (m) The absolute
difference image of (k) and (l).
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tackle it by means of modifying our data cost definition and

introducing a match confidence evaluation for the selected

frames while statistically computing disparity likelihood for

each pixel.

Another direction of our future work is to build complete
3D geometry models from our video depth estimates. As
discussed in [32], reconstructing complete 3D models from
real images is still a challenging problem. Many of the
methods only aim to model a single object. They have
inherent difficulties to model complex outdoor scenes. In
comparison, our method can automatically estimate high-
quality view-dependent depth maps that are temporally
very consistent. We believe this work not only benefits
3D modeling, but also is applicable to video processing,
rendering, and understanding. For example, for image/
video segmentation, many existing algorithms only use the
color information. If the depth estimates exist, layer
separation could be done more effectively. For high-quality
video-based rendering, obtaining accurate and temporally
consistent depth maps is crucial.

Our algorithm is based on multiview geometry, and is
restricted to videos of a static scene. The depths for the
moving objects cannot be recovered since they do not
satisfy the multiview geometry constraint. Recently, re-
search has been conducted to deal with dynamic scenes by
using multiple synchronized/unsynchronized video cam-
eras [41], [51], [24], [12]. We believe it is possible to extend
our bundle optimization framework to moving objects with
multiple video streams. For example, for synchronized
stereo video cameras, if we can exploit the respective
temporal coherence and, at the same time, correlate
neighboring frames in different streams, the depth estima-
tion could be more robust.
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Fig. 16. The error histogram for the “Fountain-P11” example. (a) The

relative error occurrence histogram for frame 5 after bundle optimization.

(b) The relative error occurrence histogram for frame 5 after space-time

fusion.

Fig. 15. “Fountain-P11” example. (a) Frames 2, 5, and 8. (b) The estimated depth maps.
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