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1. Iterative Optimization of Trinocular Stereo
Matching Model

In this section, we will discuss how to solve the proposed
trinocular stereo matching model in details.

We apply an iterative optimization algorithm to mini-
mize the energy function (1) de�ned in our paper, and com-
pute disparity and occlusion by Belief Propagation algorith-
m. Similar to [2], the optimization process iterates between
two steps: 1) estimate occlusion given disparity, and 2) es-
timate disparity given occlusion. For simplicity,O(x) and
D(x) are denoted asox anddx , respectively.

1.1. Estimate occlusion given disparity

Given the estimated disparity mapD, the original energy
function (i.e. Equation (1) in our paper) can be simpli�ed
as:
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(1)
whereN (x) is the set of all adjacent pixels forx. The
�rst three equations constitute the data termEd(D; O; I ),
and the last two equations constitute the visibility term
Ev (D; O; I ).

Since this energy function contains two variablesOL ,
OR and a quadratic termOL (x)OR (x), it cannot be min-
imized conveniently, so that we combineOL andOR into
a single variableO de�ned asO(p) = 2 OR (p) + OL (p).
Therefore, the data term at pixelx has the following four
cases:

1. O(x) = 0 whenOL (x) = 0 andOR (x) = 0 , then
E 0

d (x ; d) = � (x ; d; I L ; I M ) + � (x ; d; I R ; I M ).

2. O(x) = 1 whenOL (x) = 1 andOR (x) = 0 , then
E 1

d (x ; d) = 2 � (x ; d; I R ; I M ).

3. O(x) = 2 whenOL (x) = 0 andOR (x) = 1 , then
E 2

d (x ; d) = 2 � (x ; d; I L ; I M ).

4. O(x) = 3 whenOL (x) = 1 andOR (x) = 1 , then
E 3

d (x ; d) = � .

And the �rst term in the visibility term at pixelx also has
four cases:

1. O(x) = 0 , then
E 0

v (x ; d) = � ! (WL (x ; D ) + WR (x ; D )) .

2. O(x) = 1 , then
E 1

v (x ; d) = � ! (1 � WL (x ; D ) + WR (x ; D )) .

3. O(x) = 2 , then
E 2

v (x ; d) = � ! (1 + WL (x ; D ) � WR (x ; D )) .

4. O(x) = 3 , then
E 3

v (x ; d) = � ! (2 � WL (x ; D ) � WR (x ; D )) .

We denoteE i (x ; d) as E i (x ; d) = E i
d(x ; d) + E i

v (x ; d).
Then the energy function (1) can be rewritten as:

EO =
X

x

(T (ox = 0) E0(x ; dx ) + T (ox = 1) E1(x ; dx ))+

X

x

(T (ox = 2) E2(x ; dx ) + T (ox = 3) E3(x ; dx ))+
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X
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� o(� (ox ; oy )) ;

(2)
where N (x) is the set of all adjacent pixels forx, and
T is the indicator function that returns 1 if its argumen-
t is true and 0, otherwise. Function� (x; y) = d(x 

y)=2e; x; y 2 f 0; 1; 2; 3g, where
 is the “exclusive or”
operator. With our de�nition ofE i (x ; d), the unary terms in
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Figure 1. “Teddy” example. (a) The left image. (b) The center image.(c) The right image. (d) The ground truth of disparity map. (e)The
estimated occlusion map. White pixels are occluded in the right image and gray pixels are occluded in the left image. (f) The estimated
disparity map without plane �tting. (g) The estimated disparity map by plane �tting with one segmentation result. (h) The �nal re�ned
disparity map after fusion re�nement.

Equation (1) and Equation (2) are equivalent. To see the bi-
nary terms are also equivalent, we give a simple proof. Be-
causeOL (x); OR (x) 2 f 0; 1g, jOL=R (x) � OL=R (y )j =
OL=R (x) 
 OL=R (y ). We denotejOL (x) � OL (y )j +
jOR (x) � OR (y )j asS(x; y ), so that we have

S(x; y ) = ( OL (x) 
 OL (y )) + ( OR (x) 
 OR (y ))

= ( ox 
 oy ) � 2b(ox 
 oy )=2c + b(ox 
 oy )=2c

= ( ox 
 oy ) � b (ox 
 oy )=2c

= d(ox 
 oy )=2e

= � (ox ; oy );
(3)

Therefore, Equation (1) and Equation (2) are equivalent.
Then we can apply the BP algorithm to approximately min-
imize (2) to solve the occlusion.

1.2. Estimate disparity given occlusion

Similar to [2], given the estimated occlusionO, the orig-
inal energy function can be simpli�ed as:

ED = Ed (D ; O; I )+
X

x

� ! (O0
L (PM ! L (x ; dx )) + O0

R (PM ! R (x ; dx )))+

X

x ;y

� (x ; y )� s (dx ; dy ):

(4)
The �rst term is the data term and the second term is the
visibility term. PM ! L (x ; D (x)) is a projection function,
projectingx onto the left view based on the disparityD(x).

Binary mapO0
L (x0) indicates whether pixelx0 in the left

view is occluded in the center view.O0
L (x0) equals 1 if

x0 is occluded and 0, otherwise.O0
L can be computed by

warping all the pixels in the middle view by using the esti-
mated disparity map in the last iteration. To reduce noises
in O0

L , a mean �lter is applied to it. If the valueO0
L (x) af-

ter applying the �lter is less than a threshold, it is set to 0.
PM ! R (x ; D (x)) andO0

R are de�ned in a similar way. The
third term is the smoothness term.

As we have mentioned in the paper, we use BP algo-
rithm to minimize Equation (4) to solve the disparity map
in this iteration. Then the estimated disparity map is re-
�ned by �tting disparity segments to a set of 3D planes,
using the same plane �tting technique introduced in [3].
However, the re�ned disparity map may contain errors if
the segmentation information is imperfect. Finally, we pro-
pose to fuse different disparity maps estimated under a vari-
ety of segmentation results generated by different segmen-
tation parameters. Speci�cally, we choose a set of dif-
ferent mean-shift parameters to generatek disparity maps
f D1; D2; � � � ; Dk g which form the disparity candidate set
D̂ . In addition, we also compute the average value (i.e.
D k+1 (x) =

P k
i =1 D i (x)=k), and add it intoD̂ . Finally,

with these proposals, the disparity map is re-estimated by
minimizing (4).

In summery, our iterative optimization algorithm alter-
nates between these two steps. The occlusionO are initially
set to zeros, and the initial disparity mapD is computed by
minimizing Equation (4) without the visibility term.
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Figure 2. “Cones” example. (a) The left image. (b) The center image.(c) The right image. (d) The ground truth of disparity map. (e)The
estimated occlusion map. White pixels are occluded in the right image and gray pixels are occluded in the left image. (f) The estimated
disparity map without plane �tting. (g) The estimated disparity map by plane �tting with one segmentation result. (h) The �nal re�ned
disparity map after fusion re�nement.

1.3. More Results of Trinocular Stereo Matching

We show more results with Middlebury stereo data1.
Figure 1 shows the results of “Teddy” example. Fig-
ures 1(a)-(c) are the left, center and right images, respec-
tively. Although there are some pixels without color infor-
mation in the left image, our method still can recover a high-
quality disparity map, as shown in Figure 1(h).

Figure 2 shows the “Cones” example. Figures 2(a)-(c)
are the left, center and right images. Figures 2(f)-(h) are the
estimated disparity maps of “Cones” example in different
procedures. As can be seen, after fusion re�nement, the
disparity map is signi�cantly improved.

Faithfully, the disparity maps estimated by our method
are very closed to the ground truths. Besides high-quality
results, our method is very ef�cient. The running time of
these two examples is about 40s. In our implementation,
we use GPU to accelerate the process of computing stereo
matching data cost.

2. Modi�ed Bundle Optimization Model

The data termEd2 (D ; I ) for depth re�nement of static
pixels is de�ned as follows:

Ed2 (D ; I ) = Ed(D; O; I ) +
X

x

(1 � u(x)�

X

t 0

pc(x ; D (x); I; I t 0)pv (x ; D (x); D t 0)) ;

1http://vision.middlebury.edu/stereo/

wherepc is the same to Equation (2) in [3], and geometric
coherence termpv is similar to Equation (8) in [3].u(x) is
the normalization factor de�ned the same as [3]. The minor
difference is that geometric coherence term in [3] is de�ned
in image space. Here we propose to measure the geometric
coherence in disparity space by

pv (x ; D (x); D t 0)) = exp( �
jjh(D (x)) � D t 0(x0)jj2

2� 2
v

);

(5)
wherex0 is the projected pixel in framet0, andD t 0(x0) is its
estimated disparity. Hereh(D(x)) is the transformed dis-
parity value considering the camera parameters, i.e. the cor-
responding disparity value after projecting pixelx to frame
t0. Assuming the projective matrix from reference frame to
framet0 is [Rjt], the intrinsic matrix of reference frame is
K , the 2D position ofx is (u; v). Thenh(D(x)) can be
computed by

h(D(x)) =
1

( 1
D (x ) RK � 1(u; v; 1)> + t)[3]

; (6)

where [3] denote the third element of the vector. The in-
tuition is that the corresponding pixels in different frames
should have the same 3D position.� d is a parameter. In our
experiments,� d = 0 :02(dmax � dmin ), where[dmin ; dmax ]
is the disparity range.
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Figure 3. Disparity estimation of the left sequence. (a) One selected imageof the left sequence. (b) The warped segmentation mask from
the center view to the left view. (c) The warped disparity map from the center view to the left view. (d) The re�nement disparity map by
plane �tting. (e) The optimized disparity map after spatio-temporal optimization.

Figure 4. “Book Arrival” example. The images in the �rst row are the four frames in the center sequence. The segmentation results of the
dynamic regions are shown in the second row. The third row shows the estimated disparity maps.

3. Intermediate Results of Depth Estimation
for Left and Right Sequences

Besides recovering the depth maps of the center se-
quence, we also need to estimate the depth maps of the
left and right sequences. The estimated segmentation masks
and depth maps in the center sequence are warped to the left
and right sequences. Figures 3(b)-(c) show the warped re-

sults. The warped depth map contains some holes due to the
missing pixels caused by occlusion. We combine segmen-
tation information to infer the depth values of these pixels.
As shown in Figure 3(c), the missing pixels are mostly in
the static regions. Then mean-shift algorithm is applied to
segment the left/right image. If a segment contains both
static and dynamic pixels (based on the warped moving ob-
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Figure 5. Depth accuracy veri�cation. (a) One selected image in the left sequence. (b) One selected image in the center sequence. (c) One
selected image in the right sequence. (d) Warping the center image to the left one. (e) Warping the center image to the right one. (f) The
estimated depth map of (a). (g) The estimated depth map of (b). (h) The estimated depth map of (c). (i) The difference between (a) and
(d). (j) The difference between (c) and (e).

ject masks), it further splits. By assuming the 3D surface
of each segment can be approximated by a 3D plane, we
�t a 3D plane for each segment which has missing pixels,
so that the disparities of the missing pixels can be inferred.
As shown in Figure 3(d), most missing pixels are complet-
ed. However, some segments in the occluded regions are
mistakenly �tted due to the lack of suf�cient pixels with ac-
curate disparities. Finally, we use our spatio-temporal op-
timization method to further re�ne the left and right depth
maps. Figure 3(e) shows an estimated depth map of one
image from the left sequence.

4. Results of Video Sequences Captured by S-
tationary Trinocular Cameras

Figure 4 shows our estimated results of “book arrival”
example [1] where the capturing trinocular cameras are s-
tationary. Since the dynamic people do not have suf�cien-
t movement, the estimated static background information
is incomplete, so that some regions could not be accurate-
ly segmented. Even with this imperfect segmentation re-
sult, our method still can faithfully recover the high-quality
depth maps due to the following two reasons. First, our
spatio-temporal optimization for dynamic pixels also can
be used for static ones. Therefore, if a background region
is recognized as moving region, it may not harm the depth
estimate. Second, in bundle optimization, the data term on-
ly associates one frame with about 6-8 neighboring frames.
For a dynamic pixel with small movement, since it can be
approximated as static pixels in a short time, its disparity
still can be effectively optimized by bundle optimization.
To verify the accuracy of the recovered depths, we warp
one center image to the left/right views with the recovered
depth map. Figures 5(d)-(e) shows the warped images, and

Figures 5(i)-(j) shows the difference images, which demon-
strate the accuracy of the estimated depth maps.
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