Consistent Depth Maps Recovery from a Trinocular Video Sequence
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1. Iterative Optimization of Trinocular Stereo 1. O(x) = 0whenOy(x) = 0 andOg(x) = 0, then
Matching Model Ey(x,d) = p(x,d; I, Inr) + p(X, d; I, Inr).

In this section, we will discuss how to solve the proposed 2. O(x) = 1 whenOy,(x) = 1 andOg(x) = 0, then
trinocular stereo matching model in details. Ej(x,d) = 2p(x,d; Ir, Ins).

We apply an iterative optimization algorithm to mini- B B B
mize the energy function (1) defined in our paper, and com- > ggx y 2_wgen05.(}<) B 0 andOg(x) = 1, then
pute disparity and occlusion by Belief Propagation alderit d(x,d) = 2p(x,d; I, Inr).

m. Similar to [2], the optimization process iterates betwee 4 O(x) = 3whenO; (x) = 1 andOg(x) = 1, then

two steps: 1) estimate occlusion given disparity, and 2) es- E3(x,d) = 1.
timate disparity given occlusion. For simplicit(x) and
D(x) are denoted asy anddy, respectively. And the first term in the visibility term at pixet also has
four cases:

1.1. Estimate occlusion given disparity

. . ] ) o 1. O(x) =0, then

Given t_he esUma’ged dlsp_arlty mdp the original energy E9(x,d) = By(Wy(x; D) + Wr(x; D)).

function (i.e. Equation (1) in our paper) can be simplified Y
as. 2. O(x) =1, then

El(x,d) = B,(1 — Wr(x; D) + Wg(x; D)).
Fo =3 (1= O0(0)(1+ On(x))p(x, dsi Iz, Inr)+ O l) = Falt = W G D) W D)

* 3. O(x) = 2, then

> (1= Or(x))(1 + OL(x))p(x, dx; Ir, Inr)+ E}(x,d) = Bu(1+Wi(x; D) — Wg(x; D)).
3 L(x)Or(x 4. O(x) = 3, then

EO ( )O ( )77—’_ ES(X, d) = ﬁw(z - WL(X; D) - WR(X; D))

> Bu(|0L(x) = Wi(x; D)l + |Or(x) = Wr(x: D))+ We denoteF;(x, d) as F;(x,d) — Ei(x,d) + E(x,d).

Then the energy function (1) can be rewritten as:
Y D Bol|0L(x) = OL(y)| + [Or(x) = Or(Y)]),

X yEN(x) " Eo = (T(ox = 0)Eo(x,dx) + T(0x = 1)E1(x, dx))+
where N (x) is the set of all adjacent pixels for. The T(ox = 2V Eo(x. dy) + Tlox = 3)Es(x. d)) -
first three equations constitute the data tetg(D, O; I), g( (0x = 2) a3, dhe) + T = 3) B (x, dx))
and the last two equations constitute the visibility term

Bo(9(ox, 0y)),
Ev(DaO;I)' ;yg;x) '
Since this energy function contains two variabi@g, 2

Opr and a quadratic ter;,(x)Og(x), it cannot be min-  where N(x) is the set of all adjacent pixels fot, and
imized conveniently, so that we combing, andOp into T is the indicator function that returns 1 if its argumen-
a single variable) defined a0 (p) = 20g(p) + OL(p). t is true and 0, otherwise. Functiof(z,y) = [(z ®
Therefore, the data term at pixelhas the following four  y)/2], =,y € {0,1,2,3}, where® is the “exclusive or”
cases: operator. With our definition oF’; (x, d), the unary terms in
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Figure 1. “Teddy” example. (a) The left image. (b) The center imggjeThe right image. (d) The ground truth of disparity map. (e)The
estimated occlusion map. White pixels are occluded in the right image angigeds are occluded in the left image. (f) The estimated
disparity map without plane fitting. (g) The estimated disparity map by planegfittith one segmentation result. (h) The final refined

disparity map after fusion refinement.

Equation (1) and Equation (2) are equivalent. To see the bi-
nary terms are also equivalent, we give a simple proof. Be-

causeOr,(x),Or(x) € {0,1}, |Or/r(x) — Or/r(y)| =
Or/r(x) @ Orr(y). We denote|Or(x) — Or(y)| +
|Or(x) — Ogr(y)| asS(x,y), so that we have

S(x,y) = (0L(x) ® Or(y)) + (Or(x) ® Or(y))
= (0x ® 0y) — 2[(0x ® 0y) /2] + | (0x ® 0y)/2]
= (0x ® 0y) — [(0x ® 0y) /2]

[(0x ® 0y)/2]

= ¢(0xa0y),

3
Therefore, Equation (1) and Equation (2) are equivalent.
Then we can apply the BP algorithm to approximately min-
imize (2) to solve the occlusion.
1.2. Estimate disparity given occlusion

Similar to [2], given the estimated occlusioh the orig-
inal energy function can be simplified as:

Ep :Ed(D; O, ])+
> BulOL(Pr— (X, dx)) + Or(Pr (X, dx)))+
Z )‘(X7 y)ps (dx7 d)’)

x,y

(4)

Binary mapO’ (x’) indicates whether pixet’ in the left
view is occluded in the center viewO’ (x’) equals 1 if

x’ is occluded and 0, otherwis&); can be computed by
warping all the pixels in the middle view by using the esti-
mated disparity map in the last iteration. To reduce noises
in O, a mean filter is applied to it. If the valu@} (x) af-

ter applying the filter is less than a threshold, it is set to 0.
Pr—r(x, D(x)) andO’, are defined in a similar way. The
third term is the smoothness term.

As we have mentioned in the paper, we use BP algo-
rithm to minimize Equation (4) to solve the disparity map
in this iteration. Then the estimated disparity map is re-
fined by fitting disparity segments to a set of 3D planes,
using the same plane fitting technique introduced in [3].
However, the refined disparity map may contain errors if
the segmentation information is imperfect. Finally, we-pro
pose to fuse different disparity maps estimated under a vari
ety of segmentation results generated by different segmen-
tation parameters. Specifically, we choose a set of dif-
ferent mean-shift parameters to generatgisparity maps
{D1, Do, -, Dy} which form the disparity candidate set
D. In addition, we also compute the average value (i.e.
Dis1(x) = YF | Di(x)/k), and add it intoD. Finally,
with these proposals, the disparity map is re-estimated by
minimizing (4).

In summery, our iterative optimization algorithm alter-

The first term is the data term and the second term is thenates between these two steps. The occluSiane initially

visibility term. Py, 1 (x, D(x)) is a projection function,
projectingx onto the left view based on the dispari}(x).

set to zeros, and the initial disparity mépis computed by
minimizing Equation (4) without the visibility term.
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Figure 2. “Cones” example. (a) The left image. (b) The center imégelhe right image. (d) The ground truth of disparity map. (e)The
estimated occlusion map. White pixels are occluded in the right image apgigeds are occluded in the left image. (f) The estimated
disparity map without plane fitting. (g) The estimated disparity map by planegfittith one segmentation result. (h) The final refined
disparity map after fusion refinement.

1.3. More Results of Trinocular Stereo Matching wherep.,. is the same to Equation (2) in [3], and geometric
. . coherence term, is similar to Equation (8) in [3]u(x) is
We show more results with Middlebury stereo data the normalization factor defined the same as [3]. The minor

Figure 1 shows the results of Tedd_y e?<ample. Fig- difference is that geometric coherence termin [3] is defined
ures 1(a)-(c) are the left, center and right images, respec-

tively. Although there are some pixels without color infor- n ;:nage sp_ac;. Hefte we proy;ose to measure the geometric
mation in the leftimage, our method still can recover a high- coherence in disparity space by
quality disparity map, as shown in Figure 1(h).

Figure 2 shows the “Cones” example. Figures 2(a)-(c) |h(D(x)) — Dy (x)]|2
are the left, center and right images. Figures 2(f)-(h) lage t Po(x, D(x), D)) = exp(— 202 );
estimated disparity maps of “Cones” example in different Y (5)
procedures. As can be seen, after fusion refinement, theyherex’ is the projected pixel in framg, andD, (x') isits
disparity map is significantly improved. estimated disparity. Her(D(x)) is the transformed dis-

Faithfully, the disparity maps estimated by our method parity value considering the camera parameters, i.e. the co
are very closed to the ground truths. Besides high-quality responding disparity value after projecting pixefo frame
results, our method is very efficient. The running time of ¢/ Assuming the projective matrix from reference frame to
these two examples is about 40s. In our implementation,frame¢’ is [R|t], the intrinsic matrix of reference frame is
we use GPU to accelerate the process of computing stereqs, the 2D position ofx is (u,v). Thenh(D(x)) can be

matching data cost. computed by
2. Modified Bundle Optimization Model
1
. i i h(D = 6
_ The data tern¥,, (D; ) for depth refinement of static (D(x)) (S RK 0 )T 0B (6)
pixels is defined as follows: )

Ea,(D; 1) =Ea(D, 03 1) + Zx:(l — ulx) where [3] denote the third element of the vector. The in-

tuition is that the corresponding pixels in different fresne

ch(x7 D(x), I, Iy )py(x, D(x), Dv)), should have the same 3D positiary, is a parameter. In our
v experimentsgy = 0.02(dmax — dmin), Where[dmin, dmax]
Lhitp://vision.middlebury.edu/stereo/ is the disparity range.
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Figure 3. Disparity estimation of the left sequence. (a) One selected infdige left sequence. (b) The warped segmentation mask from
the center view to the left view. (¢) The warped disparity map from the cerges to the left view. (d) The refinement disparity map by
plane fitting. (e) The optimized disparity map after spatio-temporal optimizatio

Figure 4. “Book Arrival” example. The images in the first row are therfitames in the center sequence. The segmentation results of the
dynamic regions are shown in the second row. The third row shows tinesg¢sd disparity maps.

3. Intermediate Results of Depth Estimation  sults. The warped depth map contains some holes due to the
for Left and Right Sequences missing pixels caused by occlusion. We combine segmen-
tation information to infer the depth values of these pixels
Besides recovering the depth maps of the center se-As shown in Figure 3(c), the missing pixels are mostly in
guence, we also need to estimate the depth maps of thehe static regions. Then mean-shift algorithm is applied to
left and right sequences. The estimated segmentation masksegment the left/right image. If a segment contains both
and depth maps in the center sequence are warped to the lefitatic and dynamic pixels (based on the warped moving ob-
and right sequences. Figures 3(b)-(c) show the warped re-



] (d) (e)
) (2 (h) (M) W)

Figure 5. Depth accuracy verification. (a) One selected image in theeliesice. (b) One selected image in the center sequence. (c) One
selected image in the right sequence. (d) Warping the center image tottbadef(e) Warping the center image to the right one. (f) The
estimated depth map of (a). (g) The estimated depth map of (b). (h)simeated depth map of (c). (i) The difference between (a) and
(d). (j) The difference between (c) and (e).

ject masks), it further splits. By assuming the 3D surface Figures 5(i)-(j) shows the difference images, which demon-
of each segment can be approximated by a 3D plane, westrate the accuracy of the estimated depth maps.

fit a 3D plane for each segment which has missing pixels,
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4. Results of Video Sequences Captured by S-
tationary Trinocular Cameras

Figure 4 shows our estimated results of “book arrival”
example [1] where the capturing trinocular cameras are s-
tationary. Since the dynamic people do not have sufficien-
t movement, the estimated static background information
is incomplete, so that some regions could not be accurate-
ly segmented. Even with this imperfect segmentation re-
sult, our method still can faithfully recover the high-gtal
depth maps due to the following two reasons. First, our
spatio-temporal optimization for dynamic pixels also can
be used for static ones. Therefore, if a background region
is recognized as moving region, it may not harm the depth
estimate. Second, in bundle optimization, the data term on-
ly associates one frame with about 6-8 neighboring frames.
For a dynamic pixel with small movement, since it can be
approximated as static pixels in a short time, its disparity
still can be effectively optimized by bundle optimization.
To verify the accuracy of the recovered depths, we warp
one center image to the left/right views with the recovered
depth map. Figures 5(d)-(e) shows the warped images, and



