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Abstract. Extracting spatio-temporally consistent segments from a video
sequence is a challenging problem due to the complexity of color, motion
and occlusions. Most existing spatio-temporal segmentation approaches
rely on pairwise motion estimation, which have inherent difficulties in
handling large displacement with significant occlusions. This paper presents
a novel spatio-temporal segmentation method for depth-inferred videos.
The depth data of input videos can be estimated beforehand using a
multiview stereo technique. Our framework consists of two steps. In the
first step, in order to make the extracted 2D segments temporally con-
sistent, we introduce a spatial segmentation based on the probabilistic
boundary maps, by collecting the boundary statistics in a video. In the
second step, the consistent 2D segments in different frames are matched
to initialize the volume segments. Then we compute the segment proba-
bility for each pixel by projecting it to other frames to collect the statis-
tics, and incorporate it into the spatio-temporal segmentation energy
to explicitly enforce temporal coherence constraint. The spatio-temporal
segmentation results are iteratively refined in a video, so that a set of
spatio-temporally consistent volume segments are finally achieved. The
effectiveness of our automatic method is demonstrated using a variety of
challenging video examples.

1 Introduction

Image and video segmentation has long been a fundamental problem in computer
vision. It is useful in many applications, such as object recognition, image/video
annotation, video stylization, and video editing. However, unsupervised segmen-
tation is an inherently ill-posed problem due to the large number of unknowns
and the possible geometric and motion ambiguities in the computation.

Recent advances in structure-from-motion [1] and stereoscopic vision [2–4]
have made it possible to create high-quality depth maps with a handheld camera.
The increasing prevalence of range sensors also implies that achieving high-
quality depth images is becoming more and more convenient and flexible. For
instance, time-of-flight senors that provide realtime range estimates have been
available at commodity prices. Therefore, it is not difficult to imagine that most
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Fig. 1. Spatio-temporal segmentation of “Stair” sequence. Left column: the selected
images from the input sequence. Middle and right columns: our segmentation results
with different segment numbers.

of captured images will have depth data in the future. How to appropriately
utilize depth information for segmentation is becoming an important issue. To
the best of our knowledge, it has not yet been thoroughly discussed in literatures,
especially for video segmentation.

In this paper, we propose a novel depth-based video segmentation method
with the objective that the extracted segments not only preserve object bound-
aries but also maintain the temporal consistency in different images. The spatio-
temporal segmentation is crucial for many video applications, such as content-
based video editing, which typically requires that the modified video content
should maintain high temporal consistency over frames.

We assume that the scene is static and there is a depth map for each frame
of the input video. The depth data could be achieved by using a depth camera
or multiview stereo techniques [5, 3, 4]. In our experiments, we capture videos
with a handheld camera, and compute the depth maps by the multiview stereo
method proposed in [4]. Our method contributes the following two aspects. First,
we introduce “probabilistic boundary” which can be computed by collecting
the boundary statistics in a sequence. The experimental results demonstrate
that our spatial segmentation with probabilistic boundary can preserve object
boundaries well and obtain much more consistent segments than those of directly
using the state-of-the-art image segmentation methods. Second, we introduce a
novel spatio-temporal segmentation method which iteratively refines the spatio-
temporal segmentation by associating multiple frames in a video. By projecting
each pixel to other frames, we can reliably compute the segment probability
and incorporate it into our data term definition. The modified data term can
significantly improve the spatio-temporal segmentation results, so that a set of
spatio-temporally coherent volume segments can be achieved.

Our method is very robust against occlusions. We have conducted experi-
ments on a variety of challenging examples. One challenging example is shown
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in Fig. 1, in which the scene contains complex color and structure. Besides main-
taining the temporal coherence, our method also allows controlling the granu-
larity of segmentation result. Readers are referred to our supplementary video
for inspecting the complete segmentation results.

2 Related Work

During the past decades, many state-of-the-art image segmentation methods
have been proposed, such as mean shift [6], normalized cuts [7], watershed algo-
rithm [8], and segmentation by weighted aggregation (SWA) [9]. Mean shift based
image segmentation is often adopted in practice for its promising performance.
However, for a video sequence, if we directly use these image-based segmentation
methods to segment each frame independently, the segmentation results will be
inconsistent for different images due to the lack of necessary temporal coherence
constraints.

Some spatio-temporal segmentation methods [10] have been proposed to ex-
tend segmentation from single image to videos. Two main types of segmentation
criteria (i.e. motion and color/texture) are generally used alone or in combina-
tion for video segmentation. Motion-based segmentation methods [11] aim to
group pixels that undergo similar motion, and separate them into multiple lay-
ers. Many of them [12–14] need to estimate optical flow first, and then segment
the pixels based on the learned motion models. Some of them [15, 16, 11] com-
bine motion estimation and segmentation together, and iteratively refine them.
However, pure motion-based methods are difficult to achieve high-quality seg-
mentation results and usually produce inaccurate object boundaries due to the
motion ambiguity and the difficulties of accurate optical flow estimation. Some
works that combine color and motion cues for spatio-temporal segmentation are
proposed. Khan and Shah [14] proposed a MAP framework for video segmenta-
tion combining multiple cues including spatial location, color and motion.

For video segmentation, both spatial and temporal dimensions should be
considered. Most approaches handle these two types of dimensions separately.
For example, many approaches [17, 18] first perform spatial segmentation of each
frame, and then perform temporal grouping to obtain spatio-temporal volumes.
Due to the complexity of color, motion and occlusions in a video, it is challenging
for spatial segmentation to produce very consistent segments in different images,
so that the obtained spatio-temporal segments by temporal grouping will easily
contain obvious artifacts. Some methods [19, 20] employ a progressive scheme to
obtain consistent segments across frames, that each frame is segmented according
to the segmentation information propagated from previous frames. Zitnick et
al. [16] proposed to combine segmentation and optical flow estimation together
to produce consistent segments for a pair of images. However, all these methods
are difficult to handle significant occlusions, where large groups of segments
appear or disappear.

Some space-time segmentation methods [12, 13] are proposed to combine spa-
tial and temporal grouping together, by treating the image sequence as a 3D vol-
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ume and attempting a segmentation of pixel volumes. These methods typically
construct a weighted graph by taking each pixel as a node and connecting the
pixels that are in the spatiotemporal neighborhood of each other. Normalized
cuts are typically used to partition the spatiotemporal volume. Some space-time
segmentation methods define a high dimensional feature vector for each pixel by
integrating multiple cues (such as color, space, motion, and time), and cluster
these feature points via mean shift analysis [21, 22] or GMM [23]. However, all
these methods are sensitive to large displacement with significant occlusions.
Especially, if an object temporarily disappear due to occlusion or out-of-view, it
is quite challenging for these methods to cluster the corresponding regions into
the same segment.

Our work is also closely related to joint segmentation techniques [24, 25],
which simultaneously segment the reconstructed 3D points and the registered
2D images. Given the multiple view images, they aim to semantically organize
the recovered 3D points and obtain semantic object segmentation, which requires
user assistance. In contrast, our method can automatically obtain a set of spatio-
temporally consistent volume segments from a video sequence.

In summary, spatio-temporal segmentation is still a very challenging problem.
Previous approaches generally have difficulties for handling large displacement
with significant occlusions. In this paper, we show that by associating multiple
frames on the inferred dense depth maps, surprisingly spatio-temporal consistent
segments can be obtained from video sequences. The high-quality segmentation
results can benefit many other applications, such as 3D modeling, video editing,
and non-photorealistic rendering.

3 Our Approach

Given a video sequence with n frames, our objective is to estimate a set of
spatio-temporal volume segments S = {Sk|k = 1, 2, ...,K}, where K is the
volume segment number. For a pixel xt in frame t, we denote S(xt) = Sk if
xt ∈ Sk. The color of pixel xt is denoted as I(xt), defined in Luv color space.
Denoting by zxt

the depth value of pixel xt, the disparity D(xt) is defined as
D(xt) = 1/zxt

by convention.
We start by using the structure-from-motion (SFM) method proposed in [26]

to recover the camera motion parameters from the input video sequence. The set
of camera parameters for frame t is denoted as Ct = {Kt,Rt,Tt}, where Kt is
the intrinsic matrix, Rt is the rotation matrix, and Tt is the translation vector.
With the recovered camera poses, we then employ the multi-view stereo method
of Zhang et al. [4] to recover a set of consistent depth maps. The computed depth
maps will be used in the following segmentation process.

4 Spatial Segmentation with Probabilistic Boundary

Directly obtaining spatio-temporal volume segments in a video is difficult due to
the large number of unknowns and the possible geometric and motion ambigui-
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ties in the segmentation. Therefore, we design an iterative optimization scheme
to achieve spatio-temporal video segmentation. For initialization, instead of di-
rectly segmenting each frame independently, we first compute the probabilistic
boundary map by collecting the statistics of segment boundaries among multiple
frames. Then we perform spatial segmentation for each frame independently with
the computed probabilistic boundary maps. Our experimental results demon-
strate that much more consistent segmentation results can be obtained than
those of directly using mean shift algorithm.

4.1 Probabilistic Boundary

We first use mean shift algorithm [6] to segment each frame independently with
the same parameters. The 2D segments in frame t are denoted as st = {sk

t |k =
1, ...,K ′

t}. For a pixel xt in frame t, we denote s(xt) = sk
t if xt ∈ sk

t . Fig. 2(b)
shows the segmentation results of the selected frames, which are not consistent in
different images. The segmented boundaries are quite flickering, and a segment
may span over multiple layers, which is obviously not good enough as a starting
point for spatio-temporal segmentation.

With the computed depths, we can project each pixel to other frames to find
the correspondences. Considering a pixel xt in frame t, with the estimated depth
value zxt

, its projection xt′ in frame t′ can be computed as follows:

xh
t′ ∼ zxt

Kt′R
⊤
t′RtK

−1
t xh + Kt′R

⊤
t′ (Tt − Tt′), (1)

where the superscript h denotes the vector in the homogeneous coordinate sys-
tem. The 2D point xt′ is computed by dividing xh

t′ by the third homogeneous
coordinate. Then we compute the probabilistic boundary as follows:

pb(xt,yt) =
1

nv

∑

t′

[s(xt′) 6= s(yt′)], (2)

where yt is a neighboring pixel of xt in frame t, and nv denotes the number of
valid mapping. A mapping is defined to be valid, if the projection points xt′ and
yt′ in frame t′ are neither occluded nor out-of-view. If pb(xt,yt) is large, it is
very likely that there is a boundary across pixels xt and yt. Compared to the
traditional segmentation boundaries in single image, our probabilistic boundary
map is computed with multiple frames, which is robust to image noise and oc-
casional segmentation errors. The computed probabilistic boundary maps are
shown in Fig. 2(c), which are surprisingly consistent among different frames.
The reason is that mean shift segmentation can preserve object boundaries well.
Although the generated segment boundaries by mean shift may be occasionally
inaccurate in one frame, it still has large chance to be accurate in other frames.
By collecting the boundary statistics in multiple frames, the computed proba-
bilistic boundaries can naturally preserve the object boundaries and maintain
consistent in neighboring frames.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Spatial segmentation with probabilistic boundary. (a) Three selected frames.
(b) The segmentation results with mean shift. (c) The computed probabilistic bound-
ary maps. (d) Our spatial segmentation results. (e-g) The magnified regions of (b-d).
Compared to the results of mean shift, our segmentation results better preserve object
boundaries and are much more consistent in different images.

4.2 Spatial Segmentation

With the computed probabilistic boundary map, we use the watershed algo-
rithm [27] to segment the image. We compute a topographic surface T (xt) =
maxyt∈N(xt) pb(xt,yt), the maximal probabilistic boundary over the 4 connected
probabilistic edges for each pixel, and apply watershed transformation on the
surface. The topological map is clipped with a threshold value δ to avoid over
segmentation. Fig. 3(c) shows the segmentation result. We notice that some quite
small segments appear around the areas with strong probabilistic boundaries,
most of which are segmentation noise and do not consistently appear in neigh-
boring frames. So, we eliminate too small segments (with less than 30 pixels),
and set the pixels in these segments as unlabeled ones. The remaining 2D seg-
ments in frame t are denoted as st = {sk

t |k = 1, ...,Kt}. The set of unlabeled
pixels is denoted as Φt, which will be assigned to these Kt segments. We use
s(xt) to denote the assigned 2D segment for pixel xt.

For each frame t, we define the following energy for spatial segmentation:

E(st) =
∑

xt∈Φt

(

Ed(s(xt)) +
∑

yt∈N(xt)

Es(s(xt), s(yt))
)

, (3)

where N(xt) denotes the set of neighbors of pixel xt. Data term Ed measures
how well the pixels fit the assigned clusters, and the spatial smoothness term Es

encodes the segmentation continuity.

The data term Ed is defined using the Gaussian models of color, disparity
and spatial distributions:

Ed(s(xt)) = −wc logN (I(xt)|µ
c
s(xt)

, Σc
s(xt)

)

−wd logN (D(xt)|µ
d
s(xt)

, Σd
s(xt)

) − ws logN (xt|ηs(xt),∆s(xt)),
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Flow illustration of spatial segmentation. (a) One original image. (b) The com-
puted probabilistic map. (c) The segmentation results by watershed algorithm based
on the computed probabilistic map. (d) After solving (3), the unlabeled pixels are fused
into nearby segments. (e-h) The magnified regions of (a-d), respectively.

where wc, wd and ws are the weights. N (I(xt)|µc
s(xt)

, Σc
s(xt)

) describes the

color distribution of segment s(xt), where µc
s(xt)

and Σc
s(xt)

are the mean color

and covariance matrix, respectively. N (D(xt)|µd
s(xt)

, Σd
s(xt)

) describes the dis-

parity distribution, which is similarly defined. N (xt|ηs(xt),∆s(xt)) describes the
spatial distribution of the segment s(xt), where ηs(xt) is the mean position co-
ordinate, and ∆s(xt) is the covariance matrix.

In order to preserve discontinuity, our spatial smoothness term is defined in
an anisotropic way, encouraging the segment discontinuity to be coincident with
the probabilistic boundary, color contrast and depth discontinuity. It is defined
as

Es(s(xt), st(yt)) = [s(xt) 6= s(yt)] ·

(λb
εb

pb(xt,yt)+εb

+ λc
εc

‖I(xt)−I(yt)‖+εc

+ λd
εd

‖D(xt)−D(yt)‖+εd

), (4)

where λb, λc and λd are the smoothness weights. εb, εc, and εd control the
contrast sensitivity.

Since it is a labeling problem, we can use belief propagation algorithm to
solve (3) for spatial segmentation. We only need to solve the segment labeling
of the pixels in Φt, and the segment labels of other pixels are all fixed. In our
experiments, the 2D segment number for each frame is around 300 ∼ 2000. So it
will be very time-consuming and requires a very large memory space if we use a
standard belief propagation algorithm like [28] to solve (3). In order to speed up
and break through the limitation of memory space, we perform label pruning.
In fact, only a small number of labels need to be considered for each pixel, since
the cost of most labels are very large. Therefore, for each pixel, we only consider
a few closest segments (70 segments in our experiments) with similar colors
and depths. This strategy can well address the limitation of memory space and
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dramatically accelerate BP optimization. The spatial segmentation results are
shown in Fig. 2(d) and 3(d). The segmentation results in different images are
rather consistent, which provide a good starting point for the following spatio-
temporal segmentation.

5 Spatio-Temporal Segmentation

Due to the lack of explicit temporal coherence constraint, the spatial segmen-
tation results may contain inconsistent segments. In addition, the segments in
different images are not matched. In the following stage, we will perform spatio-
temporal segmentation to achieve a set of pixel volumes. First, we need to match
the segments in different images and link them to initialize volume segments.

5.1 Initializing Spatio-temporal Volumes

Without loss of generality, we consider two 2D segments sk
t in frame t and sk′

t′

in frame t′. With the depths, we can project sk
t from frame t to t′, and sk′

t′ from
frame t′ to t, respectively. The projection mask of sk

t from frame t to t′ is denoted
as sk

t→t′ , and the projection mask of sk′

t′ from frame t′ to t is denoted as sk′

t′→t.
An illustration is shown in Fig. 4. We can use their overlapping rate to define
the matching confidence. If min(|sk

t→t′ ∩ sk′

t′ |/|s
k′

t′ |, |s
k′

t′→t ∩ sk
t |/|s

k
t |) > δv, where

δv is a threshold, we think sk
t and sk′

t′ are matched.

(a) (b)
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Fig. 4. Segment matching and Linking. (a) Segments sk
t and sk′

t′ are projected to frame
t′ and t, respectively, for segment matching. (b) The connected segment components.
Each component represents a volume segment.

Each 2D segment can be projected to other frames, to find its matched seg-
ments in other frames. With these correspondences, we can build a matching
graph. It is an undirected graph G = (V, E). Each 2D segment sk

t corresponds
to a vertex vsk

t

∈ V, and every pair of matched segments (sk
t and sk′

t′ ) has an
edge e(vsk

t

, v
sk′

t′

) connecting them, as illustrated in Fig. 4(b). Each connected

component represents a volume segment. The initialized volume segments are
denoted as S = {Sk|k = 1, 2, ...,K}. One example is shown in Figs. 5(b) and
(d). Most segments are already quite consistent. Then we perform an iterative
optimization to further improve the results.
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5.2 Iterative Optimization

For a pixel x in frame t, its corresponding pixel xt′ in frame t′ can be computed
by (1). Due to segmentation error, the segment labels of pixels x and xt′ may
be different, i.e. S(xt′) 6= S(xt). If there is no occlusion or out-of-view, each
projection should correspond to a valid segment. In our experiments, we found
that most of these projected segments are the same, which indicates that our
initialized volume segments are already quite good. We use P (xt) to denote the
set of segment candidates for pixel xt, which includes these projected volume
segments and S(xt). Then, we define the segment probability of pixel xt as:

Lh(l,xt) =
1

|P (xt)|

∑

t′

[S(xt′) = l], (5)

where xt′ is the projected pixel in frame t′ of pixel xt. Lh(l,xt) denotes the
probability of each segment label l for pixel xt. Obviously, Lh(l,xt) will be a
large value if the assigned segment label l is consistent with most of the projected
segments. For each pixel xt, we only need to consider the segment candidates in
P (xt), because the probabilities of other labels are all zeros.

We define the spatio-temporal segmentation energy in a video as follows:

E(S) =

n
∑

t=1

∑

xt

(

E′
d(S(xt)) +

∑

yt∈N(xt)

Es(S(xt), S(yt))
)

, (6)

where N(xt) denotes the set of spatial neighbors of pixel xt in frame t. The
energy contains two components, i.e. data term E′

d and smoothness term Es. Es

is the same as that of (4), and only E′
d is largely modified by incorporating the

temporal coherence constraint in a statistical way.
The data term E′

d contains four components:

E′
d(S(xt),xt) = −w′

h log Lh(S(xt),xt) − w′
c log Lc(S(xt),xt)

−w′
d log Ld(S(xt),xt) − w′

s log Ls(S(xt),xt),

where w′
h, w′

c, w′
d and w′

s are the cost weights. Lc(S(xt),xt) describes the Gaus-
sian distribution of color, and is simply defined as:

Lc(S(xt),xt) = N (I(xt)|µ
c
S(xt)

, Σc
S(xt)

), (7)

where µc
S(xt)

and Σc
S(xt)

are the mean color and covariance matrix of volume

segment S(xt), respectively. Ld(S(xt),xt) describes the Gaussian distribution of
disparity, and is similarly defined as:

Ld(S(xt),xt) = N (D(xt)|µ
d
S(xt)

, Σd
S(xt)

), (8)

where µd
S(xt)

and Σd
S(xt)

are the mean disparity and covariance matrix of volume

segment S(xt), respectively.
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(a) (b) (c) (d) (e)

Fig. 5. Spatio-temporal segmentation results of “Campus” sequence. (a) Two selected
original images. (b) The initialized volume segments. The pixels in the same volume
segment are represented with the same color. (c) The final volume segments after itera-
tive optimization, which become more consistent and better preserve object boundaries.
(d) The magnified regions of (b), highlighted with yellow rectangles. (e) The magnified
regions of (c).

Ls(S(xt),xt) describes the shape distribution by mixture of Gaussians, which
is defined as follows:

Ls(S(xt),xt) =
1

|f(S(xt))|

∑

t′∈f(S(xt))

N (xt′ |ηs(x
t′

), ∆s(x
t′

)), (9)

where f(S(xt)) denotes the frames spanned by S(xt), and xt′ is the correspond-
ing pixel in frame t′ for pixel xt. s(xt′) is the subset of S(xt) in frame t′. ηs(x

t′
)

and ∆s(x
t′

) are the mean coordinate and covariance matrix of s(xt′), respectively.
With the above energy definition, we iteratively refine the segmentation re-

sults using belief propagation. Each pass starts from frame 1. While solving the
segmentation for frame t, the segment labels of other frames are fixed. After solv-
ing the segmentation of frame t, the related volume segments are immediately
updated. One pass completes when the segmentation of frame n is optimized. In
our experiments, three passes are sufficient to produce spatially and temporally
coherent volume segments. One example is shown in Fig. 5. Compared to the
initialized volume segments (Fig. 5(b)), the refined volume segments (Fig. 5(c))
become more consistent and better preserve object boundaries.

6 Experimental Results

We experimented with several challenging examples where the videos are taken
by a moving camera. Table 1 lists the statistics of the test sequences. The config-
uration of the parameters in our system is easy. Most parameters are just fixed in
our experiments. Specifically, δv = 0.8, λb = 1.33, εb = 0.6, λc = 0.16, εc = 0.1,
λd = 0.16, εd = 0.1(Dmax − Dmin). Here, [Dmin,Dmax] is the disparity range
of the scene. For spatial segmentation, we set wc = 0.54, wd = 0.1, ws = 0.36.
For spatio-temporal segmentation, we set w′

h = 0.9, w′
c = 0.054, w′

d = 0.01,
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Table 1. The statistics of the test sequences.

Sequences Building Campus Road Stair Great Wall Garden Cones Teddy

Frames 151 151 141 125 156 135 9 3

(d) (e) (f)

(g)

(a) (b) (c)

Fig. 6. The segmentation results of “Road” sequence. (a-c) Three selected frames. (d-f)
The extracted volume segments. (g) The magnified regions of (a-f).

Fig. 7. The segmentation results of “Garden” sequence.

w′
s = 0.036. Since mean shift allows the control of segmentation granularity, we

can obtain different numbers of volume segments by adjusting the parameters
of mean shift in the initialization stage, as shown in Fig. 1.

6.1 Results of Ordinary Video Sequences

Besides the example shown in Fig. 5, we also have experimented with the pub-
licly available 3D video data [4]. One example is shown in Fig. 6. This sequence
is very challenging for spatio-temporal segmentation since it contains complex
occlusions, where different objects occlude each other and the trees have quite
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Fig. 8. The segmentation results of “Building” sequence.

Fig. 9. The segmentation results of a low-frame-rate sequence. Top: three consecutive
frames. Bottom: the extracted volume segments represented with unique color.

fractional structures. Our segmentation results faithfully preserve all these struc-
tures, and the obtained volume segments are quite consistent in the whole se-
quence. Our method is also very robust to occlusions. As highlighted in green
rectangles, the red car is temporarily occluded by the rocks and thin post of the
traffic sign, and even splitted into two separated regions in some frames. Our
method successfully recognizes the separated regions and clusters them into the
same volume segment.

Figures 7 and 8 show the segmentation results of “Garden” and “Building”
sequences, respectively. These two sequences both contain strong image noise,
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(a) (b) (c) (d)

Fig. 10. The segmentation result with imperfect depth data. (a) One selected frame.
(b) The magnified region of (a). (c) The estimated depths of (b). (d) The segmentation
result.

large textureless sky regions and complex occlusions. The segmentation results
demonstrate the robustness of the proposed method. Please refer to our supple-
mentary video for the complete frames and more video examples.

6.2 Results of Low-Frame-Rate Sequences

Though our method is developed to solve the video segmentation problem, it
can also handle low-frame-rate sequences that contain a relatively small number
of frames with moderately wide baselines between consecutive frames. Although
the “Cones” dataset 1 shown in Fig. 9 contains only 9 images, our segmentation
results still preserve fine structures and faithfully maintain the coherence in
different images. Please refer to our supplementary video for the complete frames.

6.3 Segmentation Results with Imperfect Depth Data

Our segmentation method has moderate tolerance to depth estimation error, as
shown in Fig. 10. Although the estimated depths contain noticeable artifacts
in this example as shown in Fig. 10(c), the segmentation results still preserve
accurate object boundaries and are quite temporally consistent in the whole
sequence. The reason is that our method mainly uses the depth information to
connect the correspondences among multiple frames and collect the statistics
information (such as probabilistic boundaries and the segment probability) for
spatio-temporal segmentation, which is more robust than directly using depth
information as an additional color channel.

6.4 Results of Challenging Wide-baseline Images

Given an extremely small number of wide-baseline images, the collected statistics
may be degraded and handling the problems of large occlusions or out-of-view

1 This dataset is downloaded from the Middlebury stereo evaluation website [2, 29]:
http://vision.middlebury.edu/stereo/data/
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)
unmatched

(l)

Fig. 11. The segmentation results of “Teddy” sequence. (a) The whole sequence. (b)
The depth maps. (c) The mean shift segmentation results. (d) The computed proba-
bilistic boundary maps. (e) Our spatial segmentation results. After segment matching,
the matched segments are represented with unique color. (f) Our final spatio-temporal
segmentation results. (g-l) The magnified regions of (a-f).
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will become more difficult, which may cause our method to produce unsatisfac-
tory segmentation results. Fig. 11 shows a challenging example 2, which only
contains 3 wide-baseline images. Fig. 11(b-f) show the depth maps, mean-shift
segmentation results, computed probabilistic boundary maps, the spatial seg-
mentation results, and our final spatio-temporal segmentation results, respec-
tively. Even in this extreme case, our segmentation results still preserve most
accurate and temporally consistent object boundaries, except for the individual
regions highlighted by yellow rectangles in Fig. 11(f). As shown in Fig. 11(e),
some segments in different frames correspond to the same object but could not
be matched due to the low projection overlapping rate caused by out-of-view, so
that multiple volume segments will be produced for the same object. Therefore,
the collected segment probability on these regions may have ambiguity, which
eventually generates unsatisfactory segmentation results in Fig. 11(l): a uniform
region is separated into multiple segments which, however, have similar colors
and depths, as can be seen in Fig. 11(g-h).

6.5 Quantitative Evaluation

Our supplementary video already allows a perceptual judgment of the spatio-
temporal segmentation results. To further demonstrate the effectiveness of the
proposed method, we also use the metrics similar to [30] (i.e., intra-object ho-
mogeneity, depth uniformity and temporal stability) to objectively evaluate the
quality of our segmentation results. We use the texture variance employed in
[30] to measure intra-object homogeneity, and use the projection overlapping
rate to measure the temporal stability. All the metrics are normalized to [0, 1],
and higher values indicate better results.

We first give the definitions of texture variance and depth uniformity metrics.
Both kinds of metrics are normalized to the [0, 1] range, using the following
formula employed in [30]:

vn = (
1

1 + vm/vt

− 0.5) · 2, (10)

where vn denotes the normalized metric, vm is the original metric value, and vt

is a truncation value determined empirically or by the nature of the metric. In
our experiments, the truncation values are set to 256 and 0.2(Dmax −Dmin) for
the texture variance and depth uniformity metrics, respectively.

For video segmentation, vm is computed by the weighted average metric of
all the individual segments:

vm =

√

√

√

√

n
∑

t=1

Kt
∑

k=1

w(sk
t )M(sk

t ), (11)

2 This dataset is downloaded from the Middlebury stereo evaluation website [29]:
http://vision.middlebury.edu/stereo/data/
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Table 2. Quantitative evaluation of different segmentation methods, i.e. Mean shift
segmentation (MS), our spatial segmentation with probabilistic boundary (SS) and our
iterative spatio-temporal segmentation (STS).

Sequences Texture Variance Depth Uniformity Overlapping Rate

Building MS 0.93 0.23 69.59%
SS 0.90 0.64 81.74%

STS 0.90 0.82 92.14%

Campus MS 0.88 0.64 65.62%
SS 0.89 0.78 79.23%

STS 0.88 0.83 91.69%

Road MS 0.85 0.84 67.70%
SS 0.86 0.91 79.35%

STS 0.84 0.92 92.43%

Stair MS 0.88 0.78 64.64%
SS 0.89 0.89 78.24%

STS 0.88 0.90 91.66%

Great Wall MS 0.90 0.80 58.69%
SS 0.91 0.88 71.04%

STS 0.90 0.89 88.08%

Garden MS 0.82 0.76 58.96%
SS 0.82 0.80 61.50%

STS 0.80 0.81 88.73%

Cones MS 0.90 0.89 72.95%
SS 0.91 0.90 88.52%

STS 0.91 0.90 94.61%

where w(sk
t ) is the weight defined as: w(sk

t ) = |sk
t |/V , where V denotes the

number of pixels in the 3D video volume, and M(sk
t ) is the metric value for

segment sk
t . Texture variance metric Mt(s

k
t ) is the same as the definition in [30],

while depth uniformity metric Md(s
k
t ) collects the statistics of depth boundaries

(i.e., depth maps convolved with Sobel operator) contained inside the segment
sk

t , which is defined as:

Md(s
k
t ) =

1

|Ω(sk
t )|

∑

xt∈Ω(sk

t
)

Sobel(D(xt))
2, (12)

where Ω(sk
t ) denotes the interior of sk

t excluding the boundary.
For measuring temporal stability, we can use the projection overlapping rate

as introduced in Section 5.1. The overall projection overlapping rate is computed
as follows:

n
∑

t=1

Kt
∑

k=1

w(sk
t )

|N(t)|

∑

t′∈N(t)

|sk
t→t′ ∩ sk′

t′ |

max(|sk
t→t′ |, |s

k′

t′ |)
, (13)

where N(t) denotes the neighboring frames of frame t (40 nearest neighboring
frames in our experiment). The corresponding segment sk′

t′ is the one that has
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the largest overlapping rate with sk
t→t′ , which is determined by the following

formula:

sk′

t′ = arg max
si

t′
∈s

t′

|sk
t→t′ ∩ si

t′ |

max(|sk
t→t′ |, |s

i
t′ |)

.

Table 2 shows the three kinds of metrics on all the test sequences in our
paper. For each sequence, we evaluate the results of image-based mean shift seg-
mentation (MS) [6], our spatial segmentation with probabilistic boundary (SS)
and our iterative spatio-temporal segmentation (STS). As can be seen, the seg-
mentation results by our spatial segmentation method have comparable texture
variance with mean shift, and significantly improve the depth uniformity and
temporal stability. After iterative optimization, the temporal stability is further
significantly improved.

7 Conclusions and Discussion

In this paper, we have proposed a novel video segmentation method, which can
extract a set of spatio-temporal volume segments from a depth-inferred video.
Most previous approaches rely on pairwise motion estimation, which are sensi-
tive to large displacement with occlusions. By utilizing depth information, we
can connect the correspondences among multiple frames, so that the statistics
information, such as probabilistic boundaries and the segment probability of
each pixel, can be effectively collected. By incorporating these statistics infor-
mation into segmentation energy function, our method can robustly handle sig-
nificant occlusions, so that a set of spatio-temporally consistent segments can
be achieved. In practice, the estimated depths are rarely perfect. Fortunately,
we have found that our segmentation method has moderate tolerance to depth
estimation error, as evidenced in Fig. 10.

Our method still has some limitations. First, we use a single handheld cam-
era and multiview stereo method to recover the depth maps, which is restricted
to videos of a static scene. We believe our method can be naturally extended
to handle dynamic scenes, since the depths of the moving objects can be re-
covered by a depth camera or synchronized video cameras. Second, given an
extremely small number of wide baseline images, the collected statistics may be
degraded, so that extracting spatio-temporally consistent segments will become
more difficult. This problem remains to be investigated in our future work.
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