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Abstract

High-quality video editing usually requires accurate layer separation in order to resolve occlusions. However,

most of the existing bilayer segmentation algorithms require either considerable user intervention or a simple

stationary camera configuration with known background, which is difficult to meet for many real world online

applications. This paper demonstrates that various visually appealing montage effects can be online created from a

live video captured by a rotating camera, by accurately retrieving the camera state and segmenting out the dynamic

foreground. The key contribution is that a novel fast bilayer segmentation method is proposed which can effectively

extract the dynamic foreground under rotational camera configuration, and is robust to imperfect background

estimation and complex background colors. Our system can create a variety of live visual effects, including but

not limited to, realistic virtual object insertion, background substitution and blurring, non-photorealistic rendering

and camouflage effect. A variety of challenging examples demonstrate the effectiveness of our method.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]:

Segmentation—Pixel classification; I.4.3 [Image Processing and Computer Vision]: Enhancement—Registration

1. Introduction

Over the past decade, video editing has been steadily gaining

in importance, due to its wide applications [ST04, ZKU∗04,

KMTC06,BZS∗07,ZDJ∗09]. With the increasing prevalence

of portable video capturing devices (e.g. a hand-held or

web camera), more and more on-line and off-line videos are

shared and broadcasted over internet, which can be accessed

by the home-users in daily life. It necessitates the develop-

ment of efficient tools for online video editing and enhance-

ment. Several interactive video segmentation/ matting tech-

niques [CAC∗02,LSS05,WBC∗05,BWSS09] have been de-

veloped. However, all of them require considerable user in-

teraction and the computational cost is expensive. In video

matching, Sand and Teller [ST04] proposed to produce spa-

tiotemporal alignment between two videos with similar cam-

era trajectories for applications such as background subtrac-

tion, compositing, and increasing dynamic range. Kang et

al. [KMTC06] proposed a space-time video montage method

for video summarization. Recently, Zhang et al. [ZDJ∗09]

† Correspondence authors: Qing Wang and Hujun Bao

presented a content-based video editing system for creat-

ing various kinds of refilming effects based on dense depth

recovery and layer separation. In summary, all these video

editing systems can not support real-time processing, and

hence can not be applied to online applications.

Some augmented reality (AR) systems [ABB∗01,

CMPC06] have been successfully developed, which deal

with the combination of real-world and computer-generated

data (virtual reality) in real-time. However, most of these

solutions focus on the geometry consistency of virtual

and real scenes and thus require precise motion estima-

tion [CPG01, KM07]. Although there are some studies on

resolving virtual-real occlusions [FRB03, KS05, KVKO08],

these methods typically require either stationary configura-

tion [KVKO08] or stereo [KS05] cameras, and the scene has

to be simple enough for a background subtraction method to

work [FRB03].

With a known background, the most efficient bilayer

segmentation approach is background subtraction [EHD00,

YZPL04], which detects foreground pixels according to

color differences. Moving object detection methods [ZS03,

YZPL04, RDX07] can be used to effectively detect and seg-

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.



Z. Dong, L. Jiang, G. Zhang, Q. Wang, & H. Bao / Live Video Montage with a Rotating Camera

ment out the moving objects from video sequences. How-

ever, the segmentation results of these methods are easily

error-prone and not accurate enough for high quality fore-

ground extraction in our application.

In order to extract the dynamic foreground objects with

high quality, some more sophisticated bilayer separation

methods [KCB∗05, CCBK06, SZTS06] are proposed by as-

suming that both the camera and background are mostly sta-

tionary. In [KCB∗05], color, contrast and stereo matching

information are fused to infer the foreground layer from a

binocular stereo video sequence in real time. Later on, Cri-

minisi et al. [CCBK06] proposed a method to extract the dy-

namic foreground with high quality from a single station-

ary web camera using spatial and temporal priors. Sun et

al. [SZTS06] introduced a background contrast attenuation

algorithm to reduce the layer extraction errors caused by

background clutter. For all these methods, if the camera un-

dergoes unknown motions and the background has complex

colors, the foreground object is difficult to be accurately ex-

tracted. Zhang et al. [ZJX∗07] proposed to combine dense

motion and depth estimation to accurately detect and extract

moving objects from a video sequence taken by a hand-held

camera. However, the computation of this method is time

consuming and far away from real-time performance. Re-

cently, Bai et al. [BWSS09] proposed a robust video object

cutout system by the collaboration of a set of local classi-

fiers. However, it needs keyframe-based user interaction and

the computation is not efficient enough (about one second

per frame) for online applications.

In this paper, we propose a novel online video editing

system which can create visually appealing montage effects

from a live video captured by a rotating camera. Our con-

tributions are summarized as follows. First, we propose a

robust feature-based online camera tracking method, which

can rapidly retrieve the camera rotation as well as the back-

ground image for each online frame. Second, we introduce

a novel fast bilayer segmentation method which can extract

the dynamic foreground with high quality under rotational

camera configuration. Especially, in order to effectively ad-

dress the problem due to imperfect background estimation

and alignment, we develop a novel color model with im-

proved background contrast attenuation algorithm. In order

to address the problem that the per-pixel color model may

result in the holes in foreground region if the foreground and

background colors are very similar, we introduce an effec-

tive hole filling method to further improve the robustness.

For speed-up, we also introduce a parallel computing frame-

work with multi-scale implementation. Finally, with the re-

trieved camera parameters, background and foreground im-

ages, various visual effects can be created online.

2. Framework Overview

Figure 1 illustrates an overview of our system. Our sys-

tem employs a parallel computing scheme and contains sev-

eral modules. The input is a live video captured by a rotat-

ing camera. With the precomputed background environment,

our system can automatically recover the camera rotation

and segment out the dynamic foreground in near real-time.

Then, we are able to perform live video montage, such as

background substitution/blurring, realistic virtual object in-

sertion, non-photorealistic rendering and camouflage effect.

2.1. Background Modeling and Registration

Our system requires an offline background environment

modeling. We need to capture a set of reference images

from the static background scene for creating a wide view

panoramic image mosaics. Panoramic stitching is a well

studied problem. Here, we simply use existing techniques

for registration. Specifically, we use a feature-based align-

ment method [BL03]. We extract and match SIFT fea-

tures [Low04] among all of the reference images. All

matched SIFT features have the similar descriptors [Low04].

For the sake of efficiency, we cluster them and unify their

representation by averaging the SIFT descriptors (we use the

64D descriptors). Each of the resulting feature clusters is de-

noted as feature track X , which contains a series of matched

features in multiple frames.

With the matched features, we need to estimate the rota-

tional camera parameters to align the reference images (the

intrinsic matrix is assumed to be constant and known). The

rotational camera parameters can be reliably estimated by

the method in [BL03], and further refined using a global bun-

dle adjustment [TMHF99]. With the camera parameters, we

can align the images to a single coordinate system by pro-

jecting them onto a cylindrical or sphere surface. Figure 2(a)

shows a reconstructed background panoramic image.

While constructing the panorama, we can get a set of fea-

ture tracks, which we call reference features. Each reference

feature has a 64D descriptor and a 3D position correspond-

ing to a 3D ray through the camera center in the reference

coordinate system. For efficient searching, a k-d tree is con-

structed for all reference features with their descriptors.

In the online module, we estimate the camera parameters

for each input frame given the captured live video in the

same space. For each live frame, we detect the SIFT fea-

tures, and match them with reference features to obtain a

set of 2D-3D correspondences. With these correspondences,

the camera rotation can be estimated, and we can warp the

panoramic background onto current view to estimate the

background. Figure 2 (b) and (c) show one online frame and

its recovered background image.

3. Fast Bilayer Segmentation

Let I denote the current online image being processed and

IB its corresponding estimated background image. For each

pixel i in image I, its color is denoted as Ii, where the range
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Figure 1: Framework overview. Our system uses a parallel computing scheme and contains several modules connected by

thread-safe buffers. These modules run on separate working threads, and are synchronized by the frame time stamp.

(a)

(b)

(c)

Figure 2: (a) The background panorama. (b) and (c) An on-

line frame with the estimated background image.

of each color channel is [0, 255]. The goal of bilayer seg-

mentation is to estimate a binary variable αi for each pixel i.

αi = 1 if the pixel belongs to the foreground, and αi = 0 if

it belongs to the background. Thus the bilayer segmentation

can be formulated as a binary labeling problem. The labeling

variables α = {αi} can be obtained by minimizing a Gibbs

energy E(α):

E(α) = ∑
i∈V

Ed(αi)+λ ∑
(i, j)∈E

Es(αi,α j), (1)

where V is the set of pixel nodes in I, and E is the set of

neighboring edges in I. Ed encodes the data cost of pixel i

with label αi, and Es is the smooth term of edge (i, j) while

they are labeled differently as αi and α j.

3.1. Data Cost Definition

For each online image, its rotational parameters can be re-

liably estimated by the method introduced in Section 2.1.

Then we can warp the background panorama to the current

view to estimate the background image IB. Considering the

global illumination variation, we can estimate the average

of intensity scales between the matched features to globally

adjust the aligned background image. Due to inevitable esti-

mation error, the warped point may slightly deviate from its

correct position. We thus apply a local search algorithm to

find the best match to reliably compute background subtrac-

tion:

Si = min
j∈W (i)

||Ii − I
B
j ||, (2)

where W (i) is a searching window centered at pixel i, and

set to 5× 5 in our experiments. For efficiency, we only use

gray scale information here.

The data likelihood based on the above improved back-

ground subtraction can be defined as follows:

LS(Ii|αi = 0) =
S2

i

S2
i +δ2 ,

LS(Ii|αi = 1) = δ2

S2
i +δ2 ,

(3)

where δ is a threshold to determine whether the pixel belongs

to foreground or background. If Si > δ, then LS(Ii|αi = 0) >
0.5 > LS(Ii|αi = 1). That is, the pixel i is more likely to be a

foreground pixel.

However, such background subtraction model has ambi-

guity for accurate bilayer segmentation if the foreground

pixels have similar colors with the background. Therefore,

more cues should be considered.

Gaussian mixture models (GMM) are usually employed

in bilayer segmentation algorithms [WBC∗05,SZTS06]. The

typical implementation is to use known foreground and

background pixels to build two GMM models, i.e. one for

the colors found in the background and the other for those

found in the foreground. Then the global background color

model p(Ii|αi = 0) can be defined as follows:
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Figure 3: Bilayer segmentation result using global GMM

model. Because the color distribution of the background is

very complex and contains similar colors with foreground,

the global GMM method could not perform well.

pg(Ii|αi = 0) =
Kb

∑
k=1

w
B
k N(Ii|µB

k ,ΣB
k ), (4)

where wB
k is the weight corresponding to the kth compo-

nent of the background GMM, and µB
k and ΣB

k are the mean

color and covariance of the kth component of the background

GMM. Similarly, the global foreground model can be de-

fined as follows:

pg(Ii|αi = 1) =
K f

∑
k=1

w
F
k N(Ii|µF

k ,ΣF
k ), (5)

where wF
k is the weight corresponding to the kth component

of the foreground GMM, and µF
k and ΣF

k are the mean color

and covariance of the kth component.

If foreground and background colors are both simple and

distinctive to each other, the above global GMM method

usually works well. However, we found that if background

and foreground contain complex and similar colors, it is very

challenging for global GMM method to perform well. Espe-

cially, the component numbers of the foreground and back-

ground GMMs should be small and close to each other so

that the color distribution could be balanced. Unfortunately,

in reality, the background colors may be very complex, es-

pecially in outdoor scenes. An example is shown in Figure 3.

For this example, using global GMM color model is difficult

to obtain a good result.

To tolerate the quick variations in dynamic environment,

Zhong et al. [ZYS∗08] proposed a GMM based per-region

background model, which uses k-means to cluster the pixels

in the local region to obtain a local GMM estimation for each

pixel. Bai et al. [BWSS09] also used localized color mod-

els to improve the classification result. Here, we introduce a

novel background color statistics model based on local color

clustering, which is more efficient and can be precomputed.

We first use Mean Shift algorithm [CM02] to segment the

panoramic background image, as shown in Figure 4(a). For

each segment Sk, we can estimate a Gaussian distribution.

Thus we can obtain a set of background Gaussian distri-

butions {N(µb
1,Σ

b
1),N(µb

2,Σ
b
2), . . .}. For each pixel i in the

panoramic background, we use mi to denote its segment la-

bel, i.e. i ∈ Smi . In order to model the background color dis-

tribution more robustly, for each pixel, we seek a local es-

timate of the background color with the clustered Gaussian

(a)

r
i

(b)

Figure 4: Background color likelihood estimation using lo-

cal color model. (a) The segmented panoramic background

image by Mean Shift algorithm, where each color represents

one segment index. (b) Local Gaussian distribution search-

ing in the local neighborhood area for pixel i. Four Gaus-

sians are found within radius r.

distributions. An illustration is shown in Figure 4(b). Thus,

for each pixel, we sample a group of estimated background

pixels from its neighborhood. The local neighborhood area is

defined to have a radius of r = 3 around pixel i. We assume

there are l background samples in the local neighborhood

area. It can be done in preprocessing when the panoramic

background image is reconstructed. Then our background

color model can be defined as follows:

LG(Ii|αi = 0) = 1− l
max
j=1

N(Ii|µb
m j

,Σb
m j

). (6)

With the known foreground samples that are manu-

ally labeled in the offline stage, we use standard GMM

method to obtain a set of foreground Gaussian distri-

butions {N(µ
f
1 ,Σ

f
2),N(µ

f
2 ,Σ

f
2), . . . N(µ

f
K f

,Σ
f
K f

)}. The fore-

ground color model can be simply defined as follows:

LG(Ii|αi = 1) = 1−
K f

∑
k=1

w
f
k

N(Ii|µ f
k
,Σ

f
k
), (7)

where w
f
k

is the weight corresponding to the kth component

of the GMM, and K f is the component number. Since the

foreground colors are usually simple, K f is generally set to

5 in our experiments.

Combining the background subtraction and local color

statistics models, our data cost is finally defined as follows:

Ed(Ii|αi) =

{

LS(Ii|αi) i f ci > 0

0.5 otherwise,
(8)

where ci is the labeling consistency check of background

subtraction and local color statistics, defined as follows:

ci = (LS(αi = 0)−LS(αi = 1)) ·(LG(αi = 0)−LG(αi = 1)).

If the labelings by background subtraction and the local

color model are consistent, we simply use background sub-

traction. Otherwise, we just set the data costs of foreground

and background the same. The labeling uncertainty will be

resolved by spatial smoothness term.
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(a) (b)

(c) (d)

Figure 5: Background contrast attenuation comparison. (a)

One original image. (b) The original contrast image. (c)

The background contrast attenuation result using the method

proposed in [SZTS06]. (d) The background contrast attenu-

ation result by our method.

3.2. Spatial Smoothness Term

As indicated in [SZTS06], high contrasts (strong edges)

from the background may bias the bilayer segmentation re-

sult. However, we found that using the background attenua-

tion method proposed in [SZTS06] can not effectively elimi-

nate the background edges in our examples, as demonstrated

in Figure 5(c). The reason is that under the rotating cam-

era configuration, the estimated background image is seldom

perfect due to inevitable misalignment problem. Therefore,

directly subtracting the contrast of the estimated background

image could not effectively attenuate the background con-

trast.

Here, we introduce a novel background contrast atten-

uation method which has moderate tolerance to imperfect

background estimation and slight misalignment problem.

The image gradients can be computed by convolving the

grayscale image with Gaussian first derivative filter:

∇I = (
∂I

∂x
,

∂I

∂y
) = (I ∗ ∂G

∂x
, I ∗ ∂G

∂y
),

where G is a Gaussian function defined as:

G(x,y) =
1√
2πσ

exp(− x2 + y2

2σ2
),

where σ is a standard deviation, and is set to around 3.0 in

our experiments. Figure 7(b) shows the estimated gradient

map ∇I.

Thus we can obtain two gradient images ∇I and ∇IB.

Then we use ∇IB to attenuate the background gradients in

∇I. We apply a gradient distortion scale for the background

gradient to make it as close to the foreground gradient as

(a) (b) (c)

Figure 6: Background contrast attenuation with different

misalignment configurations. (a) The original contrast im-

age. (b) The background contrast attenuation result with 3

pixels misalignment. (c) The background contrast attenua-

tion result with 5 pixels misalignment.

possible. The scale factor should be a positive value and

bounded by threshold. Our attenuated gradient magnitude

can be computed as follows:

g = (1− exp(− (1−min{γ,1/γ})2

σ2
γ

)) ·min
γ

|∇I − γ ·∇I
B|,

(9)

where γ is the scale factor, and computed as follows:

γ = min{max{∇I ·∇IB

||∇IB||2 ,0},τ},

where τ is the threshold. Ideally, γ should be 1 if the pixel

is in background region. However, considering the illumina-

tion change and blending effect, we change γ in range [0,τ]
to seek a best value to maximumly attenuate the contrast. In

our experiments, τ is usually set to 10.

Due to noise interference, the gradient directions might

change, so that the background gradients could not be com-

pletely eliminated only by minγ |∇I − γ · ∇IB|. Therefore,

we further add an attenuation factor in (9) so that gradient

could be further attenuated if the best γ is close to 1 since it

is very likely that the current pixel is on background. σγ is

the parameter to adaptively control the attenuation strength

according to γ, and set to 0.5 in our experiments.

The above background gradient attenuation method is

robust to illumination change as well as small misalign-

ment. Since illumination change would not affect the direc-

tion of the gradient, we always can find a best γ to make

|∇I − γ∇IB| near 0 if it is indeed a background pixel. In ad-

dition, the gradient is computed by the Gaussian first deriva-

tive kernel, which can reduce the problem caused by image

misalignment. Especially, we can use a larger Gaussian ker-

nel to smooth the edges so that the strong gradients in IB

and I could be overlapped to attenuate background gradi-

ents. Figure 7(c) shows the attenuated gradient map ∇I.

Since the attenuated gradient map g has already effec-

tively eliminated the background edges, our spatial smooth-

ness term can be simply defined as follows:

Es(αi,α j) = |αi −α j| · exp(−βdi j), (10)

where i, j are neighboring pixels, and β is a robust pa-

rameter that weights the color contrast, and can be set to
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 7: Background contrast attenuation with foreground hole filling. (a) One original image. (b) The gradient image ∇I. (c)

The attenuated gradient image g. (d) Segmentation result by watershed transformation. (e) The foreground segment candidates.

(f) The extracted foreground without foreground hole filling. (g) The extracted foreground combined with foreground hole filling.

(h) The magnified view of (f). (i) The magnified view of (g).

β = (2 < ||Ii − I j||2 >)−1 [SZTS06]. di j is the attenuation

factor, defined as:

di j = ‖Ii − I j‖2 · 1

1+ K2

max{‖gi‖
2,‖g j‖

2}

, (11)

where K is a constant to control the strength of attenuation.

gi denotes the attenuated color gradient of pixel i. Our atten-

uated contrast map is shown in Figure 5(d).

To further demonstrate the effectiveness of our back-

ground contrast attenuation algorithm under misalignment

configuration, we make an additional experiment by off-

setting the background image with different distances. As

shown in Figure 6, even with 5 pixels misalignment, our

background contrast attenuation algorithm is still effective,

which is sufficient in the context of a rotating camera.

3.3. Foreground Hole Filling

In order to minimize the energy E(α) in Equation (1), we

use graph cuts [BVZ01] to effectively solve α for bilayer

segmentation. Although the above per-pixel model usually

produces good results in most frames, if the foreground and

background colors are too close, it may result in holes in the

foreground object. An example is shown in Figure 7(f). In-

creasing spatial smoothness only compromises the labeling

of one pixel to its neighborhood, but does not help too much

to correct large holes. In addition, too strong smoothness

term may introduce other distracting artifacts and destroy the

fine structures. In order to effectively correct these segmen-

tation errors, we introduce a segmentation-based foreground

hole filling method to further improve the bilayer separation

result.

With the attenuated gradient map g, we apply the efficient

rain falling watershed algorithm [SP00] to segment the im-

age. The edge threshold value is set to 0.6 to avoid over seg-

mentation of background regions. Figure 7(d) shows the seg-

mentation result.

Because the background gradients are attenuated, most

background pixels will be clustered into a very large region.

In contrast, the foreground pixels are often over segmented

into relatively small regions. Therefore, we only need to con-

sider those small segments which have large chance to be

foreground. For these segments, we compute the ratio:

ε =
1

|Sk| ∑
i∈Sk

h(Ii), (12)

where

h(Ii) =

{

1 Ed(Ii|αi = 1) < Ed(Ii|αi = 0),

0 Ed(Ii|αi = 1) ≥ Ed(Ii|αi = 0).

For each segment Sk, if |Sk|/M < 0.03 (M is the image

resolution) and ε > 0.2, it is very likely to be a foreground

segment. Figure 7(e) shows the foreground segment candi-

dates. Generally, we can directly label these segments as

foreground. Alternatively, based on an observation that the

labeling is generally correct if background subtraction and

color statistic model judge consistently, a more conservative

way is to only directly label the pixels i in these segments

that Ed(Ii|αi = 1) = Ed(Ii|αi = 0) = 0.5 as foreground, and

then solve the energy E(α) in Equation (1) to get the final bi-

layer segmentation. Our foreground hole filling method can

effectively reduce the ambiguity due to color similarity, and

correct most foreground holes, as shown in Figure 7(g).
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Module Time per frame

Feature matching ≈ 100 ms

Camera estimation ≈ 10 ms

Background registration ≈ 20 ms

Bilayer segmentation ≈ 100 ms

Effect rendering 5 ∼ 30 ms

Table 1: Process time per frame for different modules with

a single thread.

4. Implementation and Experimental Results

In this section, we describe the details of our multi-scale

implementation and parallel computing, and show several

experimental results. In our experiments, indoor videos are

captured by a Logitech Quick-Cam Pro 9000 web camera,

and outdoor videos are captured by a video camera. The pro-

cessing frame rate is about 12 fps for a 640×480 video on a

desktop PC with Intel(R) Core(TM)2 Quad CPU Q9550 @

2.83GHz.

4.1. Multi-Scale Implementation

For acceleration, we use a 3-level multi-scale implementa-

tion. The first, second and third levels have the resolution

of 160× 120, 320× 240 and 640× 480, respectively. SIFT

feature detection and matching are performed on the sec-

ond level. Especially, the image gradients at the coarse level

should be computed on the original image to avoid edge

blending. While computing the background subtraction in

(2), we do not need to search all pixels in the local window

W (i). If we find a pixel j satisfying that ||Ii− IB
j ||< 0.8δ, the

local search is stopped, and let Si = ||Ii − IB
j ||. It can greatly

save the computation without affecting much the computed

data cost. The result at the third/second level is computed

in a narrow band (20 pixels width) around the result at the

second/first level. After bilayer segmentation, we employ a

feathering operation to further improve the object boundary.

The configuration of the parameters in our system is easy.

Most parameters are just fixed in our experiments. Specifi-

cally, λ = 0.5, K = 5, τ = 10, σγ = 0.5. For outdoor videos,

we usually set δ = 4 ∼ 10. For indoor videos, due to obvi-

ous illumination variation in background region caused by

foreground occlusion, δ generally needs to be set to a larger

value, usually around 22 in our experiments.

4.2. Parallel Computing

Table 1 shows the computation time spent in different mod-

ules for one input frame of the indoor cubicle example on

a single-core CPU. The time spent on effect rendering de-

pends on the type of visual effect. For most effect rendering,

it spends no more than 30 ms. Therefore, the frame rate is

around 4 fps on a single-core CPU (bilayer segmentation can

operate at 10 fps). For further speed-up, we employ a paral-

lel computing technique using a multi-core CPU to improve

the system’s performance.

Figure 1 illustrates our parallel computing framework.

There are five modules including feature matching, cam-

era estimation, background registration, bilayer segmenta-

tion and effect rendering. Our framework contains two par-

allel hierarchies. First, we build a frame pool which contains

several frame buffers. Each frame is assigned at least one

thread, so that the frame buffers can be simultaneously com-

puted. Because the system latency (the timestamp difference

between the capturing and rendering frames) is related to the

computation time of each frame, we further split the frame

computation for intra-parallel computing. Since some mod-

ules (e.g., feature detection and matching, bilayer segmenta-

tion) can be easily parallelized, we assign multiple threads

on these modules. With this intra-frame parallelism, the la-

tency can be effectively reduced. On a computer with a 4-

cores CPU (Intel(R) Core(TM)2 Q9550 @ 2.83GHz), our

system operates at around 12 fps.

4.3. Experimental Results

We first show an indoor cubicle example in Figure 8. With

the estimated camera parameters, we can insert virtual ob-

jects into the scene. With the bilayer separation, the occlu-

sions between the virtual objects and foreground can be ac-

curately resolved (Figure 8(c)). We also can substitute the

background, as shown in Figure 8(d). All these effect ren-

dering can be performed in real time.

With the retrieved background and foreground images, we

also can filter the background to obtain various visual ef-

fects. For example, we can blur the background as shown

in Figure 8(e). For acceleration, we can blur the panoramic

background image beforehand. Then for online processing,

we only need to warp the blurred panoramic background im-

age onto the current frame to create background blurring ef-

fect. We also can camouflage the actor by blending the fore-

ground with the estimated background. To further simulate

the “predator” effect, we can add refractive and wavy distor-

tion to the blending region (Figure 9).

Figure 9 shows an outdoor example. Another outdoor ex-

ample is included in our supplementary video. The back-

ground colors in these examples are very complex, which

are challenging for previous state-of-the-art algorithms to

accurately extract the foreground. Based on our robust online

camera tracking and foreground extraction, various montage

effects can be live created. Please refer to our supplementary

video that gives a better presentation of the results.

5. Discussion and Conclusion

We have presented an online video editing system that al-

lows for creating visually plausible montage effects from

a live video captured by a rotating camera. Our system re-

quires an offline background environment modeling which

c© 2009 The Author(s)
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(a) (b) (c) (d) (e)

Figure 8: The results of the indoor cubicle example. (a) The input online frames. (b) The extracted foreground images. (c)

Object insertion with occlusion handling. (d) Background substitution. (e) Background blurring.

Figure 9: The result of an outdoor example.

reconstructs a panoramic background image from a set of

reference background images. Then for each online image,

we detect the SIFT features and match them with the ref-

erence features, so that the camera as well as background

image can be accurately registered. For high-quality fore-

ground extraction, we introduce an efficient and robust bi-

layer segmentation method which can work well under the

rotational camera configuration and outperforms the previ-

ous state-of-the-art algorithm. With the retrieved camera ro-

tation, background and foreground images, a variety of ef-

fects can be live created.

5.1. Limitations and Future Work

The current system still has some limitations. First, there

should be sufficient textured background region for feature

detection and matching, otherwise the camera parameters

and background image may not be accurately estimated, and

the following stages may fail. Second, when the foreground

and background colors are too similar, and the foreground

edges are also very weak, incorrect separation may happen

around these regions, and result in noticeable artifacts for

effect rendering. Figure 10 shows a failure example. The

black hair overlaps the black monitor screen, which has in-

(a) (b)

Figure 10: A failure example. (a) An online image. (b) The

extracted foreground. As highlighted in the green rectangle,

the black hair overlaps the black monitor screen, and the

overlapping edge is very weak, which has inherent difficulty

to accurately separate them.

herent difficulty for accurate segmentation only using color

information. The overlapping edge is also too weak to be

accurately detected, which makes our foreground hole fill-

ing fail. Using more cues, such as motion and shape pri-

ors [BWSS09] may help address this problem. Using tempo-

ral coherence also helps improve segmentation quality, but

may violate the real-time demand, since it typically requires

dense motion estimation and solving multiple frames simul-

taneously, which will cause obvious latency.

Our system can work well for small global illuminance

change by globally adjusting the background image based

on color histogram. However, if large illumination change

occurs, bilayer segmentation may fail. In this case, we need

to re-estimate the background panorama. So one possible di-

rection of our future work is to make the background envi-

ronment can be updated online so that our system can work

well even there is sudden large illumination change. Last,

the current system assumes a static background. If the back-

ground contains dynamic elements, our method may fail.

How to resolve this problem remains to be our future work.
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