
Keyframe-Based Real-Time Camera Tracking

Zilong Dong1 Guofeng Zhang1∗ Jiaya Jia2 Hujun Bao1

1State Key Lab of CAD&CG, Zhejiang University 2The Chinese University of Hong Kong
{zldong, zhangguofeng, bao}@cad.zju.edu.cn leojia@cse.cuhk.edu.hk

Abstract

We present a novel keyframe selection and recognition
method for robust markerless real-time camera tracking.
Our system contains an offline module to select features
from a group of reference images and an online module to
match them to the input live video in order to quickly esti-
mate the camera pose. The main contribution lies in con-
structing an optimal set of keyframes from the input refer-
ence images, which are required to approximately cover the
entire space and at the same time minimize the content re-
dundancy amongst the selected frames. This strategy not
only greatly saves the computation, but also helps signifi-
cantly reduce the number of repeated features so as to im-
prove the camera tracking quality. Our system also employs
a parallel-computing scheme with multi-CPU hardware ar-
chitecture. Experimental results show that our method dra-
matically enhances the computation efficiency and elimi-
nates the jittering artifacts.

1. Introduction

Vision-based camera tracking aims to estimate camera
parameters, such as rotation and translation, based on the
input images (or videos). It is a foundation for solving a
wide spectrum of computer vision problems, e.g., 3D recon-
struction, video registration and enhancement. Offline cam-
era tracking for uncalibrated image sequences can achieve
accurate camera pose estimation [14, 23, 29] without re-
quiring high efficiency. Recently, real-time markless track-
ing [9, 28, 19, 18] has attracted much attention, as it finds
many new applications in augmented reality, mobility, and
robotics.

This paper focuses on developing a practical realtime
camera tracking system using the global localization (GL)
scheme [28, 26], which involves an offline process for space
abstraction using features and an online step for feature
matching. Specially, the offline step extracts sparse invari-
ant features from the captured reference images and uses

∗Correspondence author: Guofeng Zhang

them to represent the scene. The 3D locations of these in-
variant features can be estimated by offline structure-from-
motion (SFM). Afterwards, taking these features as refer-
ences, the successive online process is to match them with
the features extracted from the captured live video for estab-
lishing correspondences and quickly estimating new camera
poses.

GL scheme is robust to fast movement because it
matches features in a global way. This also precludes the
possibility of error accumulation. It, however, has the fol-
lowing common problems in prior work. First, it is difficult
to achieve real-time performance due to expensive feature
extraction and matching, even in a relatively small work-
ing space. Second, these methods rely excessively on the
feature distinctiveness, which cannot be guaranteed when
the space scale is getting large or the scene contains re-
peated structures. It was observed that the matching reli-
ability descends quickly when the number of features in-
creases, which greatly affects the robustness and practica-
bility of this system in camera tracking.

In this paper, we solve the above efficiency and reliability
problems and develop a complete real-time tracking system
using the GL scheme. Our contribution lies in the following
three ways. First, we propose an effective keyframe-based
tracking method to increase its practicability in general
camera tracking for large scale scenes. A novel keyframe
selection algorithm is proposed to effectively reduce the on-
line matching ambiguity and redundancy. These keyframes
are selected from all reference images to abstract the space
with a few criteria: i) the keyframes should be able to
approximate the original reference images and contain as
many salient features as possible; ii) the common features
among these frames are minimum in order to reduce the fea-
ture non-distinctiveness in matching; iii) the features should
be distributed evenly in the keyframes such that given any
new input frame in the same environment, the system can
always find sufficient feature correspondences and compute
the accurate camera parameters.

Second, with the extracted keyframes, in the real-time
camera tracking stage, we contribute an extremely efficient
keyframe recognition algorithm, which is able to find ap-

propriate matching keyframes almost instantly from hun-
dreds of candidates. Therefore, the computation can be
greatly saved compared to the conventional global feature
matching. Finally, we develop a parallel-computing frame-
work for further speed-up. Realtime performance is yielded
with all these contributions in our key-frame camera track-
ing system.

2. Related Work
We review camera tracking methods using keyframes

and feature-based location recognition in this section.

Real-time Camera Tracking In the past a few years,
SLAM was extensively studied [11, 4, 10, 16, 17] and used
for real-time camera tracking. SLAM methods estimate the
environment structure and the camera trajectory online, un-
der a highly nonlinear partial observation model. They typ-
ically use frame-to-frame matching and confining-search-
region strategies for rapid feature matching. As a result,
they usually run fast. However, drifting and relocalisation
problems could be produced with this scheme because it
highly relies on the accuracy of past frames. Recent devel-
opment mainly concentrated on improving the robustness
and accuracy in a larger scale scene. The major issues of
this scheme include relocalisation [32, 3, 17, 12] after cam-
era lost, submap merging and switching [2], and the close
loop management [31].

If 3D representation for the space is available, real-time
camera tracking can be easier and more robust. Several
markerless algorithms [30, 6] have been proposed to em-
ploy the object’s CAD model to facilitate camera pose es-
timation. However, these CAD models are usually diffi-
cult, if not impossible, to be constructed. Skrypnyk and
Lowe [28] proposed modeling natural scene using a set of
sparse invariant features. The developed system contains
two modules, i.e. the offline feature-based scene modeling
and online camera tracking. It runs at low frame rate due
to expensive SIFT feature extraction and matching. It also
highly relies on the distinctiveness of SIFT features, and
is therefore limited to representing a relatively small space.
This paper focuses on solving these problems in a two-stage
tracking system.

Keyframe-based Methods Keyframe selection is a com-
mon technique to reduce the data redundancy. In the real-
time camera tracking method of Klein et al. [16], a set of
online keyframes were selected, which facilitate the bundle
adjustment for the 3D map recovery. In [17], the keyframes
were used for relocalisation with simple image descriptors.
For model-based tracking, Vacchetti et al. [30] selected
keyframes manually in the offline mode, and match each
online frame to a keyframe with the closest visible area. In
all these methods, keyframes are selected manually or by
a simple procedure, which is not optimal for the tracking

task when the camera undergoes complex motions. In our
method, a set of optimal keyframes are selected for repre-
senting and abstracting a space. They are vital for efficient
online feature matching.

Feature-based Location Recognition There are ap-
proaches to employ the invariant features for object and lo-
cation recognition [27, 24, 25, 7, 8, 1]. These methods typi-
cally extract invariant features for each image, and use them
to estimate the similarity of different images. For effectively
dealing with a large-scale image databases, a vocabulary
tree [22, 5] was adopted to organize and search millions of
feature descriptors. However, these methods do not extract
sparse keyframes to reduce the data redundancy, and can-
not be directly used for real-time tracking. The appearance-
based SLAM method of Cummins and Newman [8] con-
siders the inter-dependency among the features and applies
the bag-of-words method within a probabilistic framework
to increase the speed of location recognition. However, the
computation cost is still high and it cannot achieve real-time
tracking.

Recently, Irschara et al. [15] propose a fast location
recognition technique based on SFM point clouds. In order
to reduce the 3D database size to improve recognition per-
formance, synthetic views are involved to introduce a com-
pressed 3D scene representation. In contrast, we propose
constructing an optimal set of keyframes from the input ref-
erence images by minimizing an energy function, which es-
tablishes a good balance between the representation com-
pleteness and the redundancy reduction.

3. Framework Overview
We first give an overview of our framework in Table 1.

It contains two modules, i.e. the offline feature-based scene
modeling and online camera tracking. The offline module
is responsible for processing the reference images and mod-
eling space with sparse 3D points. In this stage, SIFT fea-
tures [21] are first detected from the reference images to
establish the multi-view correspondences. Then we use the
SFM method [33] to estimate the camera pose together with
the 3D locations of the SIFT features.

1. Offline space abstraction:
1.1 Extract SIFT features from the reference images,

and recover their 3D positions by SFM.
1.2 Select optimal keyframes and construct a vocabu-

lary tree for online keyframe recognition.
2. Online real-time camera tracking:

2.1 Extract SIFT features for each input frame of the
incoming live video.

2.2 Quickly select candidate keyframes.
2.3 Feature matching with candidate keyframes.
2.4 Estimate camera pose with the matched features.

Table 1. Framework Overview

In the online module, we estimate the camera parameters
for each input frame in real-time given any captured live
video in the same space. Instead of frame-by-frame match-
ing using all reference images, in our approach, we select
several optimal keyframes to represent the scene, and build
a vocabulary tree for online keyframe recognition. For each
online frame, we select appropriate candidate keyframes by
a fast keyframe recognition algorithm. Then the live frame
only needs to be compared with the candidate keyframes
for feature matching. With the estimated 3D positions of
all reference features on keyframes and sufficient 2D-3D
correspondences for the live frame, the camera pose can be
reliably estimated.

4. Optimal Keyframe Selection
As described above, directly using all reference images

for feature detection and online matching is not optimal. To
handle images taken with the camera moving in a moderate-
scale scene, we propose selecting keyframes in order to in-
crease the feature detection efficiency and reduce the possi-
ble matching ambiguity. Our thought is to select an optimal
subset of reference frames to approximate the 3D space.
These frames should contain as many salient features as
possible and at the same time make the features uniformly
distributed in the environment.

So we define the problem as follows. Given input n ref-
erence images Î = {Ii|i = 1, 2, ..., n}, we attempt to com-
pute an optimal subset (i.e. keyframe set) F = {Ik|k =
i1, i2, ...iK}, which minimizes the cost defined in the func-
tion E(F ; Î). The keyframe number K is adaptive in our
method to maximize the flexibility. E(F ; Î) consists of two
terms, i.e., the completeness term Ec(F) and the redun-
dancy term Er(F), modeling respectively the scene com-
pleteness and pixel redundancy:

E(F ; Î) = Ec(F) + λEr(F), (1)

where λ is a weight. The definitions of the two terms are
described as follows.

4.1. Completeness Term

The completeness term is used to constrain that the se-
lected keyframes contain as many salient SIFT features as
possible. For real-time tracking, we require that one such
feature can find multiple matches in different frames so as
to accurately compute its 3D coordinates.

All matched SIFT features are with the similar descrip-
tors [21]. For reasons of efficiency, we cluster them and
unify their representation by averaging the SIFT descrip-
tors (we use the 64D descriptors). Each of the resulted
feature clusters is denoted as X , which contains a series
of matched features in multiple frames, written as X =
{xi|i ∈ f(X)} where f(X) denotes the reference image

set spanned by X . It is notable that |f(X)|, for all X , must
be larger than 1 because if one feature finds no match in
other images, its 3D position cannot be determined. We de-
note f(X) where |f(X) ≥ l| as superior features and the
set of the superior features as V (Î). l is set to 10 ∼ 20 in
our experiments.

We define the saliency of one SIFT feature as the com-
bination of two factors, i.e. the match count of one feature
in different reference images |f(X)| and the Difference-of-
Gaussian (DoG) strength, and write it as

s(X) = D(X) · min(|f(X)|, T), (2)

where T is the truncated threshold to prevent a long track
over-suppress others. It is set to 30 in our experiments. A
large value in |f(X)| indicates a high confidence of match-
ing. D(X) is expressed as

D(X) =
1

|f(X)|

∑

i∈f(X)

Di(xi),

where Di denotes the DoG map [21]. D(X) represents the
average DoG map for all features in f(X). The larger D(X)
is, the higher saliency the feature set X has.

Despite the above two measures, another important con-
straint to make real-time tracking reliable is the spatially
near-uniform distribution of all features in the space. It is
essential for finding sufficient matches with respect to input
online frames in the same space.

We define the feature density d(yi) for each pixel y in
image i. Its computation is described in Algorithm 1. With
the density maps for all images, we define the set density as

d(X) =
1

|f(X)|

∑

i∈f(X)

d(xi),

where d(xi) denotes the feature density of xi in image i.

Algorithm 1 Feature density computation for image i

1. Initialize all densities to zeros in the map.
2. for j = 1, ...,m, % m is the feature number in image i

for each pixel yi ∈ W (xj),
%W is a 31 × 31 window and
%xj is the coordinate of feature j in image i

d(yi) += 1.

Finally, our completeness term is defined as:

Et(F) = 1 − (
∑

X∈V (F)

s(X)

η + d(X)
)/(

∑

X∈V (Î)

s(X)

η + d(X)
),

(3)
where η controls the sensitivity to feature density. It is set
to 3 in our experiments. V (F) denotes the superior feature
set in the keyframe set F .

4.2. Redundancy Term

The common features in different keyframes should be
as small as possible in order to reduce the redundancy of
features and simplify the extensive feature matching. Since
we have detected feature set f(X), the redundancy mini-
mization problem is equivalent to making the features in
the same f(X) distributed to a minimum set of keyframes.
We therefore define

Er(F) =
1

|V (Î)|

∑

X∈V (F)

(|f(X) ∩ F | − 1), (4)

where 1/|V (Î)| is for normalization, |f(X) ∩ F | computes
the copies of features in both X and the keyframes. |f(X)∩
F | = 1 indicates no redundancy.

4.3. Keyframe Selection

With an exhaustive search of all possible subsets of Î in
the reference images, we can certainly find the optimal set
of keyframes that minimizes the cost in (1). However, it is
not computationally efficient to enumerate the 2n subsets.
In [20], with a fixed number of keyframes, dynamic pro-
gramming (DP) was used to search the optimal solution for
video summarization. Note that this scheme does not suit
our system because our cost function has a much more com-
plex form and the number of keyframes is not fixed. Further,
the method in [20] assumes that only adjacent frames are
possibly overlapped, and accordingly proposed a greedy al-
gorithm to approximate the solution. We do not make the
same assumption in problem definition.

Our keyframe selection process is based on a steepest-
descent-like method as described in Algorithm 2. It pro-
ceeds in the following way. To begin with, we construct an
empty F and then progressively add frames. In each pass,
a new keyframe that reduces the most energy is added to
F . This process continues until the cost cannot be reduced
anymore. The computation complexity is O(n2). In our ex-
periments, it takes only a few seconds to find keyframes
from hundreds or thousands of images, and the obtained
keyframes are always sufficiently good for the purpose of
real-time camera tracking.

Algorithm 2 Keyframe selection

1. Let F = ∅.

2. If ∀Ii ∈ {Î \ F}, E(F ∪ {Ii}) ≥ E(F), exit.

3. Otherwise, I ′ = arg min
Ii∈{Î\F} E(F ∪ {Ii}), and

F = F ∪ {I ′}, go to step 2.

...

......

...

...

w0

w1 w17

w2 w16 w18 w32...

0

1

2

3

...
7

8

9

...
21

...

vocabulary tree keyframe voting

+w32×N32(7)

+w32×N32(0)

+w32×N32(21)

root

leaf

C(0)

C(7)

C(21)

List

List List

List List List List

Figure 1. A vocabulary tree. All feature descriptors are originally
in the root node, and are partitioned hierarchically. Each node
has a weight to represent its distinctiveness.

5. Fast Keyframe Recognition

With the collected keyframes, we perform keyframe-
based feature matching for online tracking. However, it
is still costly to find all matches between the input frame
and the keyframes, especially when there exist a consider-
able amount of keyframes. We observe that any input tar-
get frame only covers a small portion of the space; so it is
inevitable that many keyframes do not even have the com-
mon content with the input. We thus exclude these useless
frames from feature matching to save computation, by em-
ploying a vocabulary based fast selection algorithm.

5.1. Vocabulary Tree Construction

Given a set of keyframes, we construct a visual vocabu-
lary by hierarchically clustering all the descriptors of supe-
rior features. Our vocabulary tree construction is similar to
that of [22, 25] where the vocabulary V is organized as an l
level tree with branching factor b, and the root node (cluster)
contains all descriptors. The K-Means method is used to
partition the descriptors into b clusters; then all clusters be-
come children of the root node. This process continues, re-
cursively partitioning children nodes until a specified level
l is reached. The final vocabulary tree has |V | nodes, and
each node i is attached with a mean descriptor of the fea-
tures in the node. Figure 1 gives an illustration. Each node
i has a keyframe list Li. Ni(k) denotes the number of fea-
tures in keyframe k that are clustered in node i.

Each node i also contains a weight wi, which represents
its distinctiveness. In our system, the weight is defined as

wi = log
K

|Li|
, (5)

where K is the number of all keyframes. The node count
|V | is determined by the branching factor b and tree depth l.
In our experiments, we normally select 20 ∼ 50 keyframes,
and each keyframe extracts about 300 ∼ 500 features.
Therefore, we usually set b = 8, l = 5 in our experiments.

Algorithm 3 Candidate keyframe selection

1. Set the matching value C(k) = 0 for each keyframe k.

2. For each online frame, the detected m features are
matched from the root node to leafs in the vocabulary
tree as follows:

In each level, for each closest node i with weight wi >
τ ,

for each k ∈ Li,

C(k)+ = Ni(k) · wi.

3. Select K keyframes with largest C.

5.2. Candidate Keyframe Searching and Matching

In [22, 25], an appearance vector is used to describe an
image, where each element corresponds to one node in the
vocabulary tree. To construct the appearance vector of an
image, each feature descriptor is simply searched down the
tree by at each level comparing the descriptor vector to the
b candidate cluster centers and choosing the the closest one.
Then the weight of the closest node in each level is added to
the corresponding elements of the appearance vector. This
process repeats until all m features in the image are pro-
cessed.

With the built appearance vectors, the similarity of two
images can be estimated with vector distance computation.
Directly employing this strategy for keyframe recognition,
even with the sparse property of the appearance vectors (i.e.
only compare non-zero elements), results in computation
time O(m · K), which grows linearly with the number of
keyframes.

Here, we introduce a more efficient keyframe recogni-
tion algorithm (Algorithm 3 with an illustration in Figure 1).
We employ a voting scheme similar to the one of [1]. The
computational complexity is O(m · L̃), where L̃ is the av-
erage keyframe number of the matched nodes in traversing.
Specifically, in Algorithm 3, we define a threshold τ to ex-
clude the non-distinctive nodes which are shared by many
keyframes. In experiments, we observe that the closer a
node is to the root, the easier it is excluded because these
top-level nodes most likely contain redundant features. On
the contrary, L̃ is usually a very small value for leaf nodes.
This weighting scheme makes the time spent on keyframe
recognition almost constant even with a large number of
keyframes. The majority of computation is on descriptor
comparison. It is stable because the feature number m in
each online frame, branching factor b, and tree depth l sel-
dom change drastically.

After selecting the most related key frames for an on-
line image, we perform feature matching. This is quick be-

Module Time per frame
SIFT feature extraction ≈ 110 ms
Keyframe Recognition ≈ 6 ms
Keyframe-based matching ≈ 15 ms
Camera pose estimation ≈ 20 ms
Rendering ≈ 10 ms

Table 2. Process time per frame with a single thread.

cause an offline KD-tree is independently constructed for
each keyframe, which can speed up matching. The out-
liers are rejected in our system by epipolar geometry be-
tween the online frame and keyframes using RANSAC [13].
To obtain more matches, we can utilize matched features
on the previous frame by finding their correspondences
on the current frame through local spatial searching [16].
Once all matches are found, since a feature in the reference
keyframes corresponds to a 3D point in the space, we use
these 2D-3D correspondences to estimate camera pose [28].

6. Implementation and Results
In this section, we describe the implementation details

and show our experimental results.

6.1. Parallel Computing

Frame rate and latency are two key indexes in a real-time
vision system. Frame rate is usually written as the number
of frames that can be processed in one second, and latency is
the elapsed time between capturing and rendering a frame.
A good real-time system should have high frame rate and
low latency. Table 2 shows the time spent in different steps
for one input frame of the ‘cubicle’ example. Even though
we only use a single working thread, the latency is as small
as 160ms, and the frame rate is around 6 fps. This validates
the efficiency of our keyframe-based tracking scheme.

We also employ a parallel computing technique using a
multi-core CPU to improve the system performance. Our
framework contains two parallel hierarchies – that is, the
inter-frame and intra-frame computations. For inter-frame
process, we assign the computation tasks for each frame to
separate threads. Therefore, the frame rate could be several
times higher than using a single CPU. However, the latency
is not reduced because the total computation time for each
frame does not decrease. To tackle it, we assign the most
expensive computation, i.e. feature extraction and match-
ing, to multiple threads. Since the features are independent
of each other, their description can be generated simultane-
ously on multiple threads, and once one of them is ready, it
can be sent to matching immediately. With this intra-frame
parallelism, the latency caused by feature extraction is sig-
nificantly reduced, and the latency caused by matching can
basically be ignored. Figure 2 illustrates the parallel com-
puting diagram. All the modules are connected and syn-

Figure 2. Diagram of our system. It is divided to multiple parts
connected by thread-safe buffers. Different components run on
separate working threads, and are synchronized by the frame time
stamp.

chronized by thread-safe buffers. Our system can operate at
about 20 fps.

6.2. Experimental Results

All results shown in this section and the supplementary
video 1 are produced on a computer with a 4-core Xeon
2.66GHz CPU. The reference and live frames (resolution:
640×480) are captured by a Logitech Quick-Cam Pro 9000
video camera.

We first show an indoor cubicle example in Figure 3.
Figure 3(a) shows the recovered 6167 sparse 3D points in
the offline stage. Figure 3(c) shows the selected keyframes
by our method. There are only a few common features
among these frames and they basically cover the entire
space, as shown in Figure 3(b). The original reference
frames, the captured live frames, and the real-time render-
ing of the system are illustrated in the supplementary video.

Table 3 shows how setting different λ would influence
keyframe selection. It can be observed that if we select 33
keyframes, more than 99% matched features in all refer-
ence images are covered in this keyframe set, and almost no
loss can be caused when we use them to estimate the cam-
era poses for online frames. Even with only 13 keyframes,
about 70% features in the original reference images can
be maintained. The keyframe sparsity makes online fea-
ture matching robust and fast. In our experiments, we set
λ = 0.1, since it maintains most features.

Our keyframe recognition is very efficient, which spends
only 6ms even with a single working thread. Figure 4
shows the performance comparison. Compared to the
appearance-vector-based method [22], our running time is
less variant to the change of the keyframe numbers.

1The supplementary video as well as the complete se-
quences can be downloaded from the following website:
http://www.cad.zju.edu.cn/home/gfzhang/projects/realtimetracking/

λ Keyframe Feature Feature
Number Completeness Redundancy Er

0.01 33 99.64% 0.748824
0.05 28 97.36% 0.503486
0.1 23 93.06% 0.319604
1 13 69.09% 0.063239
10 8 48.58% 0.000649

Table 3. The statistics of feature completeness and redundancy
with different λ and keyframe numbers.

0 50 100 150 200 250 300
5

5.5

6

6.5

7

7.5

8

Keyframe Number

R
ec

og
ni

tio
n

Ti
m

e(
m

s)

Our method
Appearance−vector−based method

Figure 4. Time spent in keyframe recognition. The computation of
the appearance-vector-based method [22] grows rapidly with the
keyframe number while our method does not. The total running
time of our method is short.

0 50 100 150 200 250 300 350
0

20

40

60

80

100

Frame Index

N
um

be
r o

f M
at

ch
es

Global Matching

Keyframe−based Matching

Figure 5. Comparison of feature matching. Our keyframe-based
method yields much more reliable matches than global matching.

For demonstrating the effectiveness of our method,
we also compare our keyframe-based matching with the
method of [28]. In [28], a KD tree was constructed for
all reference features. Each feature in a live frame is com-
pared with those in the KD tree. We name this scheme
global matching to distinguish it from our keyframe-based
matching. Figure 5 compares the real-time matching qual-
ity between these two methods in the indoor cubicle exam-
ple. It is measured by the number of correct matches in
processing one online frame. As illustrated, our keyframe
method yields much more reliable matches than the global
method. With the KD-tree, the matching time of each fea-
ture is O(log M) for global matching, where M is the total
number of features. For our keyframe-based matching, the
running time is only K · O(log m), where m is the average
feature number in each keyframe and K is the number of the
candidate keyframes.

For global matching, the computation time grows with

(a) The recovered 3D points in the of-
fline stage.

(b) The selected keyframes viewed in 3D. (c) The keyframes.

Figure 3. The indoor cubicle example.

M . But for our keyframe-based method, its computation
time is relatively more stable and does not grow with the to-
tal number of features. In our experiments, for each online
frame, we extract about 300 SIFT features, and the global
matching time is about 40ms (M = 6167) with a single
working thread. Our method only uses 15ms with K = 4.
The augmented result by inserting a virtual object is shown
in our supplementary video. The jittering artifact when in-
serting an object into the live video is noticeable with global
matching, but not with our keyframe-based matching.

Figure 6 shows another example of an outdoor scene,
containing many repeated similar structures. The scale of
the space is relatively large. Figure 6(a) shows the recov-
ered 61522 3D points. The selected 39 keyframes are shown
in Figure 6(b), covering 53.7% of the superior features.
Please refer to our supplementary video for augmented re-
sult and more examples.

Klein and Murray [16, 17] employed online bundle ad-
justment (BA) with parallel computing to avoid offline 3D
reconstruction. This strategy, however, is not very suitable
for our examples that are taken in relatively large scenes be-
cause SFM for such a workspace requires computationally-
expensive global BA which cannot be done online. We
have tested our sequences using the publicly accessible code
PTAM (http://www.robots.ox.ac.uk/∼gk/PTAM/). The in-
put frame rate is set to 5fps to give enough time to the local
BA thread, and each sequence is repeated for the global BA
to converge. Even so, we found PTAM only succeeded in
tracking the first half part of the indoor cubicle sequence,
and failed on the other two outdoor sequences. Readers are
referred to our supplementary video for the detailed com-
parison.

7. Conclusions
In this paper, we have presented an effective keyframe-

based real-time camera tracking. In the offline stage, the
keyframes are selected from the captured reference images
based on a few criteria. For quick online matching, we in-
troduce a fast keyframe candidate searching algorithm to
avoid exhaustive frame-by-frame matching. Our experi-
ments show that a small number of candidate reference im-

(a) The recovered 3D feature points. (b) The keyframes viewed in 3D.

Figure 6. An outdoor scene example.

ages are sufficient for achieving high coverage of features
in the input images. Compared to global matching, our
method not only simplifies feature matching and speeds it
up, but also minimizes the matching ambiguity when the
original images contain many non-distinctive features. It
makes camera pose estimation robust.

Our method still has limitations. If the camera moves to
a place significantly different from the training keyframes,
the camera pose cannot be accurately estimated. In practice,
this problem can be alleviated by capturing sufficient refer-
ence images to cover the space. In addition, this paper has
demonstrated the effectiveness of the proposed keyframe
selection and recognition methods. We believe it could be
combined with other frame-to-frame tracking scheme, like
SLAM, to further improve the efficiency. So one possible
direction of our future work is to reduce offline processing
by collecting online keyframes to update and extend space
structure, and combine frame-to-frame tracking (such as the
SLAM methods) to further improve the performance of our
system in an even larger space. Employing GPU for further
acceleration will be explored.

Acknowledgements

This work is supported by the 973 program of China
(No. 2009CB320804), NSF of China (No. 60633070), the
863 program of China (No. 2007AA01Z326), and the Re-
search Grants Council of the Hong Kong Special Adminis-
trative Region, under General Research Fund (Project No.
412708).

References
[1] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer. A

fast and incremental method for loop-closure detection us-
ing bags of visual words. IEEE Transactions on Robotics,
Special Issue on Visual Slam, October 2008. 2, 5

[2] R. O. Castle, G. Klein, and D. W. Murray. Video-rate lo-
calization in multiple maps for wearable augmented reality.
In Proc 12th IEEE Int Symp on Wearable Computers, Pitts-
burgh PA, 2008. 2

[3] D. Chekhlov, W. Mayol-Cuevas, and A. Calway. Appearance
based indexing for relocalisation in real-time visual slam. In
19th Bristish Machine Vision Conference, pages 363–372.
BMVA, September 2008. 2

[4] D. Chekhlov, M. Pupilli, W. Mayol, and A. Calway. Robust
Real-Time Visual SLAM Using Scale Prediction and Exem-
plar Based Feature Description. In CVPR, pages 1–7, 2007.
2

[5] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman.
Total recall: Automatic query expansion with a generative
feature model for object retrieval. In ICCV, pages 1–8, 2007.
2

[6] A. I. Comport, E. Marchand, M. Pressigout, and
F. Chaumette. Real-time markerless tracking for aug-
mented reality: The virtual visual servoing framework.
IEEE Transactions on Visualization and Computer Graph-
ics, 12(4):615–628, July-August 2006. 2

[7] M. Cummins and P. Newman. Fab-map: Probabilistic local-
ization and mapping in the space of appearance. Int. J. Rob.
Res., 27(6):647–665, 2008. 2

[8] M. J. Cummins and P. Newman. Accelerated appearance-
only slam. In ICRA, pages 1828–1833, 2008. 2

[9] A. J. Davison. Real-time simultaneous localisation and map-
ping with a single camera. In ICCV, pages 1403–1410, 2003.
1

[10] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
26(6):1052–1067, 2007. 2

[11] E. Eade and T. Drummond. Scalable monocular slam. In
CVPR (1), pages 469–476, 2006. 2

[12] E. Eade and T. Drummond. Unified loop closing and recov-
ery for real time monocular slam. In British Machine Vision
Conference (BMVC), 2008. 2

[13] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: A paradigm for model fitting with applications to im-
age analysis and automated cartography. Commun. ACM,
24(6):381–395, 1981. 5

[14] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004. 1

[15] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof. From
structure-from-motion point clouds to fast location recogni-
tion. In CVPR, 2009. 2

[16] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In ISMAR 2007, pages 225–234, Nov.
2007. 2, 5, 7

[17] G. Klein and D. Murray. Improving the agility of keyframe-
based slam. In ECCV, volume 2, pages 802–815, 2008. 2,
7

[18] T. Lee and T. Höllerer. Hybrid feature tracking and user
interaction for markerless augmented reality. In VR, pages
145–152, 2008. 1

[19] V. Lepetit and P. Fua. Monocular model-based 3D tracking
of rigid objects. Found. Trends. Comput. Graph. Vis., 1(1):1–
89, 2005. 1

[20] T. Liu and J. R. Kender. Optimization algorithms for the
selection of key frame sequences of variable length. In ECCV
(4), pages 403–417, 2002. 4

[21] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, 2004. 2, 3

[22] D. Nister and H. Stewenius. Scalable recognition with a vo-
cabulary tree. In CVPR, pages 2161–2168, Washington, DC,
USA, 2006. IEEE Computer Society. 2, 4, 5, 6

[23] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cor-
nelis, J. Tops, and R. Koch. Visual modeling with a hand-
held camera. International Journal of Computer Vision,
59(3):207–232, 2004. 1

[24] F. Schaffalitzky and A. Zisserman. Automated location
matching in movies. Computer Vision and Image Under-
standing, 92(2-3):236–264, 2003. 2

[25] G. Schindler, M. Brown, and R. Szeliski. City-scale location
recognition. In CVPR, 2007. 2, 4, 5

[26] S. Se, D. Lowe, and J. Little. Vision-based global localiza-
tion and mapping for mobile robots. IEEE Transactions on
Robotics, 21:364– 375, 2005. 1

[27] J. Sivic and A. Zisserman. Video google: A text retrieval
approach to object matching in videos. In ICCV, page 1470,
Washington, DC, USA, 2003. IEEE Computer Society. 2

[28] I. Skrypnyk and D. G. Lowe. Scene modelling, recognition
and tracking with invariant image features. In ISMAR ’04:
Proceedings of the 3rd IEEE/ACM International Symposium
on Mixed and Augmented Reality, pages 110–119, Washing-
ton, DC, USA, 2004. IEEE Computer Society. 1, 2, 5, 6

[29] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world
from Internet photo collections. International Journal of
Computer Vision, 80(2):189–210, November 2008. 1

[30] L. Vacchetti, V. Lepetit, and P. Fua. Combining edge and tex-
ture information for real-time accurate 3D camera tracking.
In Third IEEE and ACM International Symposium on Mixed
and Augmented Reality, pages 48–57, Arlington, Virginia,
Nov 2004. 2

[31] B. Williams, J. Cummins, M. Neira, P. Newman, I. Reid, and
J. Tardos. An image-to-map loop closing method for monoc-
ular SLAM. In Proc. International Conference on Intelligent
Robots and and Systems, 2008. 2

[32] B. Williams, G. Klein, and I. Reid. Real-Time SLAM Relo-
calisation. In ICCV, pages 1–8, 2007. 2

[33] G. Zhang, X. Qin, W. Hua, T.-T. Wong, P.-A. Heng, and
H. Bao. Robust metric reconstruction from challenging video
sequences. In CVPR, 2007. 2

