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Abstract. Planes commonly exist in a human-made scene and are use-
ful for robust localization. In this paper, we propose a novel monocu-
lar visual-inertial odometry system which leverages multi-plane priors.
A novel visual-inertial-plane PnP algorithm is introduced to use plane
information for fast localization. The planes are expanded via a repro-
jection consensus-based way, which is robust to depth estimation error.
A novel structureless plane-distance cost is used in sliding-window opti-
mization, which allows to use a small size window while maintaining
good accuracy. Together with modified marginalization and sliding win-
dow strategy, the computational cost is significantly reduced. Our VIO
system is tested on various datasets and compared with several state-of-
the-art systems. Our system can achieve very competitive accuracy, and
work pretty well on long and challenging sequences. Our system is also
very efficient and can perform 30 fps averagely on an iPhone 7 mobile
phone with a single thread.

Keywords: Visual inertial odometry - bundle adjustment - Plane
priors - Reprojection consensus - Structureless plane-distance cost

1 Introduction

Cameras and IMUs are already very common on smart mobile phones, which are
small and cheap, with low power consumption. Hence they are good choices for
addressing mobile localization problem in consumer level applications. Recent
advances in visual-inertial odometry (VIO) and simultaneous localization and
mapping (SLAM) communities have give birth to many successful odome-
try/SLAM systems like [4,5,8,16,18]. However, these systems either require high
computation cost with multiple threads or easily drift in challenging situations.

Human-made scenes generally contain rich planar structures, which can ben-
efit odometry/SLAM. Although some methods [9,21] have been proposed to use
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plane information to aid VIO, the computation cost is obviously increased due
to plane extraction and management as well as the increase of optimization com-
plexity. In this paper, we propose a new VIO system which can effectively exploit
plane structures in the scene to achieve good tracking results. The key contribu-
tion is that we propose a novel VIO approach by exploiting plane information in
different modules for robust tracking. Especially, we propose a novel structure-
less plane-distance cost which can enforce plane constraints in sliding-window
optimization without increasing much the computation cost. Thus a very robust
and efficient VIO system is achieved, which can perform 30 fps averagely on an
iPhone 7 mobile phone with a single thread.

2 Related Works

VIO and VISLAM have been studied over decades. MSCKF [15] is an early
filtering-based VIO system. Its state vector contains only a fixed number of the
pose states. Observations to the landmarks are marginalized in the update phase,
and the overall computational time is bounded. Optimization-based systems like
OKVIS [12] generally use marginalization technique to linearize old frames into
priors, keeping the size of its sliding window bounded.

However, error accumulation in VIO is inevitable. A SLAM system can lever-
age loops in the trajectory to reduce error accumulation, achieving better accu-
racy. PTAM [11], an early visual SLAM system, separates tracking and map-
ping in two threads. This later became the standard of many state-of-the-art
SLAM systems. ORB-SLAM [16] improves PTAM in many aspects, including
the use of ORB features, the local mapping with the covisibility graph and the
global optimization with the essential graph. VINS-Mono [18] is a successful
visual-inertial SLAM system, which also uses sliding-window optimization with
marginalization, with a 4-DoF pose-graph map optimization. To achieve real-
time performance on a mobile device, its mobile version [13] limits its front-end
optimization at 10 Hz.

Another type of systems track camera by minimizing the photometric error
directly. Early systems such as LSD-SLAM [5] use dense or semi-dense geome-
try representation, which can lead to heavy computational cost. DSO [4] used
a sparse and direct formulation with sliding window optimization similar to
OKVIS, thus improving the performance. Due to the small/smooth movements
assumption, direct methods can be prone to rolling-shutter distortions and illu-
mination changes.

SVO 8] is a hybrid odometry system which combines direct sparse tracking
with indirect formulation for model optimization. It is highly efficient and is
capable of tracking at very high framerate, which can remedy the requirement
of slow-smooth movement. Nevertheless, it still suffers from many limitations of
direct methods.

Lines and planes can be used for robust tracking in structured environment.
Many existing methods, like [9] and [17] simply augment the existing bundle
adjustment (BA) with additional structure terms. Since they are built on top of
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typical systems, they introduce additional cost to the system, making the sys-
tem obviously heavier. Some methods like StructSLAM [22] assume Manhattan
scene, which may not be used in general cases. StructVIO [23] extends Struct-
SLAM with inertial measurements, and suffer from similar limitation. Methods
like [21] require additional cost to parse planes and can not handle general scenes
containing normal objects and planes. In general, there is still a lack of VIO sys-
tem which can efficiently make use of plane information in a general scene.

3 Visual-Inertial Odometry with Multi-plane Priors

Our framework is illustrated in Fig.1. Given the input online images and IMU
measurements, we first perform feature point tracking on consecutive images
and pre-integrate the IMU measurements. We employ a visual-inertial align-
ment method (Sect. 3.1) to accomplish the initialization. After initialization, the
feature point tracking and pre-integration results are sent into the pipeline for
localization. We propose a novel visual-inertial-plane PnP (VIP-PnP) to quickly
localize the camera pose (Sect.3.2), which uses information from plane infor-
mation managed in a local plane map. The output of the VIP-PnP will be
integrated with new IMU measurments to get the most up-to-date pose output.
After VIP-PnP, the localized frame will be fed into the sliding window, and
3D landmarks are triangulated from newly tracked features. If the last frame in
the sliding window is a keyframe, we will do plane expansion via reprojection
consensus (Sect.3.3), and then slide the window, i.e. inserting this new frame
and marginalizing the oldest keyframe. A local bundle adjustment is employed,
where a novel structureless plane-distance cost is used (Sect.3.4). If the last
frame in the sliding window is not a keyframe, we will directly replace it with
the new frame and inherit its IMU measurements. In both cases, the new planes
are detected based on the landmarks and added into the local plane map. When
there are no planes, all the plane-based modules are disabled, and our system
becomes a traditional VIO. Hence our system is still a general purpose VIO
which does not fully depend on planes.

I ;L Pose Propagation J }l Pose Output

’ IMU
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Fig. 1. Pipeline of our visual-inertial odometry with multi-plane priors.
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Before describing the algorithm details, we first introduce the convention
and major notations for our mathematical formulation. We represent the 3D
rotation of image i using Hamiltonian quaternion ¢; and use C(g;) to represent
its corresponding rotation matrix. The pose of the device with respect to the
world frame is denoted as }’p;,; i, and is affixed to the IMU of the device.
Camera frame pose ¥p;, &¢q; is related to this body frame by rigid extrinsics that
can be calibrated beforehand.

We used the pinhole camera model with fixed camera intrinsics K throughout
our system. For a landmark point zy, its projection on camera image I; will be

Uik = WK(CT(ZJ%‘)(% - Zupz‘))a (1)

where 7g is the projection function with intrinsics K and the corresponding
keypoint for u; is denoted as ;. We will drop the superscript/subscript and
use p;, ¢;, T for brevity if the frame is clear from the context.

We use inverse parameterization for our landmarks [3]:

L Uk L w
T = ch(c Qref(k)) ’ < 1 > + ¢ Pref(k)- (2)

The reference frame ref(k) is the first keyframe observing xy. uy, is the shorthand
for Uref(r) k-

A plane s is parameterized with its normal ng and its (signed) distance d;
to the origin. A point x on plane s should satisfy n]z — d, = 0.

3.1 Initialization and Plane Detection

For each input image, we detect keypoints with the Shi-Tomasi keypoint detec-
tor [10]. The keypoints are tracked using the KLT feature tracker [14]. The
IMU measurements are pre-integrated into relative motion constraints using
the method introduced in [7]. Similar to the visual-inertial alignment method
from [19], we build a visual-only SfM from initial frames, and then align them
with the pre-integrations to solve the initial states.

A plane detection module is responsible for spawning new planes. These new
planes are then used for all the tracking and optimization, and will be extended
when possible. We used a 3-point RANSAC [6] for plane detection. After each
new frame is added into the sliding window, we detect the new planes from all
the landmark points in the local map.

3.2 Visual-Inertial-Plane PnP Tracking

Assume there are already P plane models in the local map. For each new image
I;, we perform a visual-inertial-plane PnP (VIP-PnP) tracking to recover its
pose. Let {zy : k = 1... M} be the visible landmarks not belonging to any
plane, {zs : kK = 1... M} be the visible landmarks belonging to plane s,
be the IMU propagation error, ¥ and @ be the inverse of the covariance matrix
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for keypoint measurement noise and IMU propagation error correspondingly.
VIP-PnP is done by solving the following 1-frame bundle adjustment:

M P M,
argmin > [luak — @nll} + e (0o 00) 13+ D D It — iokly  (3)
b Pisy Vi oq s=1k=1

In (3), the projected plane point uis « is obtained by forcing the landmark on
the plane. We cast ray from Ic¢(x), and find the intersection depth with plane s:

3 C(& gret) (1)
ds — n;“cupref(k)

1 _
)‘sk:_

(4)

Then we compute uz{-sk with this depth enforced. We are solving the BA “as if”
there are some points perfectly lying on some planes.

In a typical VIO, depth estimation can be noisy or even degenerated due
to small camera translation, especially when the whole sliding window cannot
provide sufficient motion parallax. By incorporating plane priors, the depth esti-
mation becomes much more stable, especially when the motion parallax is small.
Thus a smooth and robust tracking can be achieved even without maintaining
global map and optimization.

3.3 Plane Expansion via Reprojection Consensus

We perform plane expansion when a new keyframe is pushed into the sliding
window. A plane can be continuously tracked and refined over time, by keeping
expanding new points. Since the triangulation error easily leads to a large error
in depth, we use a reprojection consensus-based method for plane expansion. For
landmark xj and plane s, we can re-cast x; onto the plane s according to (4).
The reprojection errors without/with re-casting are computed as:

= lluire) — dal®, e =Y luw(Ai) — dal|*. (5)

If eé‘ < max{aeg, v}, i.e., the new reprojection error is not greater than a
threshold, the xj is thought to be consistent with plane s, and we add this
landmark to the plane. In our experiments, we used a = 1.2,y = 0.5.

In order to avoid introducing large error, we do not expand distant points
into a local plane area. We represent planes with 12 fan-shaped sectors, 30° each.
For a sector 7, its radius r, is determined by the currently most distant plane
point in it. A new point z; can be added only if it is within ur, distance to the
center. We generally set p = 1.2.

It’s worth mentioning that when the motion degenerates, a landmark at
arbitrary depth can still be falsely added by the reprojection criteria. However, it
also helps to keep the landmark at a reasonable depth. And these false inclusions
will be pruned after the depths becoming observable under sufficient translation.
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3.4 Sliding-Window Optimization with Structureless Plane-Distance
Cost

We utilize a local bundle adjustment (LBA) to refine the camera poses and the
landmark points in the sliding window. We keep N image frames in the sliding
window. When a new frame comes, we check the parallax of its keypoint matches
with respect to the last keyframe. If the parallax exceeds a threshold, we tag
the new frame as a keyframe. If the number of matches is below a lower bound,
or there have not been any keyframes for the recent T frames, we also mark
the frame as a keyframe. After this keyframe evaluation, the new frame will be
added into the sliding window. In the following, we assume I1,..., Iy be the N
the frames already in the sliding window, and Ix; be the new one.

We slide the window with marginalization in the following way: If Iy is a
keyframe, we first marginalize out I; and all keypoints it observes. Then we add
In1 into the sliding window. If Iy is a non-keyframe, we replace it with Iy
directly. The IMU measurements in between are kept and the pre-integration is
updated. This particular order is different from systems like VINS-Mono, where
they first add the frame, and then perform the marginalization.

As shown in Fig. 2(c—f), if the marginalization is done after the frame inser-
tion, the result marginalization factor will contain an edge to the new frame.
Next time, if this frame is not a keyframe, it will be replaced. And this edge
must be marginalized again, resulting in a two-way marginalization in VINS-
Mono’s implementation. In our system, the marginalization is done before the
insertion. As a result, the marginalization factor will constrain the oldest N — 1
frames. No marginalization is required when replacing Iy .

Before marginalizing the oldest keyframe, we marginalize all related land-
marks first, which is similar to VINS-Mono. If not, the information matrix for
the related landmarks will become dense, which will significantly increase com-
putation cost. For plannar landmarks, we replace them with the following struc-
tureless plane-distance cost, which avoids marginalization.

Structureless Plane-Distance Cost. In the core of our local bundle adjust-
ment, we utilize a structureless plane-distance cost. Based on the linear least
square triangulation method, we can triangulate a landmark z; with all its key-
point observations {;;} on images {I;} by constructing matrix A and vector b
as:

Ay = UikzTi3 — Til by — UikzPi3 — Pil . (6)

- , -
WUikyTi3 — Ti2 UikyPi3 — Pi2

So xj, can be found by solving Apz) = bi. The row vectors r;; are the rows of
KCT(¥q;), ie., (r}) rjyrf) = [KCT(¥q)]". Scalars p;; are the components of
—~KCT(“¢:)"pi, (pi1, pin; piz) T = —KCT(Yq;)”p;. With 2 or more observations
that are not degenerated, A, has more than 4 rows and is a full rank matrix, so
we can have the least square solution for xy.
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When there is only one observation u;, or there are insufficient movements
in the images, Ay will be ill-conditioned. We use plane information to regularize
it: for a landmark x4 belonging to a plane s, we augment the terms in (6) as:

(A ar
Ask - <’U)]€n;r> ) bsk - (wkds> . (7)

The augmented row corresponds to the plane constraint n]z,, = d, and is
weighted by wy. By augmenting the matrix, the solution to Agpxsp = bgp is
regularized by the plane structure. As long as the camera center is not on the
plane, Ay is always full-rank. We can then rewrite the closed-form solution of
sk as a function of the related states observing it:

Tsk = (A;rkAsk)_lAskbsk = f({;;ﬂpzv;;ﬂqZLnSa ds) (8)

Since the landmark x4 should be on the plane, we can minimize the following
plane-distance error:

TP({g)piaE)Qi}vnmds) = |n:grxsk - d9| (9)

Although the size of Ay, depends on the length of the feature track. A;'—kAsk
and A;rkbsk are 3 x 3 and 3 x 1. This leads to the efficient evaluation of the cost
function and its corresponding Jacobians.
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Fig.2. Structure and marginalization in sliding-window optimization with differ-
ent strategies: (a) Traditional landmark-only BA; (b) BA with our structureless cost;
(¢) The oldest-keyframe marginalization process in VINS-Mono; (d) The recent-non-
keyframe marginalization process in VINS-Mono; (e) The oldest keyframe is being
marginalized in our sliding window; (f) A non-keyframe is being replaced in our sliding
window.
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Figure2(a) and (b) illustrate the structure and marginalization in sliding-
window optimization. For planar landmarks, we totally remove its original repro-
jection error terms, and use the structureless cost instead. Given m observations
of a landmark, m reprojection error terms are replaced with 1 structureless
cost. The state of the plane landmark no longer participate in its correspond-
ing structureless cost. So we can skip these landmarks in the marginalization.
Plane parameters are kept fixed during BA. We re-triangulate planar points with
refined camera poses after BA, and then update the planes.

4 Experiments

We implemented our system in C++ and use Ceres Solver [1] for solving nonlin-
ear optimization problems. We run our algorithm on public benchmark datasets
and evaluate the performance for quantitative results. We also make compar-
isons with 4 state-of-the-art odometry/SLAM systems: VINS-Mono [18], ORB-
SLAM?2 [16], SVO2 [8], and DSO [4]. Our system, as a plane-based VIO, will be
referred as PVIO in the following.

4.1 Tracking Accuracy and Robustness

We analyze the accuracy of the algorithm by comparing the RMSE of the abso-
lute localization error. We used the suggested configurations from the algorithms,
including tuned IMU noise parameters, for the test of VINS-Mono and ORB-
SLAM2. The results of SVO2 and DSO on EuRoC dataset are directly from [8].
On TUM dataset, SVO2 performed badly, which always lost quickly. PVIO used
the sensor parameters from the specification of datasets, and its sliding window
has N = 8 frames. Tablel lists the RMSE of the odometry/SLAM systems
on EuRoC [2] and a few results on TUM-VI [20] datasets. The full results on
TUM-VI dataset are included in the supplementary material®.

Accuracy. Asshown in Table 1, PVIO has comparable accuracy to VINS-Mono.
As for ORB-SLAM, since it does not recover true scale, we scale the camera
trajectory and align it with the ground truth, which hence has lower RMSE.
SVO2 and DSO are also visual only, whose recovered camera trajectories are also
scaled. Despite that, we can still achieve better accuracy on many sequences. We
also analyse the error accumulation on several sequences, which are included in
the supplementary material due to the limited space. TUM-VI is a challenging
dataset, where many sequences contain vigorous movement, and all the sequences
are rather long. PVIO still achieves very competitive accuracy.

Robustness. We compare the keyframes involved in the local BA: PVIO has

8 frames, VINS-Mono has 10 frames, while ORB-SLAM?2 can have as much as
30 frames. With such a small sliding window, a traditional VIO will easily have

! http://www.cad.zju.edu.cn/home/gfzhang /projects/SLAM /PVIO /pvio-supp.zip.


http://www.cad.zju.edu.cn/home/gfzhang/projects/SLAM/PVIO/pvio-supp.zip

Robust and Efficient VIO with Multi-plane Priors 291

Table 1. The RMSE (m) of localization for different algorithms. “4/—Loop” means
loop-closure turned on/off. For SVO2, “E4+P” means edgelet+prior and “BA” means
bundle adjustment. See [8] for the explanations about E4+P and BA. For PVIO,
“4/—Plane” means with/without plane priors. For the values in parenthesis, the cor-
responding trajectory is less than 80% complete. X means the trajectory is less than
50% complete (lost). The best results for visual-inertial algorithms are bolded.

Dataset ORB-SLAM2 | SVO2 DSO | VINS-Mono | PVIO
—Loop | +Loop | E+P | BA —Loop | +Loop | —Plane | +Plane
EuRoC [2] MH_01 0.02 |0.03 |0.10/0.06|0.05 |0.16 |0.15 | 0.19 |0.13
MH_02 0.03 |0.03 |0.12/0.07|0.05 |0.18 | 0.26 | 0.16 |0.21
MH_03 0.17 |0.05 |0.41|x 0.18 |{0.20 | 0.11 1 0.31 |0.16
MH_04 0.15 |0.37 /0.43,0.40|2.50 {0.35 |0.37 0.29 |0.29
MH_05 0.06 |0.04 |0.30|x 0.11 | 0.30 |0.28 |0.79 |0.34
V1.01 0.03 |0.03 |0.07/0.05|0.12 |{0.09 | 0.10 | 0.10 |0.08
V1.02 0.15 0.03 0.21 | x 0.11 | 0.11 |0.09 | x 0.09
V1.03 (0.49) | 0.10 | x X 0.93 |0.19 |0.18 |x 0.16
V2,01 0.03 0.03 0.11 | x 0.04 |0.09 |0.08 |0.11 0.05
V2.02 0.15 |0.03 |0.11|x 0.13 | 0.16 |0.17 | x 0.20
V2.03 (0.73) | (0.40) | 1.08 | x 1.16 |0.29 |0.37 |x 0.29
TUM-VI [20] | Room1 X 0.10 | x X 0.06 | 0.07 |0.07 | 1.65 |0.26
Room?2 X 0.12 X X 0.11 | 0.07 |0.07 |0.12 0.15
Room3 X (0.04) | x X 0.12 | 0.12 |0.12 |0.18 0.18
Corridorl | x X X X 5.43 [ 0.59 |0.59 |x 0.23
Outdoorsl | x X X X X 74.55 | 81.57 | x 22.26

robustness problems especially when the motion parallax is insufficient. In con-
trast, PVIO can still track robustly. We also tried disabling all the plane-related
modules. Without using plane priors, PVIO failed to track some sequences on
EuRoC dataset, and diverged on almost all long sequences in TUM-VI.

Corridorl Outdoorsl
20 | | 150 | 4
10 + - 0 F 4
0ok i
—150 B
-10 ! 4 \
/
! ! ! ! ! ! —300 ! ! ! ! !
—50 —40 —-30 —-20 -10 0 10 —600 —450 —-300 —150 0

Fig. 3. Trajectories of: — PVIO, — VINS-Mono, — DSO. Axes are in meters.
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TUM-VI is a very challenging dataset, where all sequences contain vigorous
movement, and many of them are rather long. On almost all sequences, our
system successfully tracks the data without lost or divergence. Only VINS-Mono
performed better in terms of completeness. DSO diverges occasionally, and the
trajectories become completely useless after divergence. ORB-SLAM is almost
incapable of running on TUM-VI, which repeatedly gets lost and re-localizes in
room sequences, and completely gets lost in other sequences. DSO can only track
for few frames, and then fail to continue further.

The Outdoorsl sequence in TUM-VI dataset is a 2656m-long sequence.
Figure 3 shows the top-down view of the trajectories from PVIO, VINS-Mono
and DSO. Only VINS-Mono and PVIO can get reasonable results in this
sequence. PVIO, albeit of being a VIO method, achieving 22.26m RMSE, which
is smaller than 1% of the total length. VINS-Mono fails to detect loops in the
end, and has significant error accumulation in its orientation estimation. PVIO,
on the other hand, successfully takes advantage of the information provided by
the ground plane and produces a less distorted trajectory. As a general purpose
VIO, plane-priors give PVIO extra robustness, result in good accuracy.

4.2 Efficiency

With the multi-plane priors, the size of the sliding window can be effectively
reduced. At the same time, the revisited marginalization strategy and the struc-
tureless cost also helped to reduce the computation time. In a canonical system,
one can enforce plane constraints by adding additional point-to-plane distance
error to the bundle adjustment. We also implemented such bundle adjustment,
and name the corresponding VIO system as Ref-VIO. We run VINS-Mono, Ref-
VIO and PVIO on the same computer with i7-7700 3.6GHzx4 and 16G memory.
We also measure the running time for different parts of the systems. We set the
sliding window size of VINS-Mono to 8 frames, and also disable its backend. So
three systems have fair competition. Table 2 shows the running time of different
components on sequence V1_01_easy.

Table 2. Running time (ms) of VINS-Mono (frontend), Ref-VIO and PVIO.

Module VINS-Mono | Ref-VIO | PVIO
Keypoint Tracking |8.34 7.42 7.40
Pre-Integration 0.44 0.04 0.04
Plane Management |- 1.04 1.09
Non-Keyframe PnP | 17.78 0.93 0.90
Non-Keyframe Marg | 0.68 — —
Keyframe BA 19.18 30.59 19.87
Keyframe Marg 32.91 3.26 2.81
Keyframe Average |60.87 42.35 31.02
All Frames Average |44.72 14.80 13.53
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Fig. 4. AR effect on a mobile phone. A virtual “laptop” is placed next to the real one.

As we can see, if we directly use point-to-plane distance in BA, the com-
putation cost will significantly increase. By replacing traditional reprojection
error with structureless plane-distance cost, the keyframe BA in PVIO takes
almost the same time as the normal BA in VINS-Mono. In the meantime, VINS-
Mono uses a 3-frame BA with older frames fixed in its non-keyframe PnP, while
PVIO only solves 1 frame, without involving any historical frames. The modified
marginalization strategy also significantly reduce the computation time. Sum-
ming up all the accelerations, the keyframe processing time of PVIO is only 1/2
of VINS-Mono, and all frames average is taking less than 1/3 of VINS-Mono.

To further verify the efficiency of PVIO, we successfully run PVIO on an
iPhone 7 mobile phone. The image is captured at 640 x 480 (30fps), while IMU
is incoming at 100 Hz. The whole system runs in a single thread, and can perform
metric tracking and AR on the camera image. The average speed can reach 30fps.
Figure 4 shows the AR effect in our demo App.

5 Conclusions and Disscusions

We presented a new robust and efficient VIO system, which exploits multi-plane
priors in the tracking and the local mapping. With the design of the structureless
plane-distance cost, we can incorporate multi-plane prior constraints into bun-
dle adjustment without introducing much computation cost. Compared to other
state-of-the-art systems, our proposed VIO system can get competitive accu-
racy. Even on long and challenging sequences, our system can track successfully,
whereas many other systems fail. Especially, our VIO system is very efficient and
requires much less computation cost compared to the complex SLAM systems
such as ORB-SLAM and VINS-Mono. Our VIO can perform in real-time even
on an iPhone 7 with a single thread. To further improve the robustness and
efficiency of our VIO system, we would like to explore the possibilities in using
more structure information in the future.
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