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Abstract— Monocular visual-inertial tracking without good
initialization easily fails due to its non-linear nature. Rapid
and accurate metric initialization is crucial. In this paper, we
propose a novel monocular visual-inertial initialization method
which can initialize the IMU states, camera poses, and scale
in a rapid and robust way. To avoid mixing gravity and
accelerometer bias, we propose to use the detected vertical edges
to estimate a better gravity. This improves the observability to
the underlying problem even without sufficient movement, so
we can solve all the states crucial for a good initialization.
We evaluate our approach on EuRoC dataset and compare
with existing state-of-the-art methods. The experimental results
demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

Motion tracking by the fusion of monocular visual and
inertial measurements is a trending topic in robotics and
computer vision community and has found tremendous op-
portunities in the market. Despite the recent developments
in monocular visual-inertial tracking, initializing such a
tracking system is not trivial. In a monocular setting, visual
and inertial measurements are complement to each other:
one gives 3D structure without scale, another provides scale
information but can drift. These two must be initialized such
that the scale and orientation are consistent with each other,
otherwise the tracking will diverge. One way of initialization
is to begin with a set of neutral state and wait for the
algorithm to converge. However, many applications require
a rapid and robust initialization. For example, in mobile
augmented reality (AR), users generally expect that they
can immediately watch the AR effect without waiting too
much or initializing manually. The challenge comes from the
coupled nature of IMU-related states, such as scale, gravity,
velocity, and bias. It turns out that these states cannot be
recovered altogether solely from IMU measurements [1].

We would then ask if the information outside of the IMU
can be leveraged to address this problem. Visual measure-
ments can provide complementary information. However,
for the fusion of monocular visual and inertial information,
it usually requires sufficient motion to fully excite all ob-
servable states. This means the convergence of initialization
is slow. A second camera or a depth sensor will provide
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additional scale information, improving the overall observ-
ability of the system. However, monocular camera is still the
most popular choice for mobile phones, drones, and many
other devices. Hence the rapid and robust initialization for
monocular visual-inertial tracking is quite useful for many
applications.

As demonstrated in recent segment-based SLAM sys-
tems [2][3], edge information can help initialization. Specif-
ically, in human-made scenes, vertical edges are good refer-
ences for the gravity direction. Based on this observation, we
propose a novel approach for visual-inertial initialization. By
aligning the gravity direction with vertical edges in images,
our approach can better separate the gravity from IMU
measurements, leading to a rapid and robust initialization.
Accurate initialization can be achieved as long as 8 frames
with sufficient motion parallax, which is much smaller than
existing methods. The success rate is also much higher than
state-of-the-art methods. The source code of our implemen-
tation is available at https://github.com/zju3dv/vig-init.

II. RELATED WORKS

There has been a wide spectrum of monocular visual-
inertial motion tracking systems. Traditional visual tracking
methods use feature points, like [4], [5], [6]. In recent
years, some direct-methods (e.g. [7]) are proposed, where
the visual measurements are directly based on photometric
error of tracked dense or semi-dense pixels. Some systems
are proposed to track through a higher level of abstraction,
for example [2] and [3] use edges for tracking. These systems
work rather well in a human-made scene, where the scene
might be textureless. In addition, edges can better regularize
orientation estimation, hence can reduce drift errors.

While these well-known frameworks have achieved higher
performance in accuracy, robustness or speed, few of them
have well addressed the problem of system initialization, due
to the challenges in dealing with the lack of observability.

From a theoretical aspect, [1], [8], [9] systematically ana-
lyzed the observability properties of visual-inertial tracking.
A monocular visual-inertial tracking system has 4 unobserv-
able dimensions, the 3D position and the yaw orientation
globally, when the movement is sufficient. However, this
movement requirement is usually too strict for initialization.
As we will explain later, during the initialization, the ac-
celerometer bias is hard to be distinguished from gravity,
leading to initialization error.

There are works dedicated to recovering part of the initial
conditions for the visual-inertial tracking system, i.e., [10]



and [11] proposed methods for gyroscope bias estimation,
and also pointed out that the gravity and accelerometer
bias are difficult to be perfectly distinguished if without
rich motion. Recent works [12], [13], [14] all try to solve
scale during initialization, all of which work in a decoupled
way: initializing visual part first then performing an align-
ment. This alignment process can be motion-demanding,
hence [12], [13] require a long-enough motion, and [14] falls
back to a fail-and-reset strategy.

However, without utilizing more information from other
than the IMU measurements, it is difficult to recover all
initial conditions for the visual-inertial tracking system.
Surprisingly, up to our knowledge, there is little work to
further leverage the visual information.

III. OUR APPROACH

Almost all VI-SLAM systems need an initialization stage
to initialize the IMU states, camera poses and 3D landmarks.
Figure 1 gives an overview of our initialization approach.
In the first step, we employ a Structure-from-Motion (SfM)
method to recover the camera trajectory and sparse 3D
points. We also perform IMU preintegration with the input
IMU measurements. Then we align the recovered camera tra-
jectory with the preintegrated IMU measurements by solving
the global scale and gravity. The estimated gravity is further
refined with the detected vertical edges. Then with the refined
gravity, the scale and biases can be further optimized by re-
alignment and bundle adjustment (BA). In the following, we
first briefly introduce the IMU preintegration and BA.

Structure-from-Motion IMU Preintegration

Visual-Inertial Alignment

Gravity Refinement with Vertical Edges

Final Refinement

Image IMU

Fig. 1. Pipeline of our initialization method.

A. IMU Preintegration
Forster et al. [15] gives a very good introduction to

the IMU measurement model. An IMU usually contains a
gyroscope and an accelerometer, which measure the rotation
rate and acceleration of the device correspondingly. Formally,
both gyroscope and accelerometer are modeled as measure-
ments polluted by two error sources: a white noise and a
random-walk bias:

ω = ω̂ + σg + bg,

a = C>(q)(â− g) + σa + ba.
(1)

Here, C(q) denotes the rotation matrix from unit quaternion
q, which is used to represent orientations of sensors. g is the
gravity in world system. ω and ω̂ are gyroscope measurement
and true rotation rate, respectively. a is the accelerometer
measurement and â is the true acceleration in the world
frame. The two measurements are expressed in IMU’s local
frame. σg and σa are white measurement noises, and bg and
ba are time-varying biases. A reader may refer to [15] for
details of the random-walk model of IMU biases, as well as
their units. Practically, the covariance parameters for these
four error sources can be calibrated with off-the-shelf tools
like Kalibr [16]. The gravity acceleration might be slightly
varied for different locations. But it can be determined given
the current location, and can be regarded as constant during
the short initialization period.

As we can see from (1), the accelerometer measurement
depends on C(q), creating difficulties when one tries to figure
out the true acceleration â from a. For two consecutive
frames of time i and j, we denote ωk, ak, k = i...j−1 be the
IMU measurements between these two consecutive frames.
We can simply perform the IMU integration from i to j to get
the prediction of IMU state at time j, which has an intricate
dependence on the IMU state at time i. To better represent
the incremental update between two time-points, we employ
the IMU preintegration technique introduced by [15]:

E[qj ] = qi ·∆qij(bg) · exp

(
∂∆qij
∂δbg

δbg

)
,

E[vj ] = vi + g∆tij

+ C(qi)

(
∆vij(ba, bg) +

∂∆vij
∂δba

δba +
∂∆vij
∂δbg

δbg

)
,

E[pj ] = pi + vi∆tij +
1

2
g∆t2ij

+ C(qi)

(
∆pij(ba, bg) +

∂∆pij
∂δba

δba +
∂∆pij
∂δbg

δbg

)
,

(2)
where E[·] represents the expectation, and qi, vi, pi are the
orientation, velocity and position of IMU at time i respec-
tively, expressed in the world frame. ∆qij(·), ∆vij(·) and
∆pij(·) are the preintegrated IMU measurements, expressed
with respect to IMU’s local frame. And the 5 Jacobians rep-
resent the first order bias updates when small perturbations
are applied to ba and bg . We will omit the bias parameter
of delta-states when it is clear from context. The complete
discussion of preintegration is beyond the scope of this paper.
Please refer to [17] and [15] for more details.

B. Bundle Adjustment

Bundle adjustment (BA) refers to the optimization of
states, including poses, landmark locations and so on. BA
has long been used in SfM and visual SLAM. A very good
overview of BA can be found at [18]. Typical BA energy
function in VI-SLAM can be formulated as follows:

arg min
{qi,pi},{xk}

∑
i

∑
k

‖uik − h(qi, pi, xk)‖2Ω

+
∑
i

EIMU(pi, qi, pi+1, qi+1)
(3)



For SfM, only reprojection errors participate in BA. How-
ever, the metric scale cannot be recovered. The inertial
measurements are independent of visual information and
contain scale information, which can greatly benefit SLAM.
So many VI-SLAM methods [2][4][5][6][19] are proposed
to combine the reprojection error and IMU error terms to
achieve robust tracking. To bound the computation cost, a
sliding window BA is often used.

IV. VISUAL-INERTIAL INITIALIZATION

Our initialization method contains four steps. We first
initialize camera poses by SfM without scale information.
Then by combining IMU measurements, we estimate the
global scale and gravity. We also use the detected vertical
edges to better estimate gravity direction. The scale and
biases can be further refined. A final bundle adjustment is
employed to refine all the variables except scale and gravity.

A. Visual Initialization with SfM

For each incoming frame, we extract keypoints and
use optical flow method to track them in the consecutive
frames [20]. When sufficient motion parallax is detected, we
begin to initialize the structure and camera poses. For robust
initialization, we require the number of collected frames
should be not smaller than a threshold Nmin. In order to
achieve this objective, we keep a queue of images. In the
beginning, the image queue waits to be filled. When there are
at least Nmin images, it begins to check the motion parallax
between the latest image and each old ones until sufficient
motion parallax is found. If no sufficient motion parallax
is found, wait for the next incoming image and continue
detection. We also set the maximum size Nmax of the queue,
so that the old images will eventually be popped out from the
queue. In our experiments, we set Nmin = 8 and Nmax = 22.

If a frame pair (Ii, Ij) with sufficient parallax is found, we
can compute their relative pose by five-point algorithm [21]
and then triangulate the matched keypoints. Then with re-
covered 3D landmarks, we can estimate the camera poses
between (Ii, Ij) through PnP algorithm [22]. Finally, we
employ bundle adjustment to further refine the camera poses
and 3D landmarks.

B. Visual-Inertial Alignment

With the recovered camera trajectory, we can solve a
global scale and gravity by aligning it with the preintegrated
IMU measurements. Our alignment method is similar to [14]
and [13], which can be divided into two parts:

1) Gyroscope Bias Estimation: From (2), the estimation
of bg can be completely isolated from other states. We
followed the common approach as in [14] and [13]. Given
the pose of two images i and j, we first obtain their
corresponding IMU orientations qi and qj . We also compute
the preintegration between i and j, assuming b

(0)
g = 0 and

b
(0)
a = 0. The optimal estimation of bg can be solved by

minimizing the following energy function:

arg min
bg

‖ log((qi ·∆qij(bg))−1 · qj)‖2. (4)

It is reasonable to assume that bg is constant in a short
time. We can accumulate all pairwise relations between N
frames, and further linearize it by applying the lift-solve-
retract approach [23]:

arg min
δbg

N−1∑
i=1

∥∥∥∥log((qi ·∆qi,i+1)−1 · qi+1)− ∂∆qi,i+1

∂δbg
δbg

∥∥∥∥2

,

b(n+1)
g ← b(n)

g + δbg.
(5)

In practice, one iteration is enough for solving (5), which can
be efficiently converted into solving a 3× 3 linear equation.

2) Scale and Gravity Estimation: Upon getting gyroscope
bias initialized, we update the preintegrations. We examine
the other two equations in (2). Given the IMU states of two
consecutive images i, j, we can have following alignment
equation:{

vj −vi −g∆tij = C(qi)∆vij
s(pj − pi) −vi∆tij − 1

2g∆t2ij = C(qi)∆pij
(6)

where s is the scale we wish to find. In [14], they gather
N (N ≥ 4) frames to build a (6N − 6) × (4 + 3N) linear
system of (6) for solving scale, gravity as well as velocity.
We turn to use the method described in [13]. By introducing
a third frame k and eliminate vi and vj , one gets following
equations relating IMU poses of three frames:[

S(i, j, k) G(i, j, k)
](s

g

)
= D(i, j, k),

S(i, j, k) = (pk − pj)∆tij − (pj − pi)∆tjk,

G(i, j, k) = −1

2
∆tij∆tjk(∆tij + ∆tjk),

D(i, j, k) = C(qj)∆pjk∆tij − C(qi)∆pij∆tjk,

+ C(qi)∆vij∆tij∆tjk.

(7)

For an N -frame initialization window, we can simply take
consecutive frames to construct (7). In this way, we can get
N − 2 equations. However, nearby frames may not contain
sufficient motion. Instead, we enumerate all 3-frame groups
and construct (7). Although its complexity is O(N3), for a
small N , the resulting system can be easily solved. Also,
by constructing a normal equation, only constant memory is
required. By enumerating all groups, we can make sure that
the maximum possible motion gets involved in our equations.

C. Gravity Refinement with Vertical Edges

We propose a novel algorithm to refine the gravity di-
rection with the detected vertical edges. Many works have
analyzed the coupling relation of true acceleration â, gravity
g and accelerometer bias ba. Better true acceleration can
result in better scale estimation. However, it is difficult to
separate the three quantities perfectly. Especially, imperfect
estimation of gravity direction will significantly influence the
estimate of scale.

Since the performance of a tracking system is not sensitive
to initial error in ba [11], it is generally safe to set b(0)

a = 0
during initialization. However, this operation will make ba
mixed with either gravity or body acceleration.



Gravity acceleration has a magnitude of approximately
9.81m/s2. A consumer-level IMU, e.g. Bosch BMI-160,
has bias around ±0.4m/s2 from its datasheet1. The EuRoC
dataset’s maximum accelerometer-bias is 0.55m/s2. If such
bias got fully mixed into gravity, it will introduce a 3.24-
degree error to gravity direction, as illustrated in Figure 2(a)

(a) (b)

Fig. 2. (a) When mixed in gravity, ba can perturb gravity direction
by a small angle, the maximum angle is given by φmax. (b) Geometry
relationship between the gravity direction and a vertical edge on an image.

In addition, such bias may get mixed with body acceler-
ation and introduce error to preintegration. As we can see
from the previous step, the error in preintegration will lead
to inaccurate scale estimation.

Some methods [14], [13] proposed to fix the magnitude
of gravity and refine the remaining states. Bias is still
mixed in either gravity or body acceleration, or both. As a
compromise, Qin et al. [14] requires that the motion should
be large and long enough to make the system fully observable
to estimate scale. This requirement is not user-friendly and
maybe impractical in many applications. In [14], a quick
fail-and-reset strategy is proposed to initialize the system
regardless of the quality. If tracking fails, the system is reset
and reinitialized. They found that a less-than-30% scale error
would initialize the system successfully. So the initialization
depends on the rate of success (i.e. the chances that the
relative error of scale is smaller than 30%). If the rate of
success is small, the total time of initialization may be long.

To shorten the initialization time, we must increase the
success rate and use as less frames as possible. We found that
if the gravity is known, the system will become observable,
and accelerometer bias can be isolated to improve scale
estimation. There is no easy way to directly get gravity
component from IMU measurement. However, in many
scenarios, images may contain edges which are parallel to
the gravity direction. Human-made structure tends to have
vertical boundaries, makes them a very good sign of gravity.
So we can use these vertical edges to estimate gravity
direction.

Given an input frame i, we first extract line segments by
Line Segment Detector algorithm [24]. Each line segment l
is parameterized with the coordinate of its two ends. Their
2D coordinates on the image projection plane are denoted
as xl1, xl2. The orientation of image camera is denoted as

1https://www.bosch-sensortec.com/bst/products/all products/bmi160

qIMG
i . We define

L(l, i) ≡ C(qIMG
i )

((
xl1
1

)
×
(
xl2
1

))
, (8)

which is a normal vector for the 3D plane passing through
the camera center and the segment l, expressed in the world
frame. The angle between the plane and gravity is formulated
as

sin(θ) =
L(l, i)

‖L‖
· g

‖g‖
. (9)

Since we already have a rough estimation of gravity, we
can compute the angle according to (9). We only select the
edges with |θ| < θb to further refine the gravity. In our
experiments, we set θb = 10◦.

We gather all satisfying vertical edges from N images and
construct the following energy function:

arg min
g

∥∥∥∥∥∥∥∥


...
‖xl1−xl2‖
‖L(l,i)‖ L(l, i)

...

 g

∥∥∥∥∥∥∥∥
2

,

subject to ‖g‖ = gn = 9.80665.

(10)

The length of line segment ‖xl1−xl2‖ is utilized as a weight
since the longer edge is more reliable. The above energy
function can be easily solved using SVD. In practice, there
is no need to explicitly construct the full coefficient matrix,
but to construct the 3×3 normal equation matrix, leading to
very efficient alignment.

D. Final Refinement

With the refined gravity, we fix g and re-solve (6) to
refine scale s and velocities. We then re-scale the poses
and landmarks according to the refined scale. To finalize the
initialization, we perform a visual-inertial BA to refine all the
variables of poses, biases and 3D landmarks while keeping
the gravity and scale fixed. The refined states become more
consistent with the re-aligned gravity. In our implementation,
we only iterate this final BA for 5 iterations.

V. EXPERIMENTS

We test our initialization algorithm with the EuRoC
dataset [25], which contains 11 sequences taken from three
different scenes. For each scene, there are sequences labeled
“easy”, “medium” and “difficult”, which represent how vio-
lent the drone is moving, and how many other variations like
illumination changes appeared in the dataset. The dataset has
made good calibration and synchronization to the sensors.
In addition, it provides high-quality ground-truth poses for
quantitative evaluation.

A. Evaluation of Gravity Refinement

We tested our gravity estimation with vertical edges to
show its effectiveness. Given a gravity vector, we can induce
a direction field and overlay it on the image. This field
should align with vertical edges in the image if the gravity
estimation is accurate. Figure 3 shows an example of such
gravity direction field overlayed on an image.



Fig. 3. A well-aligned gravity is visualized through a vector field overlayed
on an image. Notice how the field lines align with the vertical edges in the
image. This image is best viewed in color.

For each sequence, we continuously run our initialization
algorithm. Upon finish, we can take the images and visualize
the gravity. The gravity before and after alignment with
vertical edges are visualized in pairs for comparison. Since
the angle error in gravity can be subtle, many of the pairs
may have little difference visually. Figure 4 lists some of
the pairs with significant changes, and Table I lists the
quantitative results for each sequence and the time spent on
our gravity alignment process (without feature tracking and
line extraction).

TABLE I
STATISTICS OF GRAVITY DIRECTION ESTIMATION

Sequence Edges ∆Angle(◦) Time(µs)

V01 01 easy 1600 2.25 234
V01 02 medium 1352 3.31 205
V01 03 difficult 1484 2.79 187
V02 01 easy 2276 1.18 248
V02 02 medium 1897 1.62 233
V02 03 difficult 1621 2.32 198
MH 01 easy 2281 1.02 311
MH 02 easy 1993 1.19 300
MH 03 medium 1810 0.98 291
MH 04 difficult 1607 1.44 246
MH 05 difficult 1561 1.31 240

Although a scene may contain many slant structures, our
method still can reliably remove outlying edges by using
the roughly estimated gravity in visual-inertial alignment
step. As listed in Table I, our solving algorithm is quite
fast (less than 0.5ms), which is negligible compared to much
more expensive feature extraction and line extraction, which
can take as much as 40ms per frame on our computer
with an Intel Core i7 2.5GHz CPU and 8GB memory. The
angle difference between the original gravity direction and
the refined gravity direction is obvious, generally around
1◦ ∼ 3◦.

B. Scale Estimation

In order to evaluate the accuracy of our estimated scale,
we run our algorithm on sequences of EuRoC dataset and
make comparisons with other state-of-the-art methods.

For each sequence, we run our initialization in a sliding-
window manner. We set the number of initialization frames to
N = 8, which is much smaller than that (N = 15) in [14].
We try initializing as much as possible. Upon initializing,
a simple criterion is used to validate the result. We check
the baseline d between the center of the first image and the
center of the last image. Since the initialization is supposed
to be metric, we require a “valid” initialization having d ∈
[2cm, 100cm]. The lower bound for this range is equivalently
asking a valid initialization having at least 2cm movement,
and the upper bound is for a safeguard. The number of valid
results is recorded for each sequence.

Given valid initial poses, they are aligned with the ground-
truth poses using Umeyama’s method [26]. This alignment
gives us the relative scale σ with respect to the ground-truth
and should be 1 for perfect metric initialization. Thus, we
define the relative scale error ε = |σ − 1|. We then plot the
success-error curve for every sequence. As shown in Figure
5. In this success-error plot, each point represents the total
percent of valid initializations that has a relative scale error
below a specific range.

We compared our algorithm with [13] and [14], as shown
in Figure 5. The method proposed in [13] is not an instant
initialization, which requires gathering a rather long period of
images to start the metric alignment. In their paper, they take
10 ∼ 15 seconds to collect sufficient frames. In [14], the au-
thors only tested the initialization 25 times. Since there is no
official implementation available for [13], we re-implement
their algorithms in our tracking framework. For [14], in order
to make fair comparision, we made some modifications to
their original implementation. All three algorithms will be
initialized using the same set of frames for each test case, to
avoid differences introduced by frame selection. As shown
in Figure 5, our method significantly outperforms [13] and
[14] in “vicon room1”. In “vicon room2” scene, our method
is also significant better than the other two methods on
‘easy” and “difficult” sequences. In “machine hall” scene,
our method is slightly better on two “easy” sequences and is
comparable with [14] on other sequences. In the “medium”
and “difficult” sequences, the drone visits flat and dark
areas where only a few vertical edges can be used. So the
improvement is unobvious.

TABLE II
ANGLE (◦) BETWEEN THE INITIALIZED AND THE GLOBAL GRAVITY

Sequence [13] [14] Our Method

V1 01 easy 5.59 5.50 4.01
V1 02 medium 3.73 3.01 2.47
V1 03 difficult 8.29 6.67 4.40
V2 01 easy 4.94 4.10 2.73
V2 02 medium 4.35 2.70 2.38
V2 03 difficult 16.14 18.14 13.84
MH 01 easy 4.07 2.92 2.65
MH 02 easy 5.83 4.58 4.34
MH 03 medium 4.88 3.51 2.88
MH 04 difficult 8.33 4.60 3.70
MH 05 difficult 8.23 3.92 3.52



Fig. 4. Pairs of visualizations of gravity vector field before and after alignment with vertical edges. The left one is input and the right one is after
alignment. Under each image, three pieces with 3x magnification are shown. The gravity field follows vertical edges better after alignment.
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Fig. 5. Success-error comparison on EuRoC dataset with [13] and [14].

C. Improvement in Gravity Direction

In order to verify that the proposed alignment algorithm
can achieve better gravity direction, we tried to compare
the angle between initialized gravity and the global gravity.
Unfortunately, the EuRoC dataset does not provide the
ground-truth of gravity. Therefore, we run the full VINS-
Mono system [6] on all the sequences. For each sequence,
we aligned the recovered trajectory with the ground-truth
trajectory. So we can register VINS-Mono’s global gravity
with the ground-truth. This global gravity is used as the
substitution of the ground-truth. We followed the similar
evaluation strategy in previous subsection: given an algo-
rithm, for each successful initialization, we compute the

angle between the estimated gravity and the global gravity,
and we record the average angle for each sequence.

Table II are the estimated angles for three initialization
algorithms on the EuRoC dataset. Our method outperforms
other methods constantly. On sequences like V1 01 easy,
V1 03 difficult and V2 01 easy, our method improved the
gravity direction for more than 1 degree. As a result, the
initialization quality was also improved, as shown in Fig-
ure 5. On sequences like V2 02 medium, our method only
improves over [14] by a little, but performs much better
than [13], which also explains the success-error curve for
this sequence. On sequence V2 03 difficult, all the three
algorithms could not get good estimation of the gravity, due
to the rapid motion and fast rotation.



TABLE III
INITIALIZATION WITHOUT/WITH GRAVITY REFINEMENT EXTENSION

Sequence VI-ORB-SLAM VINS-Mono
10% 30% 10% 30%

V1 01 easy 41.7 50.9 74.9 82.8 30.1 46.6 81.3 86.6
V1 02 medium 49.4 53.5 83.0 87.6 57.7 63.6 91.3 92.3
V1 03 difficult 29.0 36.0 59.5 63.1 40.7 47.5 76.7 72.6
V2 01 easy 55.4 58.1 84.8 87.6 45.0 62.8 87.0 90.1
V2 02 medium 59.7 65.1 84.2 90.7 70.7 67.9 95.5 93.1
V2 03 difficult 38.9 45.3 65.9 70.4 42.2 50.0 76.7 76.9
MH 01 easy 57.9 65.5 92.2 95.2 55.6 66.8 96.7 97.5
MH 02 easy 63.6 74.5 94.3 97.2 60.3 77.0 97.6 98.1
MH 03 medium 48.5 59.6 77.7 82.7 62.2 67.7 95.8 89.8
MH 04 difficult 37.2 44.9 64.9 70.4 58.8 55.2 88.8 80.1
MH 05 difficult 34.8 45.2 76.7 84.4 57.4 55.3 93.1 91.2

Ori. Ext. Ori. Ext. Ori. Ext. Ori. Ext.

D. Gravity Refinement as an Extension

Our gravity refinement with vertical edges is rather gen-
eral and can directly benefit other initialization approaches.
To show its effectiveness, we add our gravity refinement
with vertical edges into the initialization methods in “VI-
ORB-SLAM” [13] and “VINS-Mono” [14]. We implement
VI-ORB-SLAM based on the original ORB-SLAM22. For
VINS-Mono, we directly used the original implementation3

provided by the authors. During their initialization, we solve
the gravity via alignment, and then fix this gravity in their
initialization process. Table III shows the corresponding
initialization success rate at 10% and 30% percent scale error,
without (Ori.) or with (Ext.) gravity refinement extended. For
most of the sequences, with our gravity refinement module,
the success rate is significantly improved. In a few sequences,
the success-error becomes slightly worse with our gravity
refinement due to few valid vertical edges are detected. This
again suggests that our initialization method is best suited
for human-made scenearios with rich vertical edges. In real-
world applications, the initialization process can be policy-
based: use gravity-alignment if sufficient vertical edges are
detected, and turn-off otherwise.

VI. CONCLUSION

In this paper, we propose a novel visual-inertial initial-
ization approach by using vertical edges. The key idea is to
use a better gravity information from visual cues instead of
IMU to improve state estimation. By utilizing the information
of vertical edges, our initialization method is not only very
fast but also quite robust, which can satisfy the demand of
many applications. The experimental results demonstrate the
effectivenss of our initialization method.
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