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Abstract— Obtaining accurate and sufficient feature matches
is crucial for robust large-scale Structure-from-Motion. For
unordered image collections, a traditional feature matching
method with geometric verification requires a huge cost to find
sufficient feature matches. Although several methods have been
proposed to speed up this stage, none of them makes full use of
existing matches. In this paper, we propose a novel efficient
image matching method by using the transitivity of region
covisibility. The overlapping image pairs can be efficiently found
in an iterative matching strategy even only with few inlier
feauture matches. The experimental results on unordered image
datasets demonstrate that the proposed method is three times
faster than the state-of-the-art and the matching result is high-
quality enough for robust SfM.

I. INTRODUCTION

Over the past decades, Structure-from-Motion (SfM) has
made significant progress in both efficiency and robust-
ness [1], [2], [3], [4]. Although different SfM systems may
have different strategies [4], [5], [6], most of them can be
divided into two common stages in essence. In the first
stage, SfM systems find overlapping images through feature
matching and geometric verification, and then generate scene
graph [7], [8] with images as nodes and verified pairs of
images as edges. In the second stage, the main work is to
recover camera parameters and 3D points based on the inlier
matches from the first stage.

As the camera registration and the point cloud reconstruc-
tion depends heavily on the results of matching stage, finding
as many inlier feature matches as possible is crucial in SfM.
A naive method is to use a brute-force matching strategy
by testing every image pairs to find all feature associations.
However, for a large dataset, especially the dataset collected
from the Internet, the brute-force matching is intractable due
to the O(n2) computation complexity.

The matching effectiveness can be boosted given the
covisibility, which means that two images see common land-
marks. A lot of unnecessary computation in uncovisibility
image pairs can be omitted. For example, when dealing
with an image sequence or a video stream, thanks to strong
covisibility among consecutive frames, a simple sequential
matching strategy can be used to match the consecutive
frames, whose time complexity is linear to the number of
frames. However, it is not straightforward to predict the
overlapping image pairs in an unordered image set.
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Fig. 1. A general pipeline of incremental SfM.

The previous work [1], [9] predict the covisibility by
image similarity. However, the approximate is not reliable
enough, resulting in useless geometric verification. By con-
trast, the verified feature matches are more trustworthy
evidences of covisibility, especially when there are multiple
feature tracks in a local region. In this paper, we propose
a novel method to reliably construct an image covisibility
graph based on the observation that the covisibility of
regions has transitivity. In addition, to omit unnecessary
matching, we propose an iterative matching strategy which
can efficiently find overlapping pairs for unordered image
datasets. We found that poor quality pictures were isolated,
while most of the registered images are connected with
others. According to the feature associations, we divide the
images into two parts: images of possible registration and
the others. Searching covisible image pairs from the former
part can effectively reduce the matching with poor quality
images. We show that the proposed matching method is 3
times faster than the state-of-the-art method and the achieved
matching results are sufficient for accurate and complete 3D
reconstruction.

II. RELATED WORK

SfM technique has achieved great success in the past
decade [1], [10], [2], [3], [4]. As shown in Fig. 1, a general
pipeline of increamental SfM contains two major stages:
matching stage and reconstruction stage. The process of
reconstruction stage can be divided into the following four
steps:

1) Initializing camera poses and 3D points from a selected
image pair.

2) Finding the most suitable image from the unregistered
ones, and then recover the camera pose of this image
with a number of newly triangulated 3D points.

3) If the registration is successful, extending the triangu-
lated point set with the new inlier matches.
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Fig. 2. The pipeline of our iterative matching strategy

4) Optimizing camera poses and 3D points via bundle
adjustment.

Generally, the reconstruction stage needs to iterate the
above 2-4 steps until there is no more suitable frame to be
registered.

While the above steps of the reconstruction stage are
relatively fixed, there are a variety of speed-up matching
techniques for unordered images in matching stage. Gen-
erally speaking, these methods can be basically summed up
as the following two ways: reducing the number of image
pair candidates or the cost of feature matching.

The most representative of the first kind of methods is
image retrieval [11]. For each image, this method retrieves a
fixed number NR of most similar images to match features,
so the time complexity of feature matching is O(NR ∗ n),
where n is the number of images. If we employ this method
in the matching stage, the integrity of the reconstruction is
affected by both NR and the used image retrieval algorithm.

However, there are some inherent defects in retrieval
methods with a fixed param NR. Some images ought to
have many potential matches, while some others only have
few overlapping images. For the former, a small NR leads
to the lack of inlier matches that is difficult to guarantee
the completeness of reconstruction. For the latter, a big NR

resulting in a computational waste of many false matching
pairs.

Vocabulary tree [9] is a common image retrieval method,
which is widely employed in various SfM systems and loop
detection [12]. This method heavily relies on the pre-training
of the vocabulary tree and the descriptors. Other kinds of
image retrieval methods generate global image descriptors,
such as GIST [13]. Recently, with the great success of
depth learning in computer vision, image retrieval methods
based on Convolutional Neural Networks (CNNs) [14] have
emerged and they outperform traditional methods. Because
the CNN based methods have a strong image representing
ability, they are more robust to illumination and view angle
changes.

Some researchers propose to extend the existing image
retrieval results to improve robustness and enhance matching.
A simple query expansion method [15] is to match the
query results of neighbor frames. This method can find some

extra inlier matches, but it costs a lot for images with rich
matching relations. Another method is MatchMiner [16],
which iteratively updates the weights of vocabularies through
matching results of existing queries, distinguishes valuable
vocabularies from noisy vocabularies to achieve good perfor-
mance. Moreover, a vote-and-verify strategy [17] of vocabu-
lary tree was proposed for fast spatial verification. However,
all of these methods do not make full use of the feature
correspondences of existing inlier matches.

Furthermore, many methods are aiming at reducing
the cost of feature matching. The preemptive matching
method [10] predicts image pairs with overlapping by match-
ing a few representative features. Hartmann et al. [18] pro-
posed to control the number of features to achieve sufficient
but not too many matches for acceleration. VocMatch [19]
proposed to use the vocabulary tree further. The features
indexed to the same visual word are considered as potential
matches to skip the descriptor matching. Alternatively, an-
other method PAIGE [20] uses the change of feature location
and rotation to predict the image pairs with overlapping.

Different from the previous methods, we propose to use
the covisibility to predict overlapping images, which can
significantly reduce the number of image pairs to be matched.
Covisibility refers to the fact that two images observe the
same landmarks. Covisibility graph is a graph that regards
images as the nodes and covisibility image pairs as edges,
which is widely used in 3D vision problems [21], [22]. In
ORB-SLAM2 [21], feature inlier matches provide informa-
tion to build a covisibility graph which simplifies data associ-
ation and facilitates data maintenance. Some researchers [22]
proposed another kind of covisibility graph constructed by
vocabulary association to search correspondences among un-
matched images to handle place recognition and loop closure.
We can judge the covisibility is reliable if two pictures share
enough feature points or vocabularies. However, in order to
discover the overlapping image pairs as many as possible, a
good algorithm needs to perform well with a small amount
of support from the existing information.

III. METHODOLOGY

This section presents a new effective matching strategy for
unordered image sets. We introduce the matching strategy
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in two parts in detail. First, we propose a region-based
algorithm to find the potential overlapping image pairs.
Second, we introduce an iterative matching strategy that effi-
ciently extends inlier feature matches by mitigating unuseful
matchings.

A. Transitivity of the covisibility

The matching stage searches image correspondences in the
input images U = {Ii | i = 1...NI}. The feature extraction
part detects the features Fi = {fki | k = 1...NFi} where Fi

denotes the set of features in image Ii, NFi is the number
of features in Fi, and fki denotes the k-th feature in the i-th
image.

Features detected in images are the projections of 3D scene
points. A correct feature match connects a feature pair which
corresponde to the same 3D scene point. The features in a
feature track {fk1

i1
, fk2

i2
, ..., fkn

in
} derived from successive cor-

rect feature matches {(fk1
i1
, fk2

i2
), ..., (f

kn−1

in−1
, fkn

in
)} are be-

long to the same scene point. The image pairs sharing feature
tracks can be considered to be covisible. Nevertheless, the
projections of a 3D scene points sometimes are not detected
so that some covisible image pairs are ignored due to missing
matches. In addition, there are still some mismatches in the
inlier feature matches even after the geometric verification,
which makes the covisibility supported by few feature tracks
unreliable.

We propose a co-visibility construction method to address
the problems of both missing matches and mismatches. A
3D point is a part of a scene structure, so we extend the
covisibility of features to the local regions where the features
lie. The projections of a small 3D structure adjacent to a 3D
point in an image pair are called a covisible region pair. As
shown in Fig. 3, there is no feature track shared by ri1 and ri3
by missing matches, but the potential overlapping region pair
(rk1i1 , r

k3
i3 ) still can be found by the transitivity of covisibility.

Moreover, the number of shared feature tracks measure the
confidence of co-visibility, so that a single feature mismatch
does not cause a false positive co-visible region pair. The
covisibility of the region pairs, e.g., (rk1i1 , r

k2
i2 ) and (rk2i2 , r

k3
i3 ),

are relatively reliable because there are multiple feature
tracks. By contrast, the region pair, (rk1

′

i1 , rk2i2 ), shares only
one feature track which is identified as unreliable because
they are potential mismatches.

It is hard to determine the boundary of the regions without
the scene structure, so we uniformly divide each image Ii
into N2

p patches Pi = {pki |k = 1...N2
p} as an approximation.

A covisible patch pair (pk1i , p
k2
j ) is confirmed once there are

at least T feature tracks shared by patch pk1i and pk2j , and all
the covisible patch pairs make up a patch covisibility graph
with patches as nodes and covisible patch pairs as edges. If a
patch pair is connected in the patch covisibility graph, there
is a potential covisibility of the patch pair. We transfer the
covisibility of patches to the covisibility of images by the
following equation:

dist(Ii, Ij) = min{dist(pk1i , pk2j )|k1 = 1...N2
p , k2 = 1...N2

p},
(1)

correct match false match missing match

Fig. 3. The top row contains three covisible images; the second row shows
the correct transitive covisibility (rk1i1 , rk3i3 ); In the thrid row, (rk1

′
i1 , rk3i3 )

shares a feature track, but it is not a covisible region pair.

elements of 𝐴𝑝𝑎𝑟𝑡
elements of {𝐴𝑎𝑙𝑙 − 𝐴𝑝𝑎𝑟𝑡}

elements of 𝑀𝑝𝑎𝑟𝑡

elements of {𝑀𝑎𝑙𝑙 −𝑀𝑝𝑎𝑟𝑡}

Fig. 4. Iteratively extending the registered images.

where dist(pk1i , p
k2
j ) is the distance of pk1i and pk2j in the

patch covisibility graph. If there is no path connecting the
two patches, dist(pk1i , p

k2
j ) is defined as infinite. dist(Ii, Ij)

is the minimum distance between patches in Ii and that in Ij .
As a patch is an approximation to a region, the overlapping
ratio of a patch pair may decrease with the distance at patch
covisibility graph growing. We therefore build a covisibility
relation between Ii and Ij by the following equation:

covisible(Ii, Ij) =

{
True dist(Ii, Ij) ≤ σ
False dist(Ii, Ij) > σ

, (2)

where σ is the distance threshold. Ii and Ij are covisible if
dist(Ii, Ij) does not exceed the threshold σ.

B. Iterative matching strategy

We propose an iterative algorithm that extends the inlier
feature matches step by step to make full use of existing
matches, as illustrated in Fig. 2. Firstly, we verify high-
ranking image pairs in the retrieval results to get the initial
inlier matches represented by Minit. In each iteration, we
select some image pairs as candidates according to the
potential covisibility supported by the existing inlier feature
matches. Then, we perform candidate verification, and add
new inlier matches to update the possibility of covisibility.
Finally, most of the inlier matches can be found. The key
problem of the proposed algorithm is how to select the
candidates.
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For Internet photo collections, e.g. images collected via
Flickr keyword search API, there are many poor quality
pictures and irrelevant picutres in U , so some images still
can not be registered successfully even if all the inlier feature
matches Mall has been established. Areg denotes the set of
images which can be registered with the support of Mall.
Arest denotes the rest of the photos in U , and all the elements
in Arest can not be registered. The Brute-Force matching can
find all the inlier feature matches Mall, but the matching
procedures related to Arest are usually noneffective. Given
the registrable image set Areg, we only need to verify image
pairs constituted by the images in Areg , which reduces the
useless verifications. However, Areg is not maintainable at
the beginning.

In each iteration of the proposed method, we have partial
inlier feature matches Mpart (a subset of Mall), so partial
images Apart can be registered. We only select the candidate
image pairs composed of at least an element in Apart.
Because Apart is a subset of Areg , this strategy is very
effective by avoiding the unnecessary verification for the
image pairs composed of two elements of Arest.

To get the set Apart, a naive method is running the
reconstruction with existing inlier feature matches Minlier,
but it is quite time-consuming. We exploit a fast algorithm to
approximate the registration process. Before diving into the
details, we explain some definitions used in the Algorithm 1.

Tri(Ii, Ij) =
{
fai , f

b
j |(fai , f bj ) ∈Minlier} (3)

Match(Ii, S) =
{
(fai , f

b
j )|(fai , f bj ) ∈Minlier, f

b
j ∈ S}

(4)
The matched features fai and f bj makes up the set Tri(Ii, Ij)
for simulating the progress of triangulation in reconstruction.
Given a feature set S, Match(Ii, S) is the set of inlier feature
matches between features of Ii and S.
Aappr is an approximation of Apart. As show in Algo-

rithm 1, Our registration approximation algorithm includes
an initial stage( step 1 to 4 in Algorithm 1) and an
iteration extending stage( step 5 to 17 in Algorithm 1), which
corresponds to the reconstruction stage of SfM. The SfM
systems select the next candidates to register from the images
whose triangulated points are larger than a certain threshold
treg. It is obviously that Aappr is a subset of Apart when the
threshold t is equal to treg.We use the (2) to select candidates
C with Aappr in Algorithm 2.

To control the time of covisibility test, we select the
covisible image pairs from the retrieval results with a big
NR (step 5 in Algorithm 2). Retrieval(Ii, k) denotes the
retrieval results of Ii with the retrieval number NR = k. In
our implementation, we use NetVLAD [23] to get retrieval
results, but there is no limitation to use other image retrieval
methods. If there are few initial inlier feature matches, the
candidates are too few to be extended. We add some extra
candidates by the votes from the retrieval results to alleviate
the lack of initial connections. With more image matches
to Apart, an image is more likely to be registered. Since

Algorithm 1: Registration approximation algorithm
Input: inlier matches Minlier, thresold t
Output: Aappr

1 Aappr = ∅, S = ∅;
2 Select a matched image pair (Ii, Ij)
3 Aappr = Aappr ∪ {Ii, Ij};
4 S = S ∪ Tri(Ii, Ij);
5 finded← True;
6 while finded do
7 finded← False;
8 for Ii ∈ U −Aappr do
9 if |Match(Ii, S)| > t then

10 Aappr ← Aappr ∪ {Ii};
11 finded← True;
12 for Ij ∈ Aappr do
13 S ← S ∪ Tri(Ii, Ij);
14 end
15 end
16 end
17 end

Algorithm 2: Iterative matching strategy
Input: initial inlier matches Minit, retrieval param k
Output: inlier matches Minlier

1 Minlier = Minit;
2 C = ∅;
3 Compute Aappr from Minlier by Algorithm 1
4 for Ii ∈ Aappr do
5 for Ij ∈ Retrieval(Ii, k) do
6 if covisible(Ii,Ij) then
7 C ← C ∪ (Ii, Ij);
8 end
9 end

10 end
11 Verify the candidate pairs in C and update Minlier

12 Repeat from line 2 until there are suitable candidates
or the maximum number of iterations is reached.

image retrieval can be regarded as an approximation of image
matching, an image whose retrieval result contains more
images belonging to Apart is more likely to be registered.
When we take Aappr as the approximation of Apart, the
proportion of images belonging to Aappr in the retrieval
results determines the possibility of registration. What’s
more, we limit Ij in Retrieval(Ii, k). In the worst case, the
proposed method will match each image with its k closest
neighbors.

IV. EXPERIMENTS

We conduct the experiments on 14 large unordered
datasets [24] to evaluate both our methods and the state-
of-the-art image retrieval method NetVLAD [23]. These 14
datasets contain a total of 58k unordered Internet photos,
covering a wide variety of scenes. We use the same features
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TABLE I
EVALUATION RESULTS ON 14 LARGE-SCALE UNORDERED INTERNET PHOTO COLLECTIONS

#Size #Registered #Time[s] #Precision[%]
IR5 IR25 IR50 Ours IR5 IR25 IR50 Ours IR5 IR25 IR50 Ours

Alamo 2,915 683 810 862 760 144 722 1405 233 40.74 27.61 23.68 37.29
Ellis Island 2,587 295 344 351 331 104 584 988 177 49.25 33.27 26.94 52.09
Gendarmenmarkt 1,463 702 984 1020 923 62 346 596 230 59.16 46.25 39.86 52.09
Madrid Metropolis 1,344 245 409 435 406 47 244 430 113 42.31 27.76 23.1 37.35
Montreal Notre Dame 2,298 475 554 564 552 99 523 972 171 54.79 41.97 36.31 48.54
NYC Library 2,550 385 614 574 592 102 544 975 170 44.32 28.60 21.74 43.58
Piazza del Popolo 2,251 332 901 951 865 99 468 872 234 47.10 34.15 28.53 43.23
Piccadilly 7,351 2213 2871 2988 2838 406 1508 2717 995 40.95 29.17 24.73 40.63
Roman Forum 2,364 1291 1500 1599 1546 164 587 1226 473 59.45 43.15 35.57 33.87
Tower of London 1,576 477 651 699 632 84 386 732 199 42.65 28.08 22.41 35.58
Trafalgar 15,685 4397 7048 7725 7122 713 3474 6396 2819 41.41 30.76 26.54 37.98
Union Square 5,961 536 985 1070 971 311 1436 2313 449 22.63 13.48 10.29 30.07
Vienna Cathedral 6,288 924 1060 1119 1033 533 1657 3328 707 40.25 20.69 20.69 39.28
Yorkminster 3,368 452 655 1060 927 165 1182 1620 382 48.79 32.09 24.89 37.16
Average 4,142 957 1384 1501 1399 216 975 1754 525 45.27 31.22 26.09 40.62

and the same implementation in both feature matching and
geometric verification supported by the open-source project
COLMAP [4], which shows the highly improved efficiency
of our proposed matching method. All the experiments are
conducted on a desktop PC with an Intel i7-9700K 3.6GHz
CPU, 64GB of memory and a NVidia GTX 2070 graphic
card. In this section, we first exhibit the comparison exper-
iment to verify the superiority of our proposed method and
then present the ablation studies to examine the effectiveness
of each component.

We set the NetVLAD as our baseline, which retrieves
NR images as IRNR

. For NetVLAD, higher NR offers
more registered images but requires more computation time.
Registered is the number of registered frames, Time
denotes the time consumed in candidate verification, and
Precision is computed from NT /NAll (NT is the number of
found overlapping image pair and NAll is the number of the
candidate image pairs). For comparison, we show these three
metrics on both NetVLAD and our method in Table I. The
NetVLAD is tested with IR5, IR25, and IR50. The Minit

in Algorithm 2 of our proposed method is set as the result of
IR5 and the k is 50. It shows that IR5 is the fastest method,
but can not guarantee the integrity of reconstruction The time
of our method is the second fastest because ours takes the
result of IR5 as the initial inlier matches. Comparing with
the experiments on NetVLAD that use larger param NR, our
method is much faster than IR25 and IR50, and the number
of registered frames of our method approaches to that of
these two implementations. In addition, the precision of our
method (verified image pairs) is higher than IR25 and IR50

on average, which means that our method can accurately
predict overlapping images.

In order to reflect the advantages of our method more
intuitively, we list the total time and the sum of registered
number of Table I. As shown in Fig. 5, the speed of our
method is much faster than the NetVLAD with the premise
of complete reconstruction. Fig 6 shows the reconstruction
results of the different methods in Madrid Metropolis (the
first row), Union Square (the second row). Compared with
the reconstruction result of IR5, the reconstruction result of
our method is more complete without the absence of walls.

Fig. 5. Visualization of the overall evaluation results

Generally speaking, our method is quite robust and mines
covisible image pairs well on these datasets.

A. Transitivity of the covisibility

TABLE II
THE RESULTS OF COMPARISON EXPERIMENTS WITH DIFFERENT Np

#Registered #Time #Precision
Np = 5, T = 2 953 439 0.1947
Np = 10, T = 2 943 405 0.2233
Np = 20, T = 2 927 382 0.2360

Np controls the number of patches the image divided into
and the threshold T denotes the minimum sharing tracks
between a covisible patch pair. To show the effects of the
parameters Np and T , we present the ablation studies on
Yorkminster in Table II and Table III. It is noteworthy that
the Precision in these two tables removes NT and Nall

TABLE III
THE RESULTS OF COMPARISON EXPERIMENTS WITH DIFFERENT T

#Registered #Time #Precision
Np = 5, T = 1 962 486 0.1716
Np = 5, T = 2 953 440 0.1947
Np = 5, T = 4 921 372 0.2407
Np = 5, T = 6 573 228 0.3057
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Fig. 6. The top view of reconstruction results : IR5 (left) , IR50 (mid) , Ours (right).

TABLE IV
THE FOUND PAIRS RATIO OF DIFFERENT METHODS

found pairs ratio
IR5 IR25 Ours

Alamo 0.8776 0.9591 0.9597
Ellis Island 0.5933 0.9333 0.9510
Gendarmenmarkt 0.5708 0.9180 0.9441
Madrid Metropolis 0.7308 0.9203 0.9457
Montreal Notre Dame 0.7642 0.9681 0.9783
NYC Library 0.6495 0.9300 0.9409
Piazza del Popolo 0.6551 0.8990 0.9156
Piccadilly 0.5497 0.7902 0.8665
Roman Forum 0.7506 0.9402 0.9425
Tower of London 0.7096 0.9496 0.9465
Trafalgar 0.5243 0.8074 0.8870
Union Square 0.4989 0.8469 0.8758
Vienna Cathedral 0.7943 0.9602 0.9615

TABLE V
THE RESULTS OF EXPERIMENTS FOR Aappr

#Registered #Time #Precision
with Aappr 331 177 0.5980
without Aappr 335 264 0.5214

in Minlier for better observation of change. Increasing Np

reduces the time consumption and raises the precision but
decreases the number of registered images. And a larger
threshold T results in fewer registered images, less time
consumption, and higher precision. The possibility that false
feature tracks existing in a small area is small. When a
large Np divides image into several small cell, it skips many
mismatched image pairs, so the precision is high. Similarly,
a strict requirement (T = 6) also has a high precision.

As we set k = 50 in our methods, the candidate pairs of
our method are the subset of IR50. In order to indicate that
our method finds most of the co-visibility images pairs in
IR50, we define a new metric called found pairs ratio. We
take the results of IR50 as the groundtruth, and Agt is the

registered image set of IR50. Sgt is the set of verified image
pairs of IR50 between Agt. Sfound is the image pairs which
sharing at least 30 feature tracks between Agt. The found
pairs ratio is computed from |Sfound|/|Sgt|. Compared with
other methods IR5 and IR25, the found pairs ratio of
our methods is the highest in all the datasets as shown in
Table IV.

B. Iterative matching strategy

To evaluate the improvement of our proposed iterative
matching strategy on poor quality images, we present the
experiments with and w/o Aappr on the dataset Ellis Island
where there are many poor quality images. As listed in
Table. V, the registered image number of the method with
Aappr is almost the same as that of the method without
Aappr, but the running time is reduced to the half.

V. CONCLUSIONS

This paper proposes an efficient iterative matching strategy
and a reliable method to predict covisible image pairs by
the transitivity of region covisibility. The comprehensive
evaluation shows that our proposed method is three times
faster than the state-of-the-art and the matching result of
this method is good enough for complete reconstruction. In
addition, the covisibility of image pairs can be efficiently
found by our method by mining inlier feature matches fully.
The direction of our future work is to explore how to
integrate our work with other modules in SfM well to achieve
a very efficient and robust SfM system.
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