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Abstract

Depth completion aims to recover dense depth maps

from sparse depth measurements. It is of increasing impor-

tance for autonomous driving and draws increasing atten-

tion from the vision community. Most of existing methods

directly train a network to learn a mapping from sparse

depth inputs to dense depth maps, which has difficulties

in utilizing the 3D geometric constraints and handling the

practical sensor noises. In this paper, to regularize the

depth completion and improve the robustness against noise,

we propose a unified CNN framework that 1) models the ge-

ometric constraints between depth and surface normal in a

diffusion module and 2) predicts the confidence of sparse Li-

DAR measurements to mitigate the impact of noise. Specif-

ically, our encoder-decoder backbone predicts surface nor-

mals, coarse depth and confidence of LiDAR inputs simul-

taneously, which are subsequently inputted into our diffu-

sion refinement module to obtain the final completion re-

sults. Extensive experiments on KITTI depth completion

dataset and NYU-Depth-V2 dataset demonstrate that our

method achieves state-of-the-art performance. Further ab-

lation study and analysis give more insights into the pro-

posed method and demonstrate the generalization capabil-

ity and stability of our model.

1. Introduction

The widely used depth sensors, such as LiDAR, RGB-

D camera and TOF cameras, generally generate sparse

depth measurements due to the limited sensing scope, inter-

ferences from environments and economic considerations.

For example, the top-class LiDAR sensor, Velodyne HDL-

64E, costs about $100,000, but can only provide sparse

measurements with vertical resolution/angular resolution of

0.4◦/0.08◦. On the other hand, dense depth maps are re-

quired in many high-level applications including semantic
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search.

(a) LiDAR input

(b) RGB input (d) Normal prediction

(c) Coarse depth prediction (e) Final result

(f) Groundtruth

(h) Confidence prediction(g) Noises & misalignment

Figure 1: From sparse LiDAR measurements and color im-

ages (a-b), our model first infers the maps of coarse depth

and normal (c-d), and then recurrently refines the initial

depth estimation by enforcing the constraints between depth

and normals. Moreover, to address the noises in practical

LiDAR measurements (g), we employ a decoder branch to

predict the confidences (h) of sparse inputs for better regu-

larization. Best viewed on screen.

segmentation, 3D reconstruction, SLAM, etc. To mitigate

the gap between sparse and dense depth maps, depth com-

pletion, i.e., generating dense depth maps from sparse depth

measurements, has been widely adopted.

With the advances of deep learning methods, many depth

completion approaches based on convolutional neural net-

works (CNNs) have been proposed. The mainstream of

these methods is to directly input the sparse depth maps

(with/without color images) into an encoder-decoder net-

work and predict dense depth maps [26, 16, 36, 15, 10,

23, 2]. These black-box methods force the CNN to learn

a mapping from sparse depth measurements to dense maps,

which is generally a challenging task and leads to unsat-

isfactory completion results, as shown in Fig. 1 (c). We

argue that proper geometric constraints should be incorpo-

rated into the end-to-end framework to regularize the com-

pletion process and make it more interpretable. Depth and

surface normal are two strongly correlated factors in the 3D
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world and the locally linear orthogonality between them can

be utilized in depth completion. Zhang et al. [46] takes the

normal map (predicted by a CNN framework) as guidance

and obtains the dense depth map by separately optimizing

a linear system. Although their method performs better in

post-processing the indoor RGB-D data compared with the

methods neglecting 3D geometric constraints, it still suffers

from huge running time-cost and limited generalization to

driving scenarios. Moreover, their normal prediction train-

ing and the optimization of dense depth are isolated, which

prohibits joint optimization in a data-driven manner.

In this paper, to regularize the depth completion results

with 3D geometric constraints, we propose to model the lo-

cally linear orthogonality between depth and normal by as-

sociating them in the plane-origin distance space (the dis-

tance from the corresponding tangent plane to the origin,

i.e., camera center in our case). We first adopt a CNN-based

backbone to estimate the surface normal and depth (from

sparse LiDAR measurements and color images). Then,

we transform the predicted depth and normal to the plane-

origin distance space, and conduct a refinement process in

this space via a diffusion model to enforce the geometric

constraints. Compared with previous works [21, 2] that

model the depth variation in 2D space and assume piece-

wise constant depth, we model the geometric constraints in

3D space based on the assumption that 3D structures are

constituted by piecewise planes and the plane-origin dis-

tances are therefore piecewise constant. The transformation

to plane-origin distance enforces constraints between depth

and normal during training, and improves the completion

accuracy and stability in inference. Furthermore, to mitigate

the effect of sensor noise which is inevitable on boundaries

or moving objects as illustrated in Fig. 1 (g), a confidence

branch is introduced in our framework to predict the uncer-

tainties of sparse depth measurements from sensors.

Our contributions mainly lie in three aspects:

1. We reposition the focus of depth completion from 2D

space to 3D space based on the assumption that a 3D scene

is constituted by piecewise planes Specifically, we conju-

gate the depth and surface normal in the plane-origin dis-

tance space and refine it via a recurrent diffusion module,

which enforces the constraints between depth and surface

normal in depth completion process.

2. Based on this insight, we propose a unified two-stage

CNN framework to achieve depth completion from very

sparse inputs, e.g., LiDAR measurements. To improve the

robustness to the noises in practical sensors, we further in-

troduce a confidence prediction branch to impede the prop-

agation of information associated with noises.

3. Our framework can be trained in an end-to-end man-

ner, and extensive experimental results show that our model

achieves state-of-the-art performance while keeping good

generalization capability.

2. Related Work

Depth Completion. Depth completion has been inten-

sively studied since the emergence of active depth sen-

sors. Existing approaches mainly aim to handle the in-

complete depth measurements from two types of sen-

sors, i.e. structured-light scanners and LiDAR. The meth-

ods for structured-light scanners are widely used in 3D-

reconstruction post-processing, while the methods for Li-

DAR usually require real-time responses in the scenarios of

robotic navigation and autonomous driving.

The classic methods generally employ hand-crafted fea-

tures or kernels to complete the missing values [13, 1, 8, 12,

27, 40, 19, 25, 17]. Most of these methods are task-specific

and usually confronted with performance bottleneck due to

the limited generalization ability. Recently, the learning-

based methods have shown promising performance on

depth completion. Some of these methods achieve depth

completion based solely on the sparse depth measurements.

Uhrig et al. [36] proposed a sparsity-invariant convolution

layer to enhance the depth measurements from LiDAR. Be-

sides, in the work of [11], they model the confidence propa-

gation through layers and reduce the quantity of model pa-

rameters. However, the assistance from other modalities,

e.g., color images, can significantly improve the comple-

tion accuracy. Ma et al. concatenated the sparse depth and

color image as the inputs of an off-the-shelf network [26]

and further explored the feasibility of self-supervised Li-

DAR completion [23]. Moreover, [14, 16, 33, 4] proposed

different network architectures to better exploit the potential

of the encoder-decoder framework. However, the encoder-

decoder architecture tends to predict the depth maps com-

prehensively but fails to concentrate on the local areas. To

mitigate this problem, Cheng et al. [2] proposed a convolu-

tional spatial propagation refinement network (inspired by

the work of [22]) to post process the depth completion re-

sults with neighboring depth values. They simply conduct

the refinement in 2D depth space based on the assumption

that the depth values are locally constant. However, dif-

ferent from the segmentation task[22], this assumption is

sub-optimal for depth completion and their performance in

outdoor scenes is still barely satisfactory. Furthermore, cur-

rent approaches ignore the noises in LiDAR measurements,

which are inevitable in practical scenarios.

Depth and Normal. In previous works, the relation

between depth and surface normal has been exploited in

various ways to improve the depth accuracy [45, 41, 28].

For the monocular depth estimation tasks, [41, 28] com-

pute normal from depth and then recover the depth from

normal inversely to enforce the constraints between them.

Depth completion can also benefit from such geometric

constraints. Zhang et al. [46] established a linear system

based on the geometric constraints and solve it by Cholesky

factorization. However, the optimization of a linear sys-
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Figure 2: Overview of our proposed framework. The prediction network first predicts maps of surface normal N, coarse

depth D and confidence M of sparse depth input with a shared-weight encoder and independent decoders. Then, the sparse

depth inputs D̄ and coarse depth D are transformed to the plane-origin distance space as P̄ and P , using Eq. (5). Next, the

refinement network, an anisotropic diffusion module, refines the coarse depth map D in the plane-origin distance subspace

to enforce the constraints between depth and normal and to incorporate information from the confident sparse depth inputs.

During the refinement, the diffusion conductance depends on the similarity in guidance feature map G (See Eq. (7)). Finally,

the refined P is inversely transformed back to obtain the refined depth map Dr when the diffusion is finished.

tem is hard to be employed in an end-to-end framework

and achieve joint optimization. Moreover, although their

method is suitable for post-processing the RGB-D camera

data, but can hardly achieve real-time processing.

Anisotropic Diffusion Anisotropic diffusion originally

models the physical process that equilibrates concentration

differences without creating or destroying mass, e.g. heat

diffusion. Anisotropic diffusion has been extensively used

in image denoising [43, 42, 5], depth completion [21, 32, 2],

segmentation [18, 22, 44, 37, 38, 31], etc. The previous

classic methods define the diffusion conductance only based

on the similarity in diffusion space or in the guidance map

(e.g., a color image), which limits the performance. In our

work, we take advantages of feature extraction capability of

CNN and use the high-dimension features to calculate the

conductance.

3. Method

In this paper, we assume that a 3D scene is constituted

by piecewise planes, and the distances between these planes

and the origin (plane-origin distance) are therefore piece-

wise constant. Based on this assumption, we proposed a

two-stage end-to-end deep learning framework, which reg-

ularizes the depth completion process using the constraints

between depth and surface normal. As illustrated in Fig. 2,

our framework mainly consists of two parts, i.e., the predic-

tion network and refinement network. The prediction net-

work estimates the surface normal map, the coarse depth

map and confidences of sparse depth inputs with a shared-

weight encoder and independent decoders. Then, the sparse

input and coarse depth maps are transfromed to the plane-

origin distance subspace with normal estimation. Next, the

refinement network, a diffusion model, recurrently refines

plane-origin distance, which enforces the piecewise plane

constraints and regularizes the depth completion. Com-

pared with many previous works [21, 2] that assume piece-

wise constant depth, our method utilizes the geometric con-

straints between depth and surface normal, and performs

better and more stably in the missing regions. Finally, the

refined depth can be obtained via the inverse transformation

without losing accuracy when the refinement is finished.

3.1. Prediction Network

The prediction network takes sparse depth D̄ and the cor-

responding color image I as inputs, and predicts surface

normal map N, coarse depth completion D and confidence

map M (of sparse input) via separate decoders. We adopt

the widely used U-Net [29] architecture for prediction net-

work, i.e., using a ResNet-34 variant as the encoder and

cascaded upsampling layers as the decoders. The specific

architecture is included in the supplementary materials.

We apply L2 reconstruction loss for the coarse depth

completion D, i.e., LD = 1
n

∑

x ||D(x)−D∗(x)||22, where

n is the number of pixels. For normal prediction, we gener-

ate the normal target from depth groundtruth, i.e., selecting

a set of nearest 3D points for each location, and computing

the normal direction based on them via principal component

analysis (PCA) [30]. Then, a negative cosine loss proposed

by [9] is used for normal prediction, that is

LN = −
1

n

∑

x

N(x) ·N∗(x), (1)
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Figure 3: In camera coordinate system, the relation between

depth and normal can be established via the tangent plane

equation.

where N is the normal prediction while N
∗ denotes the

computed normal target as stated above. The confidence

map M is to mitigate the negative impact caused by noises

in practical LiDAR measurements as illustrated in Fig. 1.

Since there is no ground-truth for the confidence, we use a

function to model it during training inspired by the probabil-

ity density function of Laplace distribution, which is given

by

M∗ = exp

(

−
|D̄ −D∗|

b

)

, (2)

where D̄ is the noisy sparse input, D∗ denotes the depth

ground-truth, and b is a parameter that controls the tolerance

to the error when modeling the confidence. we apply an

L2 loss denoted as LC to draw the prediction close to M∗:
LC = 1

n

∑

x ||M(x)−M∗(x)||22, where n is the number of

pixels. Meanwhile, the following refinement network can

also affect the confidence prediction via backpropagation to

achieve a better performance.

3.2. Recurrent Refinement Network

The afore mentioned prediction network estimates dense

completion results from sparse depth inputs. The encoder-

decoder architecture does not exploit the geometric con-

straints between depth and surface normal to regularize the

estimated depth and has difficulties of taking full advan-

tages of the sparse inputs. To address this problem, we

propose to further refine the completion results in a novel

plane-origin distance subspace via an anisotropic diffusion

module [39] based on the assumption that the 3D surface of

the scene is constituted by piece-wise planes and the plane-

origin distance is piecewise constant.

3.2.1 Plane-origin Distance

As illustrated in Fig. 3, let X be a 3D point and x be its

projected 2D point on the image plane. The surface normal

N(x) at 3D-point X is defined as the vector starting from X

and perpendicular to the tangent plane F . The point-normal

equation of plane F can be written as

N(x) ·X− P = 0 (3)
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Figure 4: The proposed differentiable diffusion block. In

each refinement iteration, high-dimensional feature vectors

(e.g., of dimension 64) in guidance feature map G are in-

dependently transformed via two different functions f and

g (modeled as two convolution layers followed by normal-

ization). Then, the conductances from each location xi (in

plane-origin distance map P ) to its neighboring K pixels

(xj ∈ Ni) are calculated using Eq. (7). Finally, the dif-

fusion is performed through a convolution operation with

the kernels defined by the previous computed conductances.

Through such diffusion, depth completion results are regu-

larized by the constraint between depth and normal.

Hence, the value P = N(x) ·X should be constant for all

3D points on the same plane. As P is the distance between

the plane and the origin (camera centre in our case), for

simplicity, we refer to P as plane-origin distance in our

paper.

By adopting the pinhole camera model, the 3D-point X

can be reconstructed with its depth value D(x) and 2D im-

age location:

X = D(x) ·C−1x, (4)

where C denotes the camera intrinsic parameter matrix and

2D-point x is in homogeneous form. By further substituting

Eq. (4) into Eq. (3), we have the relation between plane-

origin distance P and depth D(x):

P (x) = D(x)N(x)C−1x. (5)

Note that, with a slight abuse of notation, here we also

use P to denote the map of plane-origin distances for all

pixels. After the plane-origin distance map has been re-

fined (to be discussed in the next subsection), the refined

depth map D(x) can be inversely obtained as D(x) =
P (x)/(N(x)C−1x).
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3.2.2 Plane-origin Distance Diffusion for Depth Re-

finement

As stated before, for all the 3D points Xj on the same lo-

cal plane with Xi, we model that P (xj) = P (xi), where xj

and xi are the projected 2D locations for Xj and Xi respec-

tively. To enforce this geometric constraint in depth com-

pletion, we conduct the anisotropic diffusion on the plane-

origin distance map P :

P (xi)←(1−
∑

xj∈N (xi)

w(xi,xj))P (xi)

+
∑

xj∈N (xi)

w(xi,xj)P (xj)
(6)

During the diffusion process, pixel xi receives informa-

tion from surrounding pixels in neighborhood N (xi) while

w(xi,xj) measures how likely that xi and xj lie on the

same plane.

Some classic methods, such as [21], define the diffusion

conductance w based only on the similarity in the color im-

age space. Thanks to the strong feature learning capability

of CNN, we are able to measure the similarity in the high-

dimension feature space. We take the geometrical feature

map G generated by the prediction network (illustrated in

Fig. 2) to model the diffusion conductance between xi and

xj ∈ N (xi). If two features at xi and xj are geometrically

similar, they are likely to be on the same plane and should

share similar P (xi) and P (xj) values. With this intuition,

we model the conductance between xi and xj as

w(xi,xj) =
1

S(xi)
exp

(

−
(1− f(G(xi))

T g(G(xj)))
2

2σ2

)

.

(7)

We adopt two different feature transformation functions f
and g for xi and xj respectively. Thus, the conductances

from xi to xj and from xj to xi are asymmetric, i.e.,

w(xi,xj) 6= w(xj ,xi). Such asymmetry provides more

flexibility for the diffusion. For instance, the locations with

confident sparse depth inputs may refuse the information

from others, and the locations with unreliable values (e.g.

sky) can stop their propagation to others. f and g are im-

plemented as convolutional layers followed by a L2 normal-

ization across channel dimmension as illustrated in Fig. 4.

In addition, σ is a learnable parameter (initialized with 0.1

empirically) to control the diffusion strength globally and

S(xi) =
∑

j∈Ni
exp(− (1−f(G(xi))

T g(G(xj)))
2

2σ2 ) is a nor-

malization term.

3.2.3 Plane-origin Refinement and Depth Recovery

As demonstrated in Algorithm 1 and Fig. 2, our refinement

framework first transforms the sparse depth inputs D̄ and

coarse depth map D (from previous prediction network) to

plane-origin distances, obtaining P̄ and P (Eq. (5)) respec-

tively and then performs the diffusion refinement (Eq. (6)).

During the diffusion, we take confident pixels in sparse

plane-origin distance map P̄ as seeds and refine the values

in P with them at each iteration, which can be expressed as

P (x)←✶[P̄ (x) > 0]M(x)P̄ (x)

+ (1− ✶[P̄ (x) > 0]M(x))P (x),
(8)

where ✶[P̄ (x) > 0] is an indicator for the availability of

P̄ (also sparse depth D̄) at location x and M denotes the

predicted confidences of sparse depth inputs. The confi-

dence map M largely prevents the propagation of noises

in sparse measurements while allowing the the confident

sparse depth inputs and the predicted depth map from U-

Net to complement each other. Moreover, this strategy cou-

ples the depth and normal during training, which enforces

the normal-depth constraints and results in better accuracy.

Algorithm 1 The refinement procedure

1: for all x do

2: P̄ (x)← D̄(x)N(x)C−1x

3: P (x)← D(x)N(x)C−1x

4: end for

5: i← 0
6: while i < max iteration do

7: for all x do

8: P (x)← ✶[P̄ (x) > 0]M(x)P̄ (x)
+ (1− ✶[P̄ (x) > 0]M(x))P (x)

9: end for

10: for all x do

11: Conduct the refinment using Eq. (6)
12: end for

13: i← i + 1
14: end while

15: for all x do

16: D(x)← P (x)/(N(x)C−1x)
17: end for

3.3. Loss Functions

Our proposed network is trained end-to-end. Besides the

afore mentioned loss functions LD, LN , LC in prediction

network in Sec. 3.1. For the refinement network, we also

apply a L2 loss to supervise the learning of refinement re-

sults Dr, i.e., LDr
= 1

n

∑

x ||Dr(x) − Dr
∗(x)||22. Our

overall loss function can be written as

L = LD + αLDr
+ βLN + γLC , (9)

where α, β and γ adjust the weights among different terms

in the loss function. In our experiments, we empirically set

α = 1, β = 1, γ = 0.1.

4. Experiments

We perform extensive experiments to evaluate the effec-

tiveness of our model. In this section, we will first briefly

introduce the dataset and evaluation metrics adopted in our

experiments and then discuss our experiments.
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Table 1: The evaluation results on the test set of KITTI

depth completion benchmark. The root mean square error

(RMSE) and mean absolute error (MAE) are in millimeters,

while inverse RMSE and inverse MAE are in 1/kilometer.

Method RMSE MAE iRMSE iMAE

Ours 777.05 235.17 2.42 1.13
Sparse-to-Dense [23] 814.73 249.95 2.80 1.21

NConv-CNN [10] 829.98 233.26 2.60 1.03

Spade-RGBsD [16] 917.64 234.81 2.17 0.95

HMS-Net [14] 937.48 258.48 2.93 1.14

CSPN [3] 1019.64 279.46 2.93 1.15

Morph-Net [7] 1045.45 310.49 3.84 1.57

DFuseNet [33] 1206.66 429.93 3.62 1.79

4.1. Dataset and Metrics

RGB-D data is available in many existing datasets,

e.g. [6, 24, 36, 34]. We conduct extensive experiments on

KITTI depth completion benchmark [36] to evaluate the

performance with practical sparse LiDAR data. Moreover,

to demonstrate the generalization ability, we also perform

experiments on indoor dataset, i.e., NYU-Depth-v2 [34].

KITTI depth prediction dataset. KITTI depth comple-

tion dataset [36] contains over 93k annotated depth maps

with aligned sparse LiDAR measurements and RGB im-

ages. We train our model on the training split, and evaluate

it on the official validation set and test set.

NYU-Depth-v2 dataset. NYU-Depth-v2 dataset con-

sists of paired RGB images and depth maps collected

from 464 different indoor scenes with a Microsoft Kinect.

We adopt the official data split strategy and sample about

43k synchronized RGB-depth pairs from the training data

with the same experimental setup as [26]. Moreover, pre-

processing is performed with the official toolbox. The ori-

gin images of size 640×480, are down-sampled to half and

then center-cropped to the size of 304× 224.

Evaluation metrics. For the evaluation on KITTI

dataset, we adopt the same metrics used in the KITTI

benchmark: Root Mean Square Error (RMSE), Mean Ab-

solute Error (MAE), root mean squared error of the in-

verse depth (iRMSE) and mean absolute error of the in-

verse depth(iMAE). For the experiments on NYU-Depth-

v2 dataset, we adopt 1) RMSE, 2) mean relative error (rel):
1
|D|

∑

x |D(x) − D∗(x)|/D∗(x) and 3) δt: percentage of

depth estimations that satisfy max(D
∗(x)

D(x) ,
D(x)
D∗(x) ) < t,

where t ∈ {1.25, 1.252, 2.253}.

4.2. Experimental Setup

Our framework is implemented on PyTorch library and

trained on an NVIDIA Tesla V100 GPU with 16GB of

memory. The networks are trained for 30/20 epochs for

KITTI/NYU with a batch size of 16 and an initial learning

rate of 4× 10−4. Our models are trained with ADAM opti-

mizer which decays the learning rate with the poly strategy.
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Figure 5: The effect of changing the tolerance parameter b
in Eq. (2). The left figure exhibits the RMSE with different

values of b and the right figure plots the curves of modeled

confidence groundtruth M∗ w.r.t the absolute difference be-

tween the sparse input and depth groundtruth.

Table 2: The performance comparison of different ablation

variants on the validation set of KITTI benchmark.

Method RMSE MAE iRMSE iMAE

w/o normal 846.51 256.71 3.07 1.35

w/o refinement 836.20 255.04 2.62 1.24

w/o replacement 825.85 258.5 2.56 1.26

w/o confidence 836.66 248.18 2.59 1.25

w/ same f ,g 832.93 273.71 2.63 1.33

w/ Euclidean distance 843.34 238.55 2.89 1.57

w/ dot product 818.41 249.95 2.76 1.37

Full 811.07 236.67 2.45 1.11

4.3. Comparison with the StateoftheArts

We evaluate our model on the test set of KITTI depth

completion benchmark and compare our method against

other methods. Table 1 lists the comparison results with

other high-ranking methods. Our method ranks 1st among

these peer-reviewed methods according to the RMSE met-

ric. We further conduct quantitative comparison with some

competing approaches as demonstrated in Fig. 6. Our com-

pletion results benefit from the geometric constraints that

the intermediate normal prediction and the depth estimation

should be in consistency, which largely reduces the errors

and recovers more details compared with these competing

methods. For example, the outliers in the region of the tele-

graph pole (in last column of Fig. 6) are mostly eliminated

via the geometry-aware diffusion refinement.

4.4. Ablation Study

To verify the effectiveness of each proposed component,

we conduct extensive ablation studies by removing each

component from our proposed framework. Apart from that,

we also investigate the impact of different configurations of

our proposed diffusion conductance function (Eq. (7)), i.e.

with same feature transformation function (let f = g) or

changing the embedded cosine similarity to Euclidean dis-

tance/dot product. The quantitative results are shown in Ta-

ble 2, and the performances of all ablation variants degrade

compared with our full model.
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 (e) Ours

 (a) Color image + LiDAR measurements 

(b) CSPN

 (c) NConv-CNN

 (d) Sparse-to-Dense

Figure 6: Quantitative comparison with other methods. For each method, we provide the whole completion results as well

as the zoom-in views of details and error maps for better comparison. We also provide the normal prediction and confidence

prediction of our method for better illustration.

Effectiveness of Geometric Constraints. To verify the

effectiveness of the geometric constraints enforced by our

plane-origin distance diffusion. We first evaluate our pre-

diction network with only depth branch (w/o normal) and

further remove our refinement network along with the con-

fidence branch from the full model (w/o refinement) to see

whether the encoder-decoder alone has the capability to ex-

ploit the geometric constraints (between depth and normal).

Moreover, we also try to conduct the diffusion refinement

without substituting the seeds P̄ (w/o replacement) to see

where the performance gain comes from. As exhibited

in Table 2, the performance of two variants all degrades,

but ‘w/o replacement’ outperforms ‘w/o refinement’, which

demonstrates the effectiveness of our method in exploiting

the geometric constraints.
Investigation of Diffusion Refinement Module. We

investigate the configurations of our proposed diffusion

module. First, we try to use same transformation func-

tion in Eq. (7) to calculate the similarity, i.e., adopt-

ing a symmetric conductance function by letting f =
g. As shown in Table 2, the performance with sym-

metric conductance (w/ same f , g) is inferior to the

proposed asymmetric one (Full). Then, we also exper-

iment on different similarity functions : w(xi,xj) =
1

S(xi)
exp(− ||f(G(xi))−g(G(xj))||

2

2

2σ2 ) (w/ Euclidean distance)

and w(xi,xj) = 1
S(xi)

exp(f(G(xi))
T g(G(xj))) (w/ dot

product). It can be found that the proposed conductance

function performs better than these variants.
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Figure 7: Stability analysis. (a) RMSE of our methods w.r.t. the number of refinement iterations on both KITTI and NYU

validation sets. Here, we shift each curve by subtracting the minimum values for better demonstration. (b) RMSE of our

model w.r.t. different sampling ratios of the sparse depth inputs.

Table 3: Evaluation on NYU-Depth-v2 dataset. The Root

mean square errors (RMSE) are in millimeters and all the

methods are evaluated with same sparsity of depth inputs

(i.e., 500 samples).

Method RMSE rel δ1.25 δ1.252 δ1.253

Diffusion [21] 1.231 0.202 89.1 91.2 94.3

Cross bilateral filter [35] 0.748 0.106 90.1 93.1 93.9

Colorization [20] 0.185 0.039 97.2 97.9 98.1

CSPN [3] 0.117 0.016 99.2 99.9 100.0

Ma et al. [26] 0.230 0.044 97.1 99.4 99.8

Ours (ResNet-34) 0.119 0.021 99.4 99.9 100.0

Ours (ResNet-50) 0.112 0.018 99.5 99.9 100.0

Effectiveness of the Confidence Prediction. We can

see that the regions with lower confidence prediction

(Fig. 6 (e)) are mainly concentrated in the areas of mov-

ing objects or objects boundaries, which is mostly consis-

tent with the noise occurrence in Fig. 6 (a)). We further

remove the confidence prediction scheme from our frame-

work to verify the necessity of confidence map M in diffu-

sion model. The performance (‘w/o confidence’) in Table 2

degrades as expected which is caused by the spreading of

errors. Furthermore, we investigate the effects of different

values of parameter b in the confidence model (Eq. (2)). As

shown in Fig. 5, a too large or too small b will degrade the

performance. This is because a too large b makes the model

too tolerant to noises while a too small b makes the model

too conservative to assign high confidence to valid measure-

ments (the right plot in Fig. 5 shows a set of confidence

curves with different b values).

4.5. Analysis of Generalization Ability and Stability

Generalization Ability to Indoor Scenes. Although

we mainly focus on the outdoor application scenarios, we

also train our model on indoor scenes, i.e., NYU-Depth-

v2 dataset. As NYU-Depth-v2 dataset provides relatively

denser depth measurements by Microsoft Kinect, we uni-

formly sample the depth map to obtain the sparser ver-

sion following previous works [26, 14]. We compare our

results with latest CNN-based methods [26, 2] as well as

the classic methods [21, 35, 20] as shown in Table 3, and

our method achieves state-of-the-art performance as well.

Moreover, our model with even a ResNet-34 encoder (de-

noted as ‘Ours (ResNet-34)’) achieves similar or even bet-

ter performance compared with the previous methods with a

ResNet-50 [26, 2], and the adoption of a ResNet-50 encoder

(denoted as ‘Ours( ResNet-50)’) in our framework can fur-

ther improve the performance.

Stability Analysis. To evaluate the refinement stability

of our proposed recurrent refinement network, we select the

model snapshots from different epochs that are all trained

with a kernel size of 5 and refinement iteration of 8. But, for

inference, we perform the refinement with different number

of iterations. As shown in Fig. 7 (a), the error decreases and

becomes steady as more refinement iterations are performed

(even exceeding that in the training phase). Moreover, we

also verify our model’s robustness to different input sparsity

levels by sub-sampling the raw LiDAR inputs in KITTI or

the sampled depth maps in NYU. As shown in Fig. 7 (b),

the performances drop when the sampling ratio decreases as

expected, but the model can still provide reasonable results

even with 1/10 of the original sparse inputs.

5. Conclusion

In this paper, we propose a unified framework consti-

tuted by two modules, i.e., prediction network and refine-

ment network, to address the problem of depth completion

from sparse inputs. We follow the 3D nature of depth to

shift the focus from 2D space to 3D space and utilize the

depth-normal constraints to regularize the depth completion

via a diffusion model in plane-origin distance space. The

proposed diffusion model adaptively adjusts the conduc-

tance between pairs of vertices according their similarities

in the high-dimensional feature space. Moreover, we also

handle the noises in LiDAR measurements by introducing a

decoder branch to predict the confidences of sparse inputs,

and impede the propagation of errors in refinement mod-

ule. Extensive experiments demonstrate that our method

achieves state-of-the-art performance on both outdoor and

indoor datasets.
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