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Abstract— Traditional stereo matching approaches generally
have problems in handling textureless regions, strong occlusions
and reflective regions that do not satisfy a Lambertian surface
assumption. In this paper, we propose to combine the predicted
surface normal by deep learning to overcome these inher-
ent difficulties in stereo matching. With the selected reliable
disparities from stereo matching method and effective edge
fusion strategy, we can faithfully convert the predicted surface
normal map to a disparity map by solving a least squares
system which maintains discontinuity on object boundaries
and continuity on other regions. Then we refine the disparity
map iteratively by bilateral filtering-based completion and edge
feature refinement. Experimental results on the Middlebury
dataset and our own captured stereo sequences demonstrate
the effectiveness of the proposed approach.

I. INTRODUCTION

Three dimension range sensing is important for robotics
since it can help robots to navigate and even understand their
environments. A simple way to estimate depth information is
to use stereo cameras. The last two decades have witnessed
various research works, and significant progress has been
made on stereo matching. However, limited by the low-level
features these methods rely on, almost all prior methods have
difficulties in handling challenging scenarios such as regions
with strong occlusion, reflection or insufficient texture.

In the past few years, deep learning and convolutional
neural networks (CNNs) have achieved great successes on
many computer vision problems. Various tasks, like image
classification and object detection, now perform significantly
better than ever. Very recently, Zbontar and LeCun [39]
proposed to use a CNN to compute the stereo matching
cost and get very decent results. However, this method still
does not address the inherent difficulties in stereo matching
mentioned above.

In this paper, we propose to use the predicted surface
normal by CNN to improve stereo matching. Single image-
based surface normal or depth prediction work [40], [34],
[8], [7], [1] have achieved great success in recent years.
These methods do not involve matching and thus do not
have the limitations for handling regions with strong oc-
clusion, reflection or insufficient textures. However, since
the predicted surface normals are not always reliable and
have ambiguity in determining the depth, we propose to use
the reliable disparity estimate from stereo matching and use
the fused edge information to convert the surface normal
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map to the disparity map by solving a linear system. To
achieve this goal, we propose a novel plane-based disparity
confidence measurement to select reliable disparity pixels.
We also provide an edge fusion algorithm locating edges
that indicate potential disparity discontinuities. Finally, we
refine the disparity map iteratively by bilateral filtering-based
completion and edge feature refinement. We evaluate our
method on both indoor stereo data captured by ourselves
and the public Middlebury stereo dataset [29], [30], [18],
[28]. The experimental results demonstrate that the proposed
approach is able to address the matching ambiguities in
textureless and occluded regions, and improve the stereo
matching result.

II. RELATED WORK

Binocular stereo matching can be used to recover dis-
parity/depth maps from stereo image pairs, which are cat-
egorized into local and global methods [29]. Disparity is
predicted by measuring the dissimilarity of pixels or local
patches and choosing the pairs with least local or global
matching cost. Local methods compute the disparity that
only counts the matching with local aggregation. These algo-
rithms [21], [19], [13], [38] generally compute the disparity
for each pixel independently, so the recovered disparity maps
may easily have artifacts around textureless and occluded
regions. Global methods generally formulate stereo match-
ing as an optimization problem by involving smoothness
constraints for neighboring pixels. Graph Cuts [4] or Belief
Propagation [10] are usually used to minimize the energy
function. Semi-Global Matching (SGM) [17] both consid-
ers pixelwise matching and global smoothness constraints.
Since SGM is much more efficient than other methods
with similar accuracy, it is widely used for real-time stereo
matching [9][12].

Many methods have been proposed to reduce the matching
ambiguity for textureless regions. One representative type of
these work are segmentation-based methods, which generally
use an image segmentation method to cluster the neighboring
pixels with similar colors into the same segment, and then fit
the 3D surface for each segment as a 3D plane [23], [33], a B-
spline or a quadratic surface [3], [41]. Another representative
type is to use color-aware filtering techniques in a larger
window [36] or even the whole image [37] to adaptively
aggregate the matching cost based on color similarity.

Since outliers are inevitable in practice, several methods
have been proposed to compute the confidence for the esti-
mated disparity map. An evaluation of confidence measures
of disparity can be found in [20]. The confidence prediction
is often followed by a Markov Random Field (MRF) or



Conditional Random Field (CRF) framework, where dis-
parity smoothness constraints only exist between neighbor
pixels, and used as soft constraints in a global optimization
framework to reduce the disparity ambiguity [32].

Recently, learning methods also have been used to assist
depth estimation in stereo. Zbontar and LeCun [39] pro-
posed a new method to compute matching cost in stereo
with a CNN. Following the classical depth estimation way
by comparing small image patches, they proposed a new
measurement of patch similarity via training a CNN. There
are also several methods proposed to improve the stereo
matching results with the information provided by deep
learning methods. For instance, Hane et al. [15] proposed
to use the response of a trained surface normal classifier
as a regularization term when adding it into the energy
minimization of a global disparity labeling problem. Guney
et al. [14] proposed to make use of semantic segmentation
and object knowledge, especially regular structures of cars,
to constrain the disparity and attain good performance for
textureless, saturated or semitransparent surfaces.

The last three years have witnessed significant progress
in surface normal prediction from a single image. Zeisl et
al. [40] proposed to build a regressor to train a surface normal
classifier while combining both context-based and segment-
based features. Their method is applicable to both indoor
and outdoor environments. Wang et al. [34] train a CNN
built upon the understanding and constraints of 3D scenes
and use meaningful intermediate representations to achieve
good performance. Eigen et al. [8] proposed to estimate
surface normal, depth and semantic segmentation by a single
multiscale convolutional network architecture. Most recently,
Bansal et al. [1] proposed a novel surface normal estimation
method using a new skip-network architecture. This method
achieves state-of-the-art accuracy and can faithfully recover
fine surface details for indoor images. We use this method to
predict the surface normal in our stereo matching framework.

III. APPROACH OVERVIEW

Figure 1 gives an overview of our approach. Given a stereo
pair, we first use the stereo matching method of [39] or [17]
to estimate the disparity map D for the left image. Given
disparity d, the depth can be computed by z = bf/d (b is
the stereo baseline and f is the focal length.) For simplicity,
the terms “depth” and “disparity” are used interchangeably
in our paper. Then we compute the disparity confidence by
taking into account Left Right Difference (LRD) [20] and
the disparity distance to the fitted local planes. We also use
the normal prediction method proposed in [1] to recover the
normal maps for the left image. After recovering the normal
maps, we first use mean shift segmentation method [5] to
segment the whole image into a set of segments. Then we
combine edge features from the left image, its disparity
map and segmentation to maintain effective and continuous
edge features on discontinuous regions. Finally, we convert
the normal to disparity with reliable disparities from stereo
matching and fused edge information by solving a linear
system.
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Fig. 1. Framework overview.

IV. DISPARITY CONFIDENCE GENERATION AND EDGE
FUSION

Given a surface normal map, we can use the integral
method as in [35], [26] to convert it to a depth map.
However, there will be depth ambiguity if there are no depth
priors provided. Therefore, we propose to use the recovered
disparity information from stereo matching to help convert
surface normal to disparity. For robust conversion, we need
to measure the disparity confidence to exclude outliers first.

A. Depth Confidence

We employ LRD measurement proposed in [20] to esti-
mate the initial depth confidence. If the difference between
the smallest and the second smallest matching cost is large,
the confidence measured by LRD should be large. Mean-
while, the consistency of least matching costs is checked
across the left and right images implicitly to impose the
assumption that a reliable depth confidence should have
consistent matching cost. The matching cost maps of left
and right images are denoted as cl and cr, respectively.
For the pixel x = (x, y)> in the left image, its first and
second smallest matching costs are defined as cl1(x, y) and
cl2(x, y), respectively. Then we define the LRD-based depth
confidence as

CLRD(x, y) = min (1, log10(
cl2(x, y)− cl1(x, y)

|cl1 −mindr cr(x− d1, y, dr)|
+ 1)).

(1)
We select the pixels that satisfy CLRD(x, y) > τ1 as
initial reliable pixels, as illustrated in Figure 2(c). τ1 is an
adaptive threshold, which is set to 1 as default, and will be



(a) Left image (b) Original disparity (c) Disparity selected by CLRD (d) Disparity selected by CP

Fig. 2. Disparity confidence measurements.

automatically increased or decreased to make the ratio of
reliable pixels to fall within the range of [40%, 60%]. This
filtering can effectively select sufficient accurate disparity
pixels and remove most outliers. Then we propose to further
remove outliers by plane fitting.

By assuming the estimated disparities are locally smooth,
it is reasonable to compute its deviation with its local
surface to measure the disparity error. We use the mean
shift segmentation method [5] to segment the image. For
more robust segmentation, we first make a preprocessing to
adjust the image brightness. The image intensity is firstly
normalized to [0, 1], and the median intensity of all pixels is
denoted as Im. We lighten the whole image if Im < 0.5 and
darken the whole image if Im > 0.5. The image intensity is
scaled as

I ′ =

{
I1+(Im−0.5) if Im < 0.5,
I1+3(Im−0.5) if Im > 0.5.

(2)

The above preprocessing can make image brightness more
balence for better segmentation.

For each segment, we use the RANSAC algorithm [11]
to perform plane fitting. However, segmentation may be im-
perfect, and a segment may contain multiple objects. So we
first use the RANSAC method [11] to fit a plane with most
inliers. Then we remove the inliers from the segment and
use the remaining pixels to fit another best plane with most
inliers. The above procedure is repeated for several times. So
for each segment Si, we may obtain multiple 3D planes. Let
vector Pj denote the jth plane of this segmentation, where
{Pj = (aj , bj , cj , dj)

>|j = 1, 2, 3, ...}. The related plane
equation is ajx+ bjy + cjz + dj = 0.

For each segment S where at least one plane is success-
fully fitted, we can measure the disparity distance of inside
pixel (x, y) and its original disparity z obtained by any stereo
matching algorithm to all fitted planes and select the lowest
distance ε(x, y) by

ε(x, y) = argmin
(ai,bi,ci,di)

|(aix+ biy + ciz + di)|√
ai2 + bi

2 + ci2
. (3)

There is a negative correlation between ε(x, y) and its
confidence. If the disparity fits some plane well, ε(x, y) is a
small value, and its confidence will be high.

Specifically, if pixel (x, y) is considered as an outlier in
all the planes fitted, then it is considered as noise, and ε(x, y)
is assigned with INT MAX.

If a segment does not have sufficient reliable disparities
to fit a 3D plane, we compute its bounding box, and find

other segmentation regions within the bounding box to help
address the confidences of this segmentation. After collecting
all the pixels (x, y) in the bounding box with ε(x, y) less than
INT MAX, we select the minimal and maximal disparities
(dmin, dmax) from them to compute the residual error. ε(x, y)
here is defined as

ε(x, y) =

 α|D(x, y)− dmin|+ ρ if D(x, y) < dmin,
α|D(x, y)− dmax|+ ρ if D(x, y) > dmax,
ρ otherwise.

(4)
where D(x, y) is the disparity of pixel (x, y), α is a weight
and set to 2 in our experiment. As the bounding box strategy
above only provides rough borderlines of disparity, we add
a small value ρ (set to 1 in our experiments) to ε(x, y) to
decrease the confidence of this kind of segmentation. Then,
our segment based confidence is defined as

CP (x, y) = exp(−ε(x, y)). (5)

The filtered disparity map by Cp is shown in Figure 2(d).
By combining the LRD-based and fitting-based confi-

dences, we can select the reliable disparities by satisfying
CLRD(x, y) > τ1 and CP (x, y) > τ2, where τ1 and τ2 are
two thresholds. Either a bigger τ1 or τ2 would cause a sparser
result. Both thresholds should be determined according to
the performance of stereo matching algorithm that provide
original disparity map and the character of the scenario.
A high τ1 is suitable for a noisy disparity map to prevent
outliers, while a low τ1 is better for a good disparity result
since it could output denser reliable pixels. And a high τ2
is suitable for a scene with a lot of planes, while a low τ2
could tolerate more curve surfaces.

B. Edge Extraction and Fusion

The normal constraints should not be imposed on dis-
continuous boundaries. However, the extracted edges do not
always reflect the discontinuous boundaries. We propose
to fuse the edge information generated by three different
methods (i.e. Canny image edges, segment boundaries and
disparity edges). An edge denoising process is applied and
edge tracking is used to enhance edge connectivity.

First, we use Canny edge detector to extract edges from
RGB images, denoted as Ei. With the obtained segments by
mean shift, we also can directly get the edges according to
the segment boundaries, denoted as Es. The disparity edge
map Ed is computed by applying the Sobel operator to the



(a) Left image (b) Canny edge map Ei (c) Segment edge map Es (d) Sobel edge map Ed

(e) Dilated edge region ED (f) Combined edge map Ec (g) Original reliable edge set Sf (h) Final fused edge map Ef

Fig. 3. Edge fusion.

estimated disparity map (we use combination of Sobel and
Laplace operators in iterative process of depth refinement).

Second, we only maintain edges which probably imply
true disparity discontinuity. The method of separating effec-
tive edges from those in smooth regions is inspired by [22].
We dilate Ed to get ED, which covers all potential depth
discontinuity regions. Then we fuse these edge maps as

Ec = Ei ∩ ED + Es ∩ ED + Ed. (6)

If a pixel is marked as edge pixel in two or more edge maps
above, we consider it as a reliable edge pixel. Let Sf denote
the set of reliable edges. All pixels with Ec > 1 are added
to the set.

Then an edge tracking is applied to connect reliable edges.
We compute gradient direction of every potential edge pixel
p(x, y) with Ec(x, y) > 0. Then for every reliable pixel
(x1, y1) in Sf , it is assigned with a reliability level r. In the
beginning, let r(x, y) = 0 for all the pixels in Sf . Also, set ~n
to be a unit vector vertical to its gradient direction. We then
search potential edge pixels within a neighborhood search
region. Pixel (x2, y2) will be added to Sf , if Ef (x2, y2) > 0
and

|(x2 − x1, y2 − y1)× ~n|
|(x2 − x1, y2 − y1)|

< sin
π

6
. (7)

The reliability level r(x2, y2) = r(x1, y1) + 1, which means
(x2, y2) is less reliable than (x1, y1).

The search stops when there are no pixels in Sf left with
reliability level less than 5 in our experiments. A bigger
threshold will result in more redundant edges while a smaller
value may miss important discontinuity information. The
neighborhood size is set to 7×7 in our experiments. Then
edge map Ef is extracted from Sf .

V. DISPARITY CONVERSION FROM SURFACE NORMAL

We would like to convert the surface normal to disparity.
The 3D point cloud extracted from the disparity map and
camera intrinsics is not with homogeneous distribution on
x and y, i.e. any depth refinement in the real space would
cause changes on all three coordinates. For convenience, we

propose to transform normal space to disparity space. The
axes of disparity space are x- and y-coordinate of the image
pixel and its disparity, respectively.

The transformation of points from real world coordinate
(X,Y, Z) to disparity space coordinate (x, y, z) is x

y
z

 =

 f X
Z + cx

f Y
Z + cy
bf
Z

 , (8)

where f is the focal length, b is the baseline, and (cx, cy) is
the principal point. The related normal transformation ([31],
[15]) is given by nx

ny
nz

 =


Z
f 0 0

0 Z
f 0

−XZ
bf −Y Z

bf −Z2

bf


 nX
nY
nZ

 . (9)

Without loss of generality, each grid in disparity
space (i.e. four neighboring pixels in the image) contains
four points {pi = [xi, yi, zi]

>|i = 1, 2, 3, 4}. Here, (xi, yi)
are the fixed pixel coordinates, and only zi needs to be
determined. Their corresponding normals are denoted as
{ni = [nxi , nyi , nzi ]

>|i = 1, 2, 3, 4.}. The normal of ni

should be orthogonal to the vector li,j = pj − pi. So we
have the following four equations:

n>1 l1,2 = 0,

n>1 l1,3 = 0,

n>2 l2,4 = 0,

n>4 l3,4 = 0.

And for normal [nxi , nyi , nzi ]
T and horizontal vector

[1, 0, zi+1 − zi]T , we have

zi+1 − zi =
nxi

nzi
. (10)

Similarly, for normal and vertical vector [0, 1, zi+w − zi]T ,
where w is image width, we have

zi+w − zi =
nyi

nzi
. (11)
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For each grid, we have the above equations. So for a whole
image with M pixels and homogeneous normal constraints,
we can construct a linear system Az = B, where A is a
2M ×M sparse matrix, z is a variable vector containing the
disparity variables {zi|i = 1 . . .M} and B is a vector.

Imposing normal constraints will make the generated
disparity more smooth but may cause problems for dis-
continuous boundaries. We use the edge information from
Section IV-B to delete normal constraints on edges.
Ef is dilated by 1 pixel so as to ensure disconnection of

pixels on different sides of the edge. All equations related
to normals of pixels on the edge region, where Ef > 0, are
removed. Relative elements in A and B are also set to 0.

We also notice that the above linear system has infinite
solutions. Sparse points with reliable disparity need to be
applied as boundary conditions to constrain the solution. We
use the disparity confidence introduced in Section IV-A to
select a set of pixels with reliable disparities as additional
soft constraints, and denote their weights as their disparity
confidences CP . Weights of unreliable disparities are all set
to 0. So the depth prior constraint can be defined as

Eobs = ||W(z− z0)||22, (12)

where z denotes the variable vector of disparity, z0 denotes
the vector of pre-computed disparity, and W is a diagonal
matrix indicating weights, which is defined as

W = diag(w1, w2, . . . , wM ), (13)

wi =

 CP (xi, yi) if CLRD(xi, yi) > τ1
and CP (xi, yi) > τ2,

0 otherwise.
(14)

Here xi and yi are the x, y coordinates of pixel i, respec-
tively.

We propose a simple noise-proof strategy to guarantee
zero weight of noisy disparity at the far left of image
without abandoning too many valid disparity pixels. We
consider disparity of the leftmost m columns, where m is
the maximum disparity allowed. These disparities are sorted
by rows. 95th percentile of each row is picked up as a bound.
Pixels on the left of bound are considered invalid, and their
weights are set to 0.

Finally, with a least squares method, we optimize the
following energy function to convert the normal map to the
disparity map

E(z) = λ||Az−B||22 + ||W(z− z0)||22, (15)

where λ is a weight and generally set to 1.0.

A. Iterative Disparity Refinement

Since sometimes edge fusion leads to closed regions which
may not have reliable disparities, the depth conversion for
these areas will fail, resulting in a few holes, as shown in
Figure 4(b). Also, edge pixels could be assigned with invalid
disparities due to the lack of normal and disparity constraints.
We apply a bilateral filter to complete the disparities of the
missing pixels.

(a) Left image (b) First iteration (c) Final result

Fig. 4. Iterative disparity refinement.

After disparity completion, we apply another reliable
disparity selection for the next iteration. Very sparse disparity
constraints may cause slight differences between these dis-
parities and ground truth as the normal we used is roughly
estimated and the conversion from normal to depth brings
deviation if only normal constraints exist in some areas.
Therefore, we would like to add more disparity constraints
in each iteration to achieve more accurate results.

Let D0 denote the pre-computed disparity map, Dk denote
the disparity map after kth iteration. The element of weight
matrix W in Eobs of k + 1th iteration is

wi =

 CP (xi, yi) if CP (xi, yi) > τ2
and |D0(x, y)−Dk(x, y)| < φk,

0 otherwise.
(16)

Here φk is a threshold that initial value is set to 0.02 times
of the maximum disparity allowed, and then decreased by
0.5 in each interation until it reaches 1.

As we have attained disparity map with less obvious noise,
edge features with less noise could be extracted from the
disparity map. To prevent redundant edge on planar region
with large disparity gradient, after the first iteration, we use a
combination of both disparity map edges from gradient and
Laplace operators as well as image edges.

Then an edge tracking similar with the method in IV-B is
performed, where all edge pixels that come from the Laplace
operation are regarded as reliable edges at first, then gradient
and image edges within the search region are added into
the final edge set. The iterative process terminates when all
pixels are assigned with valid disparities and no more new
disparity constraints are added. Figure 4(c) shows a final
converted disparity map.

VI. EXPRIMENTAL RESULTS

To evaluate the performance of the proposed method, we
have conducted experiments on both real captured indoor
stereo pairs/sequences and Middlebury stereo datasets. We
use MC-CNN method [39] or SGM [16] to compute match-
ing cost and generate the original disparity maps. For normal
prediction, we request the authors of [1] to help estimating
the surface normal maps.

A. Evaluation of Accurate Architecture
We make comparisons with MC-CNN methods and

other state-of-the-art methods on Middlebury stereo bench-
mark1 [29]. Table I shows the error statistics for both Mid-
dlebury training dataset (denoted as TR) and test dataset (de-
noted as TE). We compare the percentage of bad pixels with

1http://vision.middlebury.edu/stereo/eval3/



(a) Left image (b) Predicted normal map

(c) MC-CNN-arct (d) Ours

Fig. 5. Vintge example. (a) Left image. (b) The predicted surface normal
map of (a). (c) The estimated disparity map by MC-CNN-arct. (d) The
refined disparity map by our method.

TABLE I
COMPARISON WITH OTHER METHODS ON THE MIDDLEBURY STEREO

BENCHMARK

Average Error
bad 4.0 (%) bad 2.0 (%) bad 1.0 (%)
TR TE TR TE TR TE

Ours 12.0 11.4 18.0 16.6 27.6 26.3
MC-CNN+RBS[2] 14.5 13.9 19.3 18.1 28.0 27.5
MC-CNN-acrt[39] 15.7 15.8 19.7 19.1 27.7 27.3
MC-CNN-fst[39] 17.7 17.7 21.5 20.6 29.8 28.4

MDP[25] 14.6 15.6 20.1 20.2 36.3 37.4
MeshStereo[42] 15.2 14.5 20.9 19.8 32.1 32.9

TMAP[27] 16.5 18.2 22.7 24.6 35.7 38.6
IDR[24] 17.3 18.7 22.8 25.0 33.0 36.4

disparity error greater than 4.0, 2.0 and 1.0 pixels, respec-
tively. Due to the limited memory size of graphics card,
we use half resolution images to perform stereo matching
and surface normal prediction. Before error computation, the
half resolution images are upsampled to the full resolution
images first. We firstly use MC-CNN-acrt to generate the
initial disparity maps. As can be seen, our method achieves
the lowest average error compared to the original MC-CNN
based methods and other methods. As shown in Fig. 5(c), the
recovered disparity map by MC-CNN [39] have obvious ar-
tifacts in occluded and textureless regions. With our method,
the outliers are significantly reduced, as shown in Fig. 5(d).
Fig. 6 shows another indoor example captured by ourselves.
More examples can be found in our supplementary video.

Although our approach is mainly designed based on MC-
CNN, it also can benefit other stereo matching methods.
We further use SGM to generate original disparity maps,
and evaluate our disparity improvement. We compare the
original SGM results and ours on Middlebury stereo bench-
mark (training dataset). As SGM disparity result contains
many holes and invalid pixels, we also compare our results
with the disparity maps obtained by further applying median
filter and bilateral filter to the original SGM disparity map.
Table II shows the ratio of bad pixels in our result to those

(a) (b) (c)

(d) (e)

Fig. 6. An indoor example. (a) Left image. (b) Right image. (c) The
predicted surface normal map of (a). (d) The estimated disparity map by
MC-CNN-acrt. (e) The refined disparity map by our method.

TABLE II
RATIO OF BAD PIXELS

Ours / SGM Ours / filtered SGM
bad 4.0 bad 2.0 bad 1.0 bad 4.0 bad 2.0 bad 1.0

Adiron 0.61 0.78 0.91 0.79 0.89 0.97
ArtL 0.73 0.83 0.96 0.89 0.95 0.99

Jadepl 0.73 0.84 0.94 0.81 0.90 0.97
Motor 0.72 0.85 0.94 0.86 0.92 0.97

MotorE 0.62 0.79 0.92 0.86 0.95 1.01
Piano 0.82 0.90 0.96 0.91 0.94 0.97

PianoL 0.84 0.90 0.95 0.98 0.98 1.00
Pipes 0.87 0.95 1.01 0.94 0.97 1.00

Playrm 0.78 0.91 0.98 0.94 0.98 1.00
Playt 0.75 0.87 0.94 0.89 0.94 0.97

PlaytP 0.65 0.80 0.91 0.77 0.87 0.93
Recyc 0.60 0.79 0.93 0.81 0.91 0.98
Shelvs 0.86 0.93 0.97 0.96 0.98 0.99
Teddy 0.69 0.86 1.01 0.83 0.93 0.98
Vintge 0.79 0.91 0.96 0.94 0.99 0.99

Avg 0.74 0.86 0.95 0.88 0.94 0.98

in SGM and filtered SGM. Although the generated disaprity
map by SGM has obvious artifacts around discontinuous
boundaries which influence the performance of our edge
fusion, our approach still produces better results than SGM
and its filtered version in most cases.

B. Evaluation of Fast Architecture

MC-CNN generally takes about 20 seconds to compute a
stereo pair with resolution 694× 554, and SGM takes about
0.34 second. Normal estimation is around 0.2 second with
Nvidia Titan X graphics card for any input images resized
to 224×224×3. Based on the estimated initial disparity map
and surface normal map, our method needs to further take
about 99 seconds to process a stereo image with 694× 554
resolution, which cannot be applied to real-time applications.
In order to satisfy real-time applications for robotics, we
propose to simplify our approach with parallel computation.

For our fast architecture, we use SGM to compute ini-
tial disparity map and use Left Right Consistency (LRC)
proposed in [6] to estimate disparity confidence. The related
elements of weight matrix W in Eobs are all set to 1 if these
pixels have small LRC error and their disparity variances are



TABLE III
ERROR STATISTICS COMPARISON BETWEEN OUR METHOD WITH FAST

ARCHITECTURE (1 AND 2 ITERATIONS RESPECTIVELY) AND FILTED

SGM.

Bad pixel 1.0 (%) Time (s)
filtSGM Ours filtSGM Ours

Adiron 65 52 / 49 30.9 8.4 / 15.0
ArtL 57 65 / 56 8.2 1.8 / 3.3

Jadepl 75 75 / 67 29.8 8.6 / 13.7
Motor 67 43 / 39 32.3 8.6 / 15.5

MotorE 59 55 / 47 32.3 7.9 / 14.4
Piano 71 52 / 48 31.2 7.7 / 14.5

PianoL 80 67 / 63 29.5 7.1 / 13.3
Pipes 58 51 / 40 31.1 7.7 / 13.7

Playrm 69 64 / 59 28.9 7.4 / 13.4
Playt 82 72 / 65 29.3 6.7 / 12.0

PlaytP 82 53 / 47 41.5 6.7 / 12.5
Recyc 69 47 / 41 31.1 8.2 / 15.1
Shelvs 75 65 / 64 32.9 8.6 / 15.7
Teddy 37 40 / 35 14.8 4.2 / 7.3
Vintge 88 65 / 63 33.9 9.9 / 16.3

Avg 69 58 / 52 29.2 7.3 / 13.0

small compared to those in the last iteration. The edge is
formed by intersection of canny edge of image and dilated
sobel edge of disparity map only. As SGM often results
in fat edges on discontinuous region, we tend to abandon
disparity constraints of pixels near edges in this case to
reduce artifacts. The limited quality of disparity map from
SGM may result in more redundant edges and closed regions.
To reduce the proportion of failed pixels in solving the linear
equations, we set a small weight (0.0001 in our experiments)
to the depth constraints of all unreliable pixels except those
invalid ones on the left boundary. We apply a median filter
instead of bilateral filter to complete the disparities of the
missing pixels. Compared to the original disparity map, our
refined disparity map is more complete without obvious
holes. The final disparity map is obtained by solving (15)
with 1 or 2 iterations (λ is set to 0.1).

We test our method with fast architecture on both Middle-
bury stereo dataset and indoor stereo sequences. Table III
shows comparisons on bad pixel percentage and running
time of our fast version (1 and 2 iterations respectively
with Matlab code) and filtered SGM. As can be seen, our
simplified version not only produces better results than those
by applying median filter and bilateral filter to the original
SGM disparity map, but also runs much faster. Even with
only one iteration conversion, our method can get better
result than that of filtered SGM. More iterations can improve
the result but computation time increases. Figure 7 shows
the results of some selected frames from a video sequence
captured by stereo camera with resolution of 640×480. The
produced disparity maps by our method with fast architecture
are obviously better than those by filtered SGM. We notice
that our fast architecture outperforms our accurate version in
some cases here. Due to the fat disparity edges in SGM men-
tioned above, the accurate architecture sometimes introduces
blurring artifacts around discontinuous boundaries.

The normal prediction runs on a PC with Nvidia Titan X
graphics card and takes about 0.2s per frame. The running

(a) (b)

(c) (d)

(e) (f)

Fig. 7. The disparity result of an indoor stereo sequence. (a-b) The left
images of selected frames. (c-d) The estimated disparity maps by filtered
SGM. (e-f) The estimated disparity maps by our method.

time of other components with fast architecture is about
1.4 seconds per stereo pair (640 × 480 resolution) with
Matlab code on a 4 core i5-4590 3.30GHz CPU without GPU
acceleration. We also implement C++ code and accelerate
the solving of the sparse linear system by conjugate gradient
algorithm with GPU implementation. We found that using
conjugate gradient algorithm with 200 iterations is generally
enough, which takes 0.23s on a PC with GTX 960 display
card. Thus, with GPU acceleration of linear equation solver,
the whole process of our fast version takes about 0.75s per
frame with resolution of 640×480, which is acceptable for
some real-time applications.

VII. CONCLUSIONS

In this paper, we propose a robust stereo matching method
with surface normal prediction, which can significantly
improve the disparity estimation result especially in the
occluded and textureless regions. In order to achieve this
goal, we first use a single image based surface normal
prediction method to recover the normal map of left image.
Simultaneously, we perform stereo matching and measure
the disparity confidence to select the reliable disparities.
Using the estimated disparity map with confidence and the
fused edge information from different cues, we faithfully
convert the surface normal to disparity by solving a linear
system. Finally, we complete the missing holes by iteratively
applying bilateral-filtering based completion and edge feature



refinement. Our method with fast architecture can achieve
over 1 fps for a stereo sequence with resolution of 640×480
and still obviously improve the disparity results compared
to SGM. The experimental results of both real captured
indoor stereo pairs/sequences and Middlebury stereo dataset
demonstrate the effectiveness of the proposed approach.
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