
Robust Monocular SLAM in Dynamic Environments
Wei Tan Haomin Liu Zilong Dong Guofeng Zhang∗ Hujun Bao∗

State Key Lab of CAD&CG, Zhejiang University

ABSTRACT

We present a novel real-time monocular SLAM system which can
robustly work in dynamic environments. Different to the traditional
methods, our system allows parts of the scene to be dynamic or
the whole scene to gradually change. The key contribution is that
we propose a novel online keyframe representation and updating
method to adaptively model the dynamic environments, where the
appearance or structure changes can be effectively detected and
handled. We reliably detect the changed features by projecting
them from the keyframes to current frame for appearance and struc-
ture comparison. The appearance change due to occlusions also
can be reliably detected and handled. The keyframes with large
changed areas will be replaced by newly selected frames. In ad-
dition, we propose a novel prior-based adaptive RANSAC algo-
rithm (PARSAC) to efficiently remove outliers even when the inlier
ratio is rather low, so that the camera pose can be reliably estimated
even in very challenging situations. Experimental results demon-
strate that the proposed system can robustly work in dynamic envi-
ronments and outperforms the state-of-the-art SLAM systems (e.g.
PTAM).

Index Terms: I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Tracking; H.5.1 [Information Interfaces
and Presentation]: Multimedia Information Systems—Artificial,
augmented, and virtual realities

1 INTRODUCTION

Camera tracking is the key component of robot navigation and aug-
mented reality applications, which provides the necessary camera
parameters to guild the route, or set the virtual cameras of the 3D
environment. Many of the previous works require the prior knowl-
edge of the target scene, such as point cloud [9], CAD model [30],
or artificial markers [12], etc. These model-based camera track-
ing techniques generally require accurate 3D models [19], which
greatly limits their usage in practice since the complex natural
scenes are usually difficult to reconstruct.

In recent years, Davison et al. [8] propose a real-time cam-
era tracking system called monoSLAM (monocular Simultaneously
Localization and Mapping), which can recover the 3D structure of
the unprepared scenes at the same time. Since monoSLAM uses
an extended Kalman filter to solve the 3D points and camera poses
simultaneously, it can be considered as a filter-based SLAM. Klein
and Murray [17] propose to solve the SLAM problem with a multi-
threading framework based on a structure from motion (SfM) tech-
nique. They assign the computation burdens of camera tracking
and scene mapping onto two working threads, and achieve a real-
time SfM system (called PTAM) in a parallel framework. Stras-
dat et al. [36] further compare SfM-based SLAM with filter-based
SLAM, and conclude that the former outperforms both in preci-
sion and scalability. Since both monoSLAM and PTAM are based
on 3D sparse features of the scene, more recent works, such as
DTAM [25], propose to track the camera motion by direct per-pixel

∗e-mails: {zhangguofeng,bao}@cad.zju.edu.cn

Figure 1: A challenging example. Top: two selected source frames.
Middle: the SLAM result (with augmented reality) of our system. Bot-
tom: the SLAM result of PTAM [17, 18].

alignment between the color image and inverse depth image, which
is proved more resilient to degraded images and rapid motion than
the sparse features based methods.

However, all above SLAM systems have their own shortcom-
ings. The most significant problem is that the target scene must
keep stationary during processing, since they did not consider up-
dating the 3D structure corresponding to dynamic objects including
illumination changes, otherwise the recovered 3D models will be-
come obsolete rapidly, and the system has to start from scratch.
Most recently, 3D depth cameras (e.g. Microsoft Kinect) are be-
coming more and more popular in camera tracking. The KinectFu-
sion system [24] fuses the captured depth maps into a scene model
maintained with a volumetric, truncated signed distance function
representation, and uses multi-scale iterative closest point align-
ment between the predicted surface and current captured depth map
to track camera motion. It is notable that even when the target
scenes are gradually changing during the process, the system can
adjust the 3D structure accordingly by the depth fusion, and the
tracking process will continue with the dynamic structure.

The KinectFusion system heavily relies on the Kinect’s 3D depth
camera, whilst it is still an open problem by merely using normal
color cameras, despite many existing works on localization in dy-
namic environments [14, 1, 28, 16, 43]. In this paper, we propose a
novel robust invariant feature based SLAM system which can deal
with the challenging cases where the scene contains large moving

objects or gradually changes. Our framework is similar with Pirker
et al. [28]’s CD SLAM, which can achieve tracking and mapping in
a dynamic world, but they mainly use the visibility information of
reference 3D features to filter out potential ambiguities in the 2D-
3D matching process, which is based on the HoC [27] descriptor.
On the contrary, we propose to discard the obsolete features and
keyframes detected by comparing feature appearance and structure,
and our system can robustly handle occlusions.

Our framework is similar to PTAM, but we employ the invariant
features (i.e. SIFT [20]) instead of FAST [32] to perform global
matching, which is more robust to fast movement and camera relo-
calization, and can be easily extended to handle a larger scale scene.
Furthermore, we contribute a novel prior-based adaptive RANSAC
algorithm with online 3D points and keyframe updating scheme so
that the proposed system can adaptively model the dynamic en-
vironments which may have significant illumination or structure
changes. Especially, the occlusions can be reliably detected and
handled. Figure 1 shows a challenging example, where the scene is
changing gradually with significant illumination variation. Our sys-
tem can robustly recover the camera motion, but PTAM fails. Due
to expensive SIFT feature extraction and matching, our system cur-
rently requires GPU acceleration with multi-thread programming
to achieve real-time performance (25fps) in a desktop PC with a
4-core CPU.

2 RELATED WORK

There have been a great amount of literature on camera pose estima-
tion and 3D reconstruction. We will briefly review the most relevant
works on SLAM systems, along with some important extensions to
the original version.

2.1 Filter-based SLAM
MonoSLAM [8] is the pioneering work on real-time camera track-
ing while mapping the unprepared scenes. Their system is initial-
ized by detecting an artificial marker with known size in the scene.
The positions of all landmarks and the camera pose are intimately
linked in a probabilistic filtering framework of joint states based
on extended Kalman filter, and updated together with every input
frame. MonoSLAM tracks the features in an active search manner
with correlating templates under a predicted motion model, which
is not invariant to viewing direction and easily causes ambiguities
in cluttered environments, so a simplified SIFT algorithm [4] is then
employed to alleviate this problem. Despite the high efficiency of
EKF, the computation complexity of monoSLAM is O(N2), where
N is the number of landmarks. So the number of landmarks is
generally limited to be a few hundreds, and the scalability is re-
stricted to a small space if without using a delicate feature selec-
tion method [33]. Eade and Drummond [10] present a monocular
SLAM system that employs a FastSLAM-type [21] particle filter
and top-down search to allow real-time performance while map-
ping hundreds of landmarks.

2.2 SfM-based SLAM
The structure from motion (SfM) technique provides a fundamen-
tal framework for offline 3D structure reconstruction from photo
collections [35] or video sequences [41]. The core algorithm, i.e.
bundle adjustment (BA), is generally considered too computation-
ally expensive to be invoked in real-time application. In recent
years, lots of optimization methods [11, 40] have been proposed
to accelerate BA, where local bundle adjustment involving tens of
keyframes and hundreds of 3D points has been proved to be solved
at interactive rate [22]. With online BA, Klein and Murray [17] pro-
pose a parallel tracking and mapping (PTAM) framework, which is
actually a real-time SfM system. PTAM splits mapping and track-
ing into two separate tasks, running in two parallel threads. The
former deals with adding new 3D points and keyframes into the 3D

map, and optimizing the local structures with local BA. The track-
ing thread will match the 2D-3D features similar to monoSLAM,
and estimate the camera pose for each input frame in real-time. To
improve the agility of PTAM, they also add edge features to the map
to enhance the tracking under fast motion, and an inter-frame rota-
tion estimator to aid tracking under rapid panning [18]. They fur-
ther propose a relocalization method using the fuzzy representation
of the existing dense keyframes, which enables switching among
multiple scenes [3]. Our work also belongs to SfM-based SLAM
and achieves the above objectives in a more unified way thanks to
the use of SIFT features with keyframe representation.

2.3 SLAM in Dynamic Environments

To deal with a dynamic scene, it is necessary to identify the dy-
namic contents from the static parts. Hahnel et al. [14] use
Expectation-Maximization (EM) algorithm to update the proba-
bilistic estimate about which measurement (obtained with a laser-
range scanner) might correspond to a static/dynamic object. Bibby
and Reid [1]’s SLAMIDE also estimates the state of 3D features
(stationary or dynamic) with a generalised EM algorithm. They use
reversible model selection to include dynamic objects into SLAM,
so that the system can include the dynamic objects in a single
framework. If the scene changes frequently as in our examples, the
resulting map may contain many unnecessary 3D features, which is
obviously quite a waste of memory and computation, and also may
suffer from robustness problems. Bleser et al. [2] propose a CAD
model based SLAM system similar to monoSLAM [8], which will
delete features from the map if they have not been tracked in more
than 50 percent of the frames where they should be visible (pre-
dicted by camera poses). In their system, the 3D features are trian-
gulated separately, so the overall structure is less precise than SfM-
based SLAM, such as PTAM. Under the framework of PTAM, Shi-
mamura et al. [34]’s vSLAM estimates the flow vector throughout
all the outliers after camera pose estimation on the tracking thread,
and clusters the flow vectors by GMM. If the number of outliers in
a cluster exceeds a threshold, the outliers are considered to be upon
moving objects and eliminated from the map. Both systems can
keep the map tight and precise, but in case of large occlusions (e.g.
large moving objects appear), a standard RANSAC process may
easily fail to accurately recover the camera pose. In addition, vS-
LAM does not remove any keyframes, so the 3D features of new
objects covered by existing keyframes cannot be added. Our sys-
tem can address these two problems by updating keyframes with 3D
points and using a new prior-based adaptive RANSAC algorithm.

With multiple cameras, we can not only detect the dynamic con-
tents, but also recover the trajectories of moving objects. Imre et al.
[15] use a set of fixed calibrated cameras to recover the reference
3D structure of the scene, which will support the tracking of other
moving cameras. In Zou and Tan [43]’s CoSLAM system, all cam-
eras can move freely in the scene, where each camera works in-
dependently with intra-camera pose estimation, and both static and
dynamic points are used to obtain inter-camera pose estimation for
all cameras.

2.4 3D Change Detection

The scene change detection is very common in 2D scenarios,
such as background substraction, surveillance, medical diagnosis
etc. [31]. Since these approaches are sensitive to the changes of il-
lumination and viewpoints, they are not appropriate to be directly
used in 3D scenes. Pollard and Mundy [29] represent the target
3D space in a bounded volume partitioned into voxels, and each
voxel contains one surface probability and one color model. Then
the initial photo collections along with their solved camera poses
are fed to the system one by one to update the probabilities of the
voxels spanned by the ray from the camera center until the system
converges. As a result, to determine whether a pixel has changed is

Live Video
Feature Extraction

with SIFTGPU
Feature Matching

with KD-Tree
Camera Pose
Estimation

Augmented Reality
Applications

3D Feature
Points

Keyframes

Invalid 3D Points
Removal

Tracking Thread

Online Keyframe
Updating

New Keyframe
 Decision

Bundle
Adjustment

Update 3D map

Frame and camera pose

Mapping Threads

Figure 2: Our framework.

simply to compute the probability of seeing the pixel color from the
trained color models. Taneja et al. [37] argue that changes in image
appearance may not lead to changes in the geometry, and propose
a graph based method. They divide the old dense 3D models into
a set of voxels, which correspond to the graph nodes. For the bi-
nary term on edges, they observe that the neighboring voxels with
similar colors may change together. For the unary term on nodes,
the voxels are reprojected into all the visible input images, and the
pixel color difference between each pair of projections are com-
puted. The formulated Gibbs energy function is solved by Graph
Cuts algorithm. For robust real-time SLAM, our objective is to de-
tect the 3D points whose positions or appearances have changed,
which is similar to [37], however we only have a bunch of sparse
3D points and keyframes at hands, so the voxel based solutions are
not applicable in our situation.

3 FRAMEWORK

We first give an overview of our system, as illustrated in Figure 2.
We assume the intrinsic camera matrix K is known and constant.
Similar to PTAM [17, 18], we simultaneously estimate the scene
structure and camera motion (6 DOF) without any prior knowledge
of the scene. Different to PTAM, we extract SIFT features for each
online frame and match them between adjacent frames, where Sift-
GPU [39] is employed in our implementation. Similar to [9], we
use keyframes to represent the scene. The keyframe selection and
updating algorithm will be elaborated in Section 4.

We first initialize the structure and motion with two initially se-
lected keyframes by the method of [26]. The feature points on
the KD-Tree are defined as reference features, whose 3D positions
are already estimated. We use KD-Tree to accelerate the match-
ing process. The 3D map is built gradually along with the added
keyframes. If a new keyframe is added, more 3D features will
be reconstructed and added into the map, so the KD-Tree should
be updated accordingly. Because the construction of KD-Tree is
time consuming when the number of 3D points is large, our system
maintains two KD-Trees, where one is active for real-time match-
ing, and the other is waiting for updating when the number of new
3D features from the reconstruction thread exceeds the threshold.
For each online frame, we extract the SIFT features and match them
with the active KD-Tree. If the background KD-Tree has been up-
dated, it will become active, and the original active KD-Tree will
change to wait for update in the next round.

For the newly extracted SIFT features in the current frame, we
match them with the reference features by comparing their descrip-
tors. For feature point x, its nearest two descriptors in the KD-Tree
are denoted as N1(x) and N2(x), respectively. Similar to [20], we
define the matching confidence between x and N1(x) as

c =
||p(x)−p(N1(x))||

||p(x)−p(N2(x))||
,

C
t'

C
t

X

x x′

x
n

x′
n

Figure 3: Viewing direction illustration.

where p(x) denotes the descriptor of feature x. If c < 0.6, we as-
sume x and N1(x) are matched.

Since the 3D positions of the feature points in KD-Tree have
already been estimated, with a set of 2D-3D correspondences, we
can quickly estimate the camera pose (i.e. R and T) by minimizing

min
R,t ∑

i
||xi −π(K(RXi +T))||2, (1)

where xi is the ith 2D feature, and Xi is its corresponding 3D point.
π is a projection function. Similar to [17], we also run a work
thread for frequent bundle adjustment of the estimated 3D points
and camera poses.

The above strategy with a simple online keyframe selection
method (e.g. [17]) generally works rather well for a static scene.
However, if the scene contains large moving objects or gradually
changes, some reference features and selected keyframes will be
invalid and need to be replaced in time. In the following section,
we will introduce a novel online keyframe and 3D points updating
scheme to effectively address this problem.

4 ONLINE 3D POINTS AND KEYFRAME UPDATING

For each input frame, if it satisfies the following three conditions, it
will be selected as a keyframe: 1) the camera pose is successfully
estimated, 2) has fewer than m1 (m1 = 80 in our experiments) ex-
isting common features with the existing keyframes, 3) contributes
more than m2 new 3D points (m2 is generally set to 50 ∼ 100 in our
experiments), which are generated by feature matching and trian-
gulation between input frame and existing keyframes.

If the input frame already satisfies the previous two conditions,
we will consider it as a potential keyframe, and then select 5 most
related keyframes that have maximum common features with it. We
perform feature matching again between the input fame and 5 se-
lected keyframes. The features in the input frame that already have
found correspondences do not need to be matched again. Similar
to [9], we construct a KD-Tree for each keyframe to speedup the
matching. Epipolar geometry constraint [42] is also used to reject
outliers and improve the matching accuracy. The matched points
among the input frame and keyframes are recorded to constitute a
feature track. For each track Xi, we estimate its 3D position by

Xi = min
Xi

∑
j∈φ(Xi)

||xi j −π(K(R jXi +Tj))||
2,

where φ(Xi) denotes the set of frames that Xi appears in. If
the number of newly estimated 3D points satisfies the third con-
dition (i.e. larger than m2), we will select the input frame as a
keyframe and add it to the keyframes set. These newly estimated

(a)

(b)

Figure 4: Handling occlusions caused by dynamic objects. (a)The SLAM result without occlusion handling. The valid 3D points are highlighted
with cyan color. Since most 3D points are recognized as “invalid” 3D points (highlighted with red color) due to occlusions caused by a moving
paper, the estimated camera may frequently drift or even lost. (b) The SLAM result with occlusion handling. Almost all the occluded points are
successfully identified and not set to invalid, so the camera poses can be reliably estimated.

3D points are also selected as reference features along with the new
keyframe. The KD-Tree of the whole 3D map is updated accord-
ingly.

For each input frame, we also need to measure whether parts of
the scene have changed. Specifically, we select 5 closest keyframes
by comparing the rotational matrices and translational vectors.
Firstly, we compare the direction of Z axis between current frame
and previous frames. We select the frames whose direction differ-
ences to current frame are less than a threshold, and then further
compare their camera positions to determine the 5 closest frames.
Then for each selected keyframe, we first compare the color his-
togram with current frame for the R, G, B channels respectively.
Each bin value is normalized as ∑255

i=0 c2
i = 1, where ci is the nor-

malized bin value for R/G/B channel at ith bin. We define the dif-
ference of color histogram as a sum of distance among the three
histograms. If the difference is larger than 1, it is very likely that
some areas may have changed so that we should project the feature
points in this keyframe to the current frame. For feature point x in
keyframe, its 3D position is denoted as X and its projection in the
current frame is denoted as x′. We use V (X) to denote the status of
3D point X . If X is invalid, we set V (X) = 0, otherwise V (X) = 1.
Then we compare the appearance and 3D structure between x and
x′ to determine whether X is valid or invalid.

The viewing directions from X to the camera centers of the
keyframe and current frame are denoted as nx and nx′ , respectively.
Figure 3 gives an illustration. The angle between nx and nx′ can
be computed as arccos(n>x nx′). If n>x nx′ < τn (τn is generally set
to cos(30◦) in our experiments), feature point x is very likely to
be invisible in the current frame or there is large perspective dis-
tortion (e.g. the camera is rotating 180◦ around an object), so it is
better to keep V (X) = 1. Otherwise, we will further compare the
appearance difference between x and x′ as:

Dc(X) = min
d

∑
y∈W (x)

|Iy − Iy′+d |, (2)

where W (x) denotes the window centered at x, and is set to 11×11
in our experiments. Iy denotes the color of y. y′ is the projection of
y by the estimated depth and camera parameters. d is a small trans-
lational vector. Ideally, y′ should be exactly the correspondence of
y. However, due to estimation error, y′ may deviate from the true
position. Therefore, we involve a local search with displacement d

Figure 5: Handling occlusions caused by static objects. Top: the
SLAM result without occlusion handling. The valid 3D points are
highlighted with cyan color. Many 3D points are recognized as “in-
valid” 3D points (highlighted with red color) due to occlusions. Bot-
tom: the SLAM result with occlusion handling. Most of the occluded
points are successfully identified and not set to invalid.

in (2) to alleviate this problem. If Dc(X) > τc, it is very likely that
the appearance of x has changed or occlusion occurs. For exam-
ple, the region may be temporarily occluded by a moving object or
even a static object due to viewpoint change. If the appearance of
x has changed due to illumination or position variation, we should
set V (X) = 0. Otherwise we should not remove X . So if we di-
rectly set V (X) = 0 when Dc(X) > τc, many temporarily occluded
points will be removed quickly which may cause drift or camera
lost problem as shown in Figure 4(a) and our supplementary video.
Therefore we need to detect the occlusion to avoid this problem,
which is described in Algorithm 1.

Denote φ(x′) as the set of tracked feature points in the current
frame whose distance to x′ is less than r1 pixels (r1 is generally set
to 20 in our experiments, except for the example in Figure 9 where

Algorithm 1 3D Points Updating with Occlusion Handling
for each valid feature point x (its corresponding 3D point is X)
in each selected keyframe, do

Compute its projection x′ in the current frame.
if n>x n̂x′ < τn, then

compute the appearance difference Dc(X) by (2).
if Dc(X) > τc, then

find a set of tracked feature points φ(x′) in the current
frame whose distance to x′ is less than r1 pixels.
if φ(x′) is not empty and zXy ≥ zX for all y ∈ φ(x′), then

set V (X) = 0.
else

for each point y ∈ φ(x′), do
project X and Xy to the frame where X initially ap-
peared.
if |xp −yp| < r2, then

set V (X) = 0.
end if

end for
end if

end if
end if

end for

r1 = 40.). If X is occluded by a moving object, φ(x′) should be
empty. The reason is that dynamic points violate the multi-view
constraint and will be recognized as outliers. Thus there are gen-
erally no tracked 3D points in a moving object. In this case, X
should not be set to invalid. Excluding this case, φ(x′) generally
contains at least one point y. We denote the corresponding 3D point
of y∈ φ(x′) as Xy. We compare the depth values between X and Xy.
If zXy ≥ zX for all y ∈ φ(x′), where zXy and zX are their respective
depth values, it is safe to set V (X) = 0 because nothing occludes X
so X must have changed. Otherwise, for those Xy with zXy < zX ,
there are two cases: 1) Xy appears due to the change of X (illu-
mination or position variation); 2) Xy belongs to an existing static
object which temporarily occludes X due to viewpoint change. We
need to set V (X) = 0 if and only if it is the first case. Actually,
we can distinguish these two cases by projecting X and Xy to the
keyframe where X initially appeared. Their projections are denoted
as xp and yp, respectively. In the first case, Xy appears due to the
change of X , and is very likely to be on the same object with X .
So Xy is generally close to X , i.e. |xp −yp| is small. In the second
case, |xp − yp| is generally not small because X was not occluded
by Xy when X initially appeared, otherwise X cannot be extracted.
Based on this observation, we generally can reliably distinguish the
above two cases by checking |xp −yp|. If there is at least one point
y ∈ φ(x′) satisfying |xp −yp| < r2 (r2 is generally set to 20 in our
experiments), we will set V (X) = 0; otherwise, we keep V (X) = 1.
With this strategy, we can reliably detect the changed 3D points and
alleviate the effect of occlusions, as illustrated in Figures 4 and 5.
Although a few occluded 3D features may still be recognized as in-
valid 3D points, it generally does not harm camera tracking since
our system will quickly add new 3D features in time.

For each keyframe, if the number of invalid 3D points and the
common features shared with other keyframes is larger than 90%
of its total point number, we will label this keyframe as invalid.

5 PRIOR-BASED ADAPTIVE RANSAC

If the scene contains too many dynamic feature points, especially
when the dynamic points also undergo a rigid motion, it may be
not reliable using the standard RANSAC [13], since the standard
RANSAC always selects the motion with the maximal number
of supporting points. Here, we propose a prior-based adaptive

RANSAC algorithm (PARSAC) to address this problem. The basic
flow is similar to that of the standard RANSAC. In the first step,
a hypothesis is generated by randomly sampling a minimal subset
of the input data, and then computing the model parameters fitting
this minimal sample. In the second step, the hypothesis is evalu-
ated using all points, and the best hypothesis is recorded. These
two steps are repeated until a certain termination criterion is satis-
fied. We have a key observation that the static background features
usually distribute evenly, whereas the dynamic foreground points
may aggregate in a few small textured areas. For robust camera
pose estimation, the matches are required to be not too close or lie
on a line. Therefore, not only the number but also the distribution
of inliers should be taken into account while determining the best
hypothesis.

Sample generation. Myatt et al. [23] assume that inliers are
close together and propose to sample each minimal subset based
on proximity. In our scenario, since only dynamic points are close
together, proximity based sampling will results in many minimal
subsets containing only the undesired dynamic points. We propose
to avoid this situation by enforcing the sampled points distributed as
even as possible in the whole image. Specifically, we evenly divide
the whole image to 10× 10 bins. For each bin Bi, we only select
one point at most. This strategy can avoid the sampled points being
gathered in a small area. We can sample bins randomly. However, if
the inlier ratio is very low, a pure random sampling strategy may be
rather time-consuming to generate a good hypothesis. Actually, we
can use the inlier/outlier distribution information from the previous
frame to guide the point sampling of the current frame since the
image content among adjacent frames is rather similar. Specifically,
we record the inlier ratio for each bin in the previous frame, and
truncate it to [0.2,1] to guarantee that each bin could have a certain
chance to be sampled for the current frame. The truncated inlier
ratio of Bi for the previous frame is denoted as ε∗i . Then for bin
sampling in the current frame, we define the probability distribution
as follows:

pi = ε∗i /∑
j

ε∗j .

pi denotes the probability of sampling a point from Bi. We sample
the points from bins according to the estimated probability distri-
bution.

Hypothesis evaluation. We evaluate a hypothesis not only by
the number of supporting points, but also by their distributions.
Given a hypothesis, we compute the reprojection error for all points
to determine the inliers and outliers, so that the distribution of in-
liers can be described by a covariance matrix

C =
1

N −1 ∑
i

(xi − x̄)(xi − x̄)T , (3)

where N is the number of inliers, xi is the image location of ith
inlier, and x̄ = 1

N ∑i xi is the mean location of all inliers. Here we
make a slight modification by taking into account the inlier ratio.
We use bin center to represent all inliers lying within the bin. For
each bin Bi, its confidence weight is set to its inlier ratio εi. Then
we replace (3) with the following weighted covariance matrix

C =
∑i εi

(∑i εi)2 −∑i ε2
i

∑
i

εi(xi − x̄)(xi − x̄)T , (4)

where xi is the center of Bi, and x̄ is the weighted mean position
computed as

x̄ =
1

∑i εi
∑

i
εixi.

Equation (4) can be considered as the generalization of (3). If we
only pick bins having inliers to construct the covariance matrix, and

(a) (b) (c)

Figure 6: The synthetic example for outlier rejection evaluation. (a) The synthetic scene contains three kinds of points: 200 green points are
on the static background, 300 cyan points on the rigidly moving object, and other 500 red points are random moving. (b) A hypothesis with
a sample containing only green points. (c) A hypothesis with a sample containing only cyan points. The image is divided into 10× 10 bins.
The brightness of each bin represents its inlier ratio. The sampled points are highlighted with small rectangles. The yellow ellipse denotes the
computed covariance matrix of the sample.

(a) (b) (c)

(d) (e) (f)

Figure 7: A real example for outlier rejection. (a-b) Two real images. (c) The recognized inlier points by RANSAC [13], marked with green
crosses. The outliers are marked with red crosses. (d) The recognized inlier points by LoSAC [7]. (e) The recognized inlier points by ProSAC [6].
(f) The recognized inlier points by our ARSAC method.

treat each inlier bin equally (set ε = 1/N, where N is the number
of inlier bins), then (4) will become the standard covariance matrix
as in (3). With a weighting scheme, the problem that some outlier
matches are coincidentally consistent with the evaluated hypothesis
can be reduced, since the weights of these corresponding bins will
be rather small. The influence from the bins that contain both static
and moving points also can be alleviated. Finally, we score the
evaluated hypothesis as

s = (∑
i

εi)
π
√

det(C)

A
, (5)

where A is the image size for normalization. ∑i εi represents the
weighted number of inliers, and π

√

det(C) is the area size of the
ellipse representing the inlier distribution. The intuition is that the
best hypothesis should have a large number of inliers which are
evenly distributed in the whole image.

Termination criterion. If the sampling probability distribution
is accurate, a good sample without outliers can be quickly obtained
with a few iterations. Otherwise, the sampling process should be
repeated until the probability of finding a better hypothesis is lower
than a threshold. We model this probability by assessing how well
the sampling probability distribution fits the currently best hypoth-
esis. Denote ε̂i as the inlier ratio of Bi for the currently best hypoth-

(a)

(b)

Figure 8: SLAM result comparison with different robust estimators. (a) The SLAM result with standard RANSAC. The inserted purple sphere
drifts with the moving red book, which is not accurate. (b) The SLAM result with our PARSAC. The inserted purple sphere stays at accurate
position without drift.

Table 1: The average running time of different algorithms.
RANSAC LoSAC Multi-GS PARSAC ARSAC

Running Time 15.2ms 18.4ms 92.7ms 20.5ms 19.3ms
Iterations 500 500 500 500 500

Table 2: The success ratio of different algorithms.
Iterations RANSAC LoSAC Multi-GS PARSAC ARSAC

500 12% 8% 100% / 57% 65% 6%
1,000 15% 7% 100% / 63% 95% 14%
2,000 7% 8% 100% / 56% 100% 30%
5,000 5% 4% 100% / 52% 100% 66%
10,000 0% 5% 100% / 48% 100% 83%
20,000 0% 7% 100% / 53% 100% 96%

esis, the probability of selecting an inlier point is ∑i piε̂i. The prob-
ability of selecting a sample without outliers is (∑i piε̂i)

m, where m
is the sample size. For projective matrix estimation, m = 6. Then
the number of the iterations Ks must satisfy the following termina-
tion criterion

(1− (∑
i

piε̂i)
m)Ks < η .

That is to say if the probability that the Ks samples all contain out-
liers is less than η , we will stop the iteration.

After finding the best sample, the projective matrix is further
refined with all inliers. Finally, we decompose the estimated pro-
jective matrix to R and T , and then refine them by minimizing (1).

There are already several robust estimation algorithms [13, 38,
7, 6, 23, 5] have been proposed. Here, we compared our outlier re-
jection algorithm with the standard RANSAC [13], LoSAC [7], and
Multi-GS [5]. In order to verify the effectiveness of the inlier ratio
prior, we also define another algorithm ARSAC by removing the in-
lier ratio prior from PARSAC. We synthesize a scene that contains
a static background and a rigidly moving object. The camera and
the rigid object undergo different motion. As shown in Figure 6(a),
the synthetic scene contains 200 static points, 300 dynamic points
in a rigidly moving object, and other 500 randomly moving points.
Each point is contaminated with a standard Gaussian noise. We
synthesize 100 frames in total. We found that both RANSAC and
LoSAC fail to recognize the static points, thus fail to accurately esti-
mate the camera motion, since the number of static points is smaller

than the number of rigidly moving points. Multi-GS generally can
distinguish static and dynamic points since it explicitly detects mul-
tiple hypotheses. However, it cannot determine which hypothesis is
better. In contrast, our method not only detects these two motions,
but also recognizes the desired camera motion. In addition, the
computational overheads of both PARSAC and ARSAC are much
smaller than Multi-GS, as listed in Table 1 (the iteration number
is set to 500). It should be noted that although the computational
overhead of PARSAC is slightly larger than that of ARSAC for each
iteration, PARSAC can quickly find the best hypothesis with much
fewer iterations. Table 2 shows the success ratio (for all 100 frames)
of different algorithms along with the growing iteration number.
For this challenging data (the inlier ratio is only 20%), PARSAC
already can achieve 95% success ratio with 1,000 iterations thanks
to the use of inlier ratio prior, but ARSAC needs 20,000 iterations
to achieve comparable success ratio. We also found that the success
ratio of RANSAC even becomes smaller when the iteration number
increases. The reason is that the number of static points is smaller
than the number of rigidly moving points, so RANSAC will favor
to recognize the rigidly moving points as inliers. It should be noted
that Multi-GS actually often only recognizes static points in this
example (the success ratio of recognizing the rigidly moving points
is only around 60%), although it is supposed to accurately recog-
nize both two kinds of hypothesis. The reason is that there are too
many outliers, which make the preference analysis of Multi-GS not
reliable. If the outlier ratio is small, Multi-GS generally works well.

Figure 6(b) and (c) show two different hypothesis by our
method (one sample contains only static points, and one sample
contains only rigidly moving points), where the computed corre-
sponding ∑i εi are quite comparable, 24.94 and 21.77, respectively.
Taking into account the covariance matrix of the sample by (5), we
have s1 = 8.31 > s2 = 1.89, so a better hypothesis is accurately
determined.

Figure 7 shows an example with two real images captured from
different viewpoints. As can be seen, the five-leaf screen undergoes
a large rigid movement. We estimate the fundamental matrix be-
tween these two images by different algorithms to remove outliers.
ProSAC [6] algorithm needs a prior ordering of all data points de-
pending on the quality of each feature match. Here we sort all the
feature matches by Euclidean distance of SIFT descriptor in ascend-
ing order. The recognized inlier points (marked with green crosses)
by RANSAC, LoSAC and ProSAC are all on the five-leaf screen,

(a)

(b)

(c)

Figure 9: SLAM result comparison. (a) Our SLAM result with the component of removing invalid 3D points and keyframes. The changed 3D
points are detected and highlighted with red color. (b) Our SLAM result without removing invalid 3D points and keyframes. (c) The SLAM result
of PTAM.

which is not correct. In contrast, our ARSAC method can correctly
recognize the static points.

Figures 8(a) and (b) show the SLAM results of the same system
but with different robust estimators (i.e. standard RANSAC and
our PARSAC, respectively). As can be seen, standard RANSAC
recognizes the matched features on the moving red book as inliers
in many frames, so the inserted purple sphere drifts with the mov-
ing book. In contrast, our PARSAC can accurately recognize the
inliers/outliers, so the inserted sphere can stay at accurate position
without drift. Please refer to our supplementary video1 for the com-
plete frames and comparison.

6 EXPERIMENTAL RESULTS

Table 3: Processing time per frame with a single thread.
Modules Time per frame

Feature extraction (GPU implementation) ∼ 30ms
Feature matching with camera pose estimation ∼ 25ms

Keyframes & 3D points updating ∼ 35ms

We have conducted experiments with several challenging ex-
amples on a desktop PC with a Xeon E-1230V2 3.3GHZ CPU (4
cores), 8GB memory, and a NVIDIA GeForce GTX560SE display
card (1GB memory). The live sequences are captured by a Logitech
C905 web camera. Table 3 shows the time spent in different steps
with a single thread. With multi-thread programming, the frame
rate of our system can be around 25fps.

We first show an indoor example in Figure 1. In this example,
a person is rearranging the objects on the desk, and the flashlight

1The supplementary video can be downloaded from the website
http://www.cad.zju.edu.cn/home/gfzhang/

Figure 10: 3D points and keyframes updating. Left: the recon-
structed 3D points with selected keyframes when frame 140 is in-
putted. Right: the reconstructed 3D points with selected keyframes
when frame 398 is inputted. The red points are those detected invalid
3D points.

irradiate the desk in a back and forth way. It is very challenging for
real-time monocular SLAM. We found that PTAM quickly failed in
this example, as shown in the bottom row of Figure 1. In contrast,
our system can robustly recover the camera poses. Figure 10 shows
the reconstructed 3D points and selected keyframes in different time
instances. The changed 3D points are recognized and highlighted
with red color.

We give a comparison of the same system with/without the com-
ponent of removing invalid 3D points and keyframes, as shown
in Figure 9. As can be seen, without removing invalid 3D points
and keyframes, the camera poses of many frames cannot be ac-
curately estimated, so the inserted virtual object (a purple sphere)
drifts with the moving books, as shown in Figure 9(b). In contrast,
the SLAM result with the component of removing invalid 3D points
and keyframes does not have this problem, as shown in Figure 9(a).
In this example, since the books are moving quickly and constantly,

Figure 11: “Two-Men” example. Top: the SLAM result (with augmented reality) of our system. Bottom: the SLAM result of PTAM.

r1 = 20 is not large enough to remove the changed 3D points in
time. So we adjust r1 larger (i.e. r1 = 40) to remove the changed
3D points more reliably. Again, the SLAM result by PTAM has
serious drift problems as shown in Figure 9(c).

Figure 11 shows another challenging example. Besides dynamic
objects, many regions are quite textureless. Our system also sig-
nificantly outperforms PTAM in this example. Please refer to our
supplementary video for better presentation.

7 DISCUSSIONS AND CONCLUSIONS

In this paper, we have presented a novel robust monocular SLAM
in dynamic environments. Different to traditional SLAM or PTAM
methods, our system employs SIFT features with keyframe repre-
sentation, which is more reliable for fast camera movement and
global relocalization. The changed regions are reliably detected by
projecting the nearby keyframes to current frame for appearance
and structure comparison. The invalid 3D points and keyframes
can be effectively removed and updated in time, so that our system
can robustly deal with the scene that is gradually changing. We also
propose a prior-based adaptive RANSAC method to efficiently find
the inlier matches even the inlier ratio is rather low. Based on the
above techniques, our system can work in the challenging situation
where there are many large moving objects and significant local il-
lumination variation, which is very difficult for previous works.

Our system still has some limitations. If an object is moving too
fast, for the point x on that object, the default r1 may be not large
enough to detect a neighboring point y, so our system will think x
is occluded by another moving object and keep V (X) = 1. Gener-
ally, a few changed 3D points in this case does not influence the
SLAM result. However, if there are too many such points that have
changed but still keep in the map, and the moved objects are still
in the scene, our feature matching will have ambiguity and SLAM
may fail. An extreme case is that most objects are quickly chang-
ing and there are no sufficient static points for robust camera pose
estimation. In this case, our system may fail to accurately recover
camera poses. In addition, like PTAM, our current system is also
limited to work in a small space since real-time bundle adjustment
is still intractable for a large-scale scene. In addition, in our cur-
rent implementation, we build a KD-Tree for all reconstructed 3D
features. Since SIFT feature matching by the 2NN heuristic exces-
sively relies on the feature distinctiveness, it may have problems
if the number of 3D features in the KD-Tree becomes very large or
the scene contains many repeated structures. In our future work, we

would like to resolve this problem and further extend our system to
support incorporating scene priors (e.g. the reconstructed 3D fea-
tures in an offline stage like [9]), so that the system may work in a
larger space.

ACKNOWLEDGEMENTS

The authors would like to thank all the reviewers for their construc-
tive comments to improve this paper. This work is partially sup-
ported by the 973 program of China (No. 2009CB320804), NSF
of China (No. 61103104), the Fundamental Research Funds for the
Central Universities (No. 2013FZA5015), and the China Postdoc-
toral Science Foundation funded project (No. 20110491780).

REFERENCES

[1] C. Bibby and I. Reid. Simultaneous localisation and map-
ping in dynamic environments (SLAMIDE) with reversible
data association. In Proceedings of Robotics Science and Sys-
tems, 2007.

[2] G. Bleser, H. Wuest, and D. Stricker. Online camera pose
estimation in partially known and dynamic scenes. In ISMAR,
pages 56–65, 2006.

[3] R. O. Castle, G. Klein, and D. W. Murray. Video-rate local-
ization in multiple maps for wearable augmented reality. In
Proc 12th IEEE Int Symp on Wearable Computers, Pittsburgh
PA, 2008.

[4] D. Chekhlov, M. Pupilli, W. Mayol-Cuevas, and A. Cal-
way. Real-time and robust monocular SLAM using predictive
multi-resolution descriptors. In 2nd International Symposium
on Visual Computing, 2006.

[5] T.-J. Chin, J. Yu, and D. Suter. Accelerated hypothesis gen-
eration for multistructure data via preference analysis. IEEE
Trans. Pattern Anal. Mach. Intell., 34(4):625–638, 2012.

[6] O. Chum and J. Matas. Matching with prosac - progressive
sample consensus. In CVPR (1), pages 220–226, 2005.

[7] O. Chum, J. Matas, and J. Kittler. Locally optimized ransac.
In DAGM-Symposium, pages 236–243, 2003.

[8] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(6):
1052–1067, 2007.

[9] Z. Dong, G. Zhang, J. Jia, and H. Bao. Keyframe-based real-
time camera tracking. In ICCV, pages 1538–1545, 2009.

[10] E. Eade and T. Drummond. Scalable monocular SLAM. In
CVPR (1), pages 469–476, 2006.

[11] C. Engels, H. Stewénius, and D. Nistér. Bundle adjustment
rules. Photogrammetric computer vision, 2, 2006.

[12] M. Fiala. ARTag, a fiducial marker system using digital tech-
niques. In CVPR, volume 2, pages 590–596, 2005.

[13] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: A paradigm for model fitting with applications to image
analysis and automated cartography. Commun. ACM, 24(6):
381–395, 1981.

[14] D. Hahnel, R. Triebel, W. Burgard, and S. Thrun. Map build-
ing with mobile robots in dynamic environments. In IEEE
International Conference on Robotics and Automation, vol-
ume 2, pages 1557–1563, 2003.

[15] E. Imre, J.-Y. Guillemaut, and A. Hilton. Moving camera reg-
istration for multiple camera setups in dynamic scenes. In
BMVC, pages 1–12, 2010.

[16] A. Kawewong, N. Tongprasit, S. Tangruamsub, and
O. Hasegawa. Online and incremental appearance-based
SLAM in highly dynamic environments. Int. J. Rob. Res.,
30(1):33–55, 2011.

[17] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In ISMAR 2007, pages 225–234, Nov.
2007.

[18] G. Klein and D. Murray. Improving the agility of keyframe-
based SLAM. In ECCV, volume 2, pages 802–815, 2008.

[19] V. Lepetit and P. Fua. Monocular model-based 3D tracking of
rigid objects. Found. Trends. Comput. Graph. Vis., 1(1):1–89,
2005.

[20] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2):
91–110, 2004.

[21] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fast-
SLAM 2.0: An improved particle filtering algorithm for
simultaneous localization and mapping that provably con-
verges. In IJCAI, pages 1151–1156, 2003.

[22] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and
P. Sayd. Real time localization and 3D reconstruction. In
CVPR, volume 1, pages 363–370, 2006.

[23] D. Myatt, P. Torr, S. Nasuto, J. Bishop, and R. Craddock.
NAPSAC: High noise, high dimensional robust estimation -
it’s in the bag. In BMVC, pages 458–467, 2002.

[24] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, P. K. Andrew J. Davison, J. Shotton, and S. Hodges.
KinectFusion: Real-time dense surface mapping and tracking.
In ISMAR, 2011.

[25] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. DTAM:
Dense tracking and mapping in real-time. In ICCV, 2011.

[26] D. Nistér. An efficient solution to the five-point relative pose
problem. IEEE Trans. Pattern Anal. Mach. Intell., 26(6):756–
777, 2004.

[27] K. Pirker, M. R̈uther, and H. Bischof. Histogram of oriented
cameras - a new descriptor for visual slam in dynamic envi-
ronments. In BMVC, 2010.

[28] K. Pirker, M. R̈uther, and H. Bischof. CD SLAM - continuous
localization and mapping in a dynamic world. In International
Conference on Intelligent Robots and Systems, pages 3990 –
3997, 2011.

[29] T. Pollard and J. L. Mundy. Change detection in a 3-D world.
In CVPR, 2007.

[30] M. Pupilli and A. Calway. Real-time camera tracking using
known 3D models and a particle filter. In International Con-
ference on Pattern Recognition, August 2006.

[31] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. Im-
age change detection algorithms: A systematic survey. IEEE
Transactions on Image Processing, 14:294–307, 2005.

[32] E. Rosten, R. Porter, and T. Drummond. FASTER and bet-
ter: A machine learning approach to corner detection. IEEE
Trans. Pattern Analysis and Machine Intelligence, 32:105–
119, 2010.

[33] Z. Shi, Z. Liu, X. Wu, and W. Xu. Feature selection for re-
liable data association in visual slam. Machine Vision and
Application, 24:667–682, 2013.

[34] J. Shimamura, M. Morimoto, and H. Koike. Robust vSLAM
for dynamic scenes. In MVA, pages 344–347, 2011.

[35] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: ex-
ploring photo collections in 3D. ACM Trans. Graph., 25(3):
835–846, 2006.

[36] H. Strasdat, J. Montiel, and A. J. Davison. Visual slam: Why
filter? Image and Vision Computing, 30:65–77, 2012.

[37] A. Taneja, L. Ballan, and M. Pollefeys. Image based detection
of geometric changes in urban environments. In ICCV, 2011.

[38] P. H. S. Torr and A. Zisserman. Mlesac: a new robust estima-
tor with application to estimating image geometry. Comput.
Vis. Image Underst., 78(1):138–156, Apr. 2000.

[39] C. Wu. SiftGPU: A GPU implementation
of scale invariant feature transform (SIFT).
http://cs.unc.edu/ ccwu/siftgpu, 2007.

[40] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore
bundle adjustment. In CVPR, pages 3057–3064, 2011.

[41] G. Zhang, X. Qin, W. Hua, T.-T. Wong, P.-A. Heng, and
H. Bao. Robust metric reconstruction from challenging video
sequences. In CVPR, pages 1–8, 2007.

[42] Z. Zhang, R. Deriche, O. D. Faugeras, and Q.-T. Luong. A ro-
bust technique for matching two uncalibrated images through
the recovery of the unknown epipolar geometry. Artif. Intell.,
78(1-2):87–119, 1995.

[43] D. Zou and P. Tan. CoSLAM: Collaborative visual SLAM in
dynamic environments. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 35(2):354–366, 2013.

