
Robust Keyframe-based Monocular SLAM for Augmented Reality
Haomin Liu1 Guofeng Zhang1,2∗ Hujun Bao1,2∗

1State Key Lab of CAD&CG, Zhejiang University
2The Collaborative Innovation Center for Industrial Cyber-Physical System, Zhejiang University

ABSTRACT

Keyframe-based SLAM has achieved great success in terms of ac-
curacy, efficiency and scalability. However, due to parallax re-
quirement and delay of map expansion, traditional keyframe-based
methods easily encounter the robustness problem in the challeng-
ing cases especially for fast motion with strong rotation. For AR
applications in practice, these challenging cases are easily encoun-
tered, since a home user may not carefully move the camera to
avoid potential problems. With the above motivation, in this paper,
we present RKSLAM, a robust keyframe-based monocular SLAM
system that can reliably handle fast motion and strong rotation,
ensuring good AR experiences. First, we propose a novel multi-
homography based feature tracking method which is robust and ef-
ficient for fast motion and strong rotation. Based on it, we propose
a real-time local map expansion scheme to triangulate the observed
3D points immediately without delay. A sliding-window based
camera pose optimization framework is proposed, which imposes
the motion prior constraints between consecutive frames through
simulated or real IMU data. Qualitative and quantitative compar-
isons with the state-of-the-art methods, and an AR application on
mobile devices demonstrate the effectiveness of the proposed ap-
proach.

Index Terms: I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Tracking; H.5.1 [Information Interfaces
and Presentation]: Multimedia Information Systems—Artificial,
augmented, and virtual realities

1 INTRODUCTION

Along with the popularity of mobile and wearable devices, aug-
mented reality (AR) has received unprecedented attention in recent
years. Seamless augmented reality requires accurate camera pose
estimation and 3D reconstruction of the scene in real-time, which is
the problem that SLAM (Simultaneous Localization and Mapping)
aims to solve.

Due to the complexity of real cases, it is not easy for traditional
SLAM methods to work well in practice. For example, a novice
home user takes a mobile device to capture the scene and watch the
AR effect. He may not have the knowledge about how to carefully
move the mobile device to make the AR system work well, and
just would like to freely rotate and move the mobile device to see
what he want to see. Fast motion and strong rotation easily hap-
pen which are very challenging even for the state-of-the-art SLAM
systems [17, 33, 6, 27].

Good AR experience requires that SLAM system can handle
kinds of complex camera motion, allowing easy use for a novice
home user. The frequency of camera lost is as small as possible
even encountering unexpected conditions such as very fast camera
motion with severe motion blur. Even if encountering tracking fail-
ure, the camera pose can be quickly relocalized to avoid long time
waiting.

∗Corresponding authors: {zhangguofeng,bao}@cad.zju.edu.cn

In this paper, we present RKSLAM, a robust keyframe-based
monocular SLAM system that is able to simultaneously handle fast
motion and strong rotation in a robust way. To the best of our
knowledge, this problem has not been thoroughly investigated be-
fore but actually very important for achieving good AR experiences.
The main contributions of our paper are as follows:

1. We propose an effective multi-homography based feature
tracking method for both well-constrained and ill-conditioned
3D points, which is not only robust to fast motion and strong
rotation, but also very efficient to allow real-time computation
even on a mobile device.

2. We propose a novel sliding-window based local map expan-
sion and optimization framework, which not only can triangu-
late and optimize the newly observed 3D points immediately
without delay, but also can effectively optimize the camera
poses through simulating IMU measurements with reason-
able assumptions in AR applications. This method can sig-
nificantly improve the robustness in the case of fast camera
motion with severe blur. Real IMU measurements if avail-
able can be incorporated into the optimization framework to
further improve the robustness and accuracy.

2 RELATED WORK

Visual SLAM can be categorized into filtering-based methods and
keyframe-based methods. MonoSLAM [2] is a representative work
of filtering-based SLAM. The camera motion parameters and 3D
positions of landmarks are jointly represented as a probabilistic
state. EKF is used to predict and update the joint state for each
frame. The main drawback of MonoSLAM is the O(N3) compu-
tational complexity, where N is the number of landmarks, limiting
its scalability to only a small space with hundreds of landmarks.
In addition, the linearization error is easily accumulated by EKF.
PTAM [17] addresses these limitations with a novel keyframe-
based parallel tracking and mapping framework. Real-time perfor-
mance is obtained by separating tracking from mapping, and high
accuracy is guaranteed by performing bundle adjustment (BA) [35]
over keyframes. As concluded in [31], keyframe-based BA outper-
forms filtering especially when N is large.

Many recent state-of-the-art SLAM systems adapt keyframe-
based framework, such as RDSLAM [33] and ORB-SLAM [27].
RDSLAM [33] detects the appearance and structure change of the
scene, and proposes a variant of RANSAC to support localization
in dynamic scenes. ORB-SLAM [27] uses ORB features [30] for
tracking, mapping, re-localization and loop detection. Pose graph
optimization is also adopted to close loops. Different to most vi-
sual SLAM systems, LSD-SLAM [4] replaces the sparse point fea-
tures with a semi-dense depth map which can be recovered in real-
time on a CPU. Localization is performed by direct tracking based
on the semi-dense depth map, improving the robustness in feature-
less environments. SVO [6] also uses direct tracking, but only on
sparse point features, eliminating the need of costly feature extrac-
tion. With this scheme, very high frame rate can be achieved.

The major weakness of traditional keyframe-based methods is
their robustness to fast motion and strong rotation. Firstly, in order

2016 IEEE International Symposium on Mixed and Augmented Reality

978-1-5090-3641-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ISMAR.2016.24

1

to well constrain the 3D points, sufficient parallax among neighbor-
ing keyframes is typically required, which, however, is not satisfied
in the case of strong rotation. Secondly, feature matching between
large-baseline keyframes is computationally time-demanding thus
can only be performed in the background with at least several
frames delay for map expansion, which makes the tracking sen-
sitive to fast camera motion.

Some of the above mentioned state-of-the-arts can handle strong
rotation to a certain extent. In order to improve the tracking ro-
bustness for strong rotation, ORB-SLAM proposed to relax the
large parallax requirement for keyframe insertion. The redundant
keyframes and unstable 3D points will be deleted later for main-
taining a sparse and accurate global map. Both LSD-SLAM and
SVO proposed to use filtering technique for robust depth estima-
tion. Filtering-based methods are generally robust to slow rotation,
in which case the parallax is growing gradually from small to large.
If the camera is purely rotating, any depth value would result in the
same 2D projections. With parallax slowly growing, depth can be
gradually updated and finally converged to a good estimate. How-
ever, it will become much more challenging if the camera moves
fast. Firstly, the delay of map expansion is still not well addressed
by these methods. Feature matching and depth filtering on back-
ground thread cannot catch up with fast camera movement, which
eventually degrades or even fails tracking. Secondly, fast motion
and strong rotation make robust feature tracking very difficult. The
search range and patch distortion becomes unpredictable, making
template warping based feature tracking used in PTAM and SVO
unreliable. Invariant feature descriptors used by ORB-SLAM and
RDSLAM are also sensitive to large perspective distortion and mo-
tion blur. ASIFT [25] proposed to address this problem by simu-
lating different viewpoints. However, the expensive computation is
not suitable for real-time application.

There are also some methods proposed to explicitly handle pure
rotation problem. Gauglitz et al. [8] proposed to switch between
6 DoF tracking and panorama tracking between the current frame
and latest keyframe, resulting in multiple separated 3D/panorama
submaps. Pirchheim et al. [28] and Herrera et al. [10] shared the
similar idea with [8], but were able to provide a global 3D map.
In [28], the depth of each 2D feature is set to infinite for 6 DoF
tracking. Herrera et al. [10] proposed to minimize the distance to
epipolar line instead of re-projection error for 2D features. Both
methods triangulate the 2D features into 3D once sufficient paral-
lax is detected. However, pure rotation rarely happens in practice.
Camera translation is inevitable even if the user tries the best to ro-
tate the camera around its optical center. The translation will be
considered as an additional rotation by panorama tracking, which
causes drift. Secondly, the lack of 3D constraints easily causes
scale inconsistency. Thirdly, fast camera motion cannot be handled
by these methods.

Nowadays, many SLAM systems incorporate IMU data to im-
prove robustness, called visual-inertial SLAM. Most visual-inertial
SLAM methods are based on filtering. To break the scalability
limitation of filtering-based methods, MSCKF [26] converts the bi-
nary constraints between 3D points and camera into the constraints
among multiple cameras. Only cameras are included in the state
vector instead of 3D points. The complexity is linear in the num-
ber of features. Li and Mourikis [21] analyzed the observability of
MSCKF, and proposed to use first-estimate Jacobian [12] to fix the
linearization point and improve the consistency of MSCKF. In [11],
by explicitly enforcing the unobservable directions, the spurious in-
formation gain is successfully prevented and the inconsistency is
reduced. There are also some visual-inertial SLAM methods based
on non-linear optimization, in which the problem is formulated as
a factor graph [19] and solved as a MAP estimation. Real-time
performance is obtained by only maintaining a local map with old
states marginalized [3, 20], or performing incremental smoothing

Figure 1: Framework of RKSLAM. Tracking and mapping tasks are
green and blue blocks respectively. Note that unlike most keyframe-
based systems in which all mapping tasks run in the background,
we bring local map expansion and optimization to foreground, for
handling fast motion and strong rotation.

with most old states unaffected [15, 13, 7]. These methods are
mainly for robot navigation, in which the quality of IMU measure-
ments is quite good.

By assuming a smooth motion, Lovegrove et al. [22] proposed
to employ cumulative cubic B-splines to parameterize the camera
trajectory. With this representation, they can estimate the pose as
well as the corresponding first and second derivates at any time
instance. IMU measurements can be easily incorporated without
discrete-time approximation. With the continuous-time representa-
tion, the rolling shutter effects also can be faithfully compensated.
Kerl et al. [16] also used the cumulative cubic B-splines for direct
tracking and dense mapping with rolling shutter RGB-D cameras.
However, fast motion and strong rotation violate the smooth motion
assumption. In addition, during fast motion, motion blur usually
causes the dominant deformation over rolling shutter. Meilland et
al. [24] proposed a unified solution for estimating motion blur and
rolling shutter deformations simultaneously. But this method is for
an RGB-D camera, or for a monocular camera only when the 3D
model is available.

3 FRAMEWORK OVERVIEW

Similar to previous keyframe-based SLAM systems [17, 33, 27],
our system also employs parallel tracking and mapping framework,
as illustrated in Figure 1. Different to previous methods, we opti-
mize global map in the background thread but optimize local map
in the foreground thread for fast map expansion. Global map con-
tains the selected keyframes and well-constrained 3D points which
are observed in at least two keyframes with sufficient parallax. A set
of 3D planes are also extracted during global mapping and included
into the global map. Local map contains a sliding window of most
recent frames and those 3D points which are not well-constrained
but have at least one observation in the sliding window.

2

Before describing our method, we first introduce the convention
for our mathematical formulation, which is adopted from [9]. We
always use an italic symbol (e.g. x) to denote a scalar and a bold
capital letter (e.g. H) to denote a matrix. A bold letter such as b
denotes a column vector, and its transpose b⊤ denotes the corre-
sponding row vector. In addition, the group/set of points, vectors
or matrices are generally denoted by an italic capital letter, such as
V . For a vector x, we use superscript h to denote the corresponding
vector in homogenous coordinate, i.e. xh.

In our system, each 3D point i contains the 3D position Xi and
the local image patch Xi. Each frame i stores its image Ii, camera
pose Ci, a set of 2D feature locations {xi j}, and a set of indexes to
their corresponding 3D points Vi. The set of selected keyframes is
denoted as {Fk|k = 1 · · ·NF}. The camera pose Ci is parameterized
as a quaternion qi and the camera position pi. For a 3D point X j,
the 2D projection in i-th image is computed as

xi j = π(K(Ri(X j −pi))) (1)

where K is intrinsic matrix assumed to be known and constant,
and Ri is the rotation matrix of qi. π(·) is the projection function
π([x,y,z]⊤) = [x/z,y/z]⊤. Each plane i stores its parameters Pi and
a set of indexes to the 3D points belonging to it, denoted as VPi .
We define the plane parameters Pi = [n⊤

i ,di]
⊤, where ni represents

its normal direction and di represents the signed distance from ori-
gin to the plane. For a 3D point X lying on the plane Pi, we have
n⊤

i X+di = 0.
The key component of RKSLAM is a novel feature tracking

method based on three types of homographies, i.e. global homog-
raphy, local homography and specific plane homography. Global
homography describes the planar transformation between two im-
ages which can be estimated by global image alignment. We de-
note the global homography from keyframe Fk to current frame Ii as
HG

k→i. The set of global homographies for all keyframes is denoted
as HG

i = {HG
k→i|k = 1 · · ·NF}. Local homography describes the lo-

cal alignment between two local parts of the images. For the frame
pair (Fk, Ii), we can estimate a set of local homographies using the
obtained correspondences with multiple RANSAC [5] procedures,
denoted as HL

k→i = {HL j
k→i| j = 1 · · ·NL

k→i}.
The specific plane homography is similar to local homography,

but defined for a specific 3D plane. For a 3D plane P j visible in
keyframe Fk, its corresponding homography from Fk to Ii can be
derived as

HP j
k→i = K

(
RiR⊤

k +
Ri(pi −pk)n⊤

j R⊤
k

d j +n⊤
j Rkpk

)
K−1. (2)

For each keyframe Fk, we derive a set of specific plane homogra-
phies, denoted as HP

k→i = {HP j
k→i| j = 1 · · ·NP

k→i}. The 3D planes
can be automatically extracted from the recovered 3D points (The
algorithm will be introduced in Section 5.2).

As illustrated in Figure 1, the foreground thread processes the
video stream in real-time. For each current frame Ii, we first ex-
tract FAST corners [29] and track the set of global homographies
HG

i to Ii. Then we use both the global homographies HG
i and

specific plane homographies HP
k→i to track 3D points, obtaining a

set of 3D-2D correspondences for camera pose estimation. Then
we assess the tracking quality by the method of [17], which re-
turns good, poor or bad. If it returns good tracking quality, we
directly use the tracking result to expand and optimize the local
map, then determine whether a new keyframe should be selected.
For fast motion with large translation, the quality may be poor or
even bad. In the case of poor quality where there are still some
feature matches, most of which are well-constrained points, we es-
timate a set of local homographies HL

k→i and try to re-match the

lost tracked features. In the case of bad quality, we invoke the re-
localization procedure as in [17]. Once re-localization succeeds,
we use the re-localized keyframe for global homography tracking,
then go to feature tracking again. The newly selected keyframe
wakes up the background threads. The global map is expanded by
adding the new keyframe and newly triangulated 3D points with
local bundle adjustment. After that, we can expand existing 3D
planes and extract new 3D planes with these points. Then we detect
loops by matching features between the new keyframe and existing
keyframes. Finally, BA is performed for the global map. It should
be noted that the keyframe selection, re-localization and loop detec-
tion in our framework are stand-alone, which can be replaced with
more advanced techniques. In our implementation, we directly use
the corresponding algorithms in [17, 18] for keyframe selection and
re-localization. For loop closure, we use the same algorithm as re-
localization to find feature matches between a previous keyframe
and the new keyframe, and then close the loop by global BA.

4 TRACKING

We assume piecewise planarity of the scene, and extract multiple
homographies to track the 3D points to the current frame. It is dif-
ficult for traditional methods to predict the search range and correct
perspective distortion in the cases of fast motion and strong rota-
tion, especially for those ill-conditioned points whose 3D positions
are unreliable. We tackle this difficulty by exploiting the piecewise
planarity of natural scenes. With multi-homography representation,
search range can be correctly and tightly determined, and perspec-
tive distortion can be removed or alleviated.

4.1 Global and Local Homography Estimation
As introduced in Section 3, we extract three kinds of homographies.
While global homography roughly aligns the whole image, local
and specific plane homographies can precisely align the local re-
gions. Specific plane homography HP j

k→i can be analytically derived
according to (2). Here, we describe the algorithms for extracting
global and local homographies, respectively.

We estimate the global homography between key frame Fk and
current frame Ii by direct image alignment, using the small blurry
image (SBI) as used in [18]:

HG
k→i = argmin

H
∑

x∈Ω
||F̃k(x)− Ĩi(π(H̃xh))||δI (3)

where Ω is the domain of SBI, and superscript h denotes the vector
in homogenous coordinate. F̃k and Ĩi are SBI of Fk and Ii respec-
tively. The tilde above the homography in H̃ converts the homog-
raphy H from the original image space to that of SBI. || · ||δ is the
Huber norm as

||e||δ =

{
||e||22
2δ if ||e||2 ≤ δ
||e||2 − δ

2 otherwise.
(4)

We maintain the global homography HG
k→i for each keyframe

Fk. It is time-consuming to solve (3) for all keyframes and also
unnecessary since most keyframes do not overlap with the current
frame. In addition, since the baseline between Fk and Ii is generally
large, directly solving (3) would bias the solution towards a major
plane. Here, we introduce a novel method to address the above two
problems.

It is reasonable to assume the baseline between consecutive
frames is small so a global homography can approximately repre-
sent the transformation between them. By solving (3) between last
frame Ii−1 and current frame Ii, we can obtain HG

(i−1)→i. So we have

HG
k→i = HG

(i−1)→iH
G
k→(i−1) by propagation. Since we already have

a set of feature matches (denoted as Mk,i−1 = {(xk,xi−1)}) between

3

(a) (c) (e)

(b) (d) (f)

Figure 2: Comparison of global homography estimation. (a) The cur-
rent image. (b) One selected keyframe to be matched. (c) Warping
(b) to (a) by solving (3). (d) Warping (b) to (a) by solving (5). (e) The
composition of (a) and (c). (f) The composition of (a) and (d).

Fk and Ii−1, we propose to optimize HG
k→(i−1) instead of optimiz-

ing HG
k→i. We use Mk,i−1 to determine the overlapping keyframe

set, denoted as Ki−1. We select the top 5 ranked keyframes with
|Mk,i−1| > 20. For each keyframe Fk in Ki−1, we use Mk,i−1 to
prevent error accumulation and bias, by modifying (3) as

HG
k→(i−1) = argmin

H
(∑
x∈Ω

||F̃k(x)− Ĩi−1(π(H̃xh))||δI

+ ∑
(xk ,xi−1)∈Mk,i−1

||π(Hxh
k)−xi−1||δx).

(5)

In our experiments, δI = 0.1 and δx = 10 . Compared to (3), (5)
is able to interpolate multiple planar motions under large baseline.
We use Gauss Newton algorithm to solve (3) and (5). Figure 2 gives
a comparison. Figure 2(a) shows the current image, and (b) shows
the selected keyframe. As can be seen, if we directly solve (3),
the estimated global homography is poor as can be evidenced in (c)
and (e). The alignment error is obvious. In contrast, the estimated
global homography by solving (5) is much better as shown in (d)
and (f).

If the tracking quality by global homographies and specific 3D
plane homographies is poor, our system will further estimate local
homographies with the estimated matches. We use a simple multi-
homography extraction scheme [37, 14, 36] to estimate a set of local
homographies. Specifically, we perform RANSAC [5] over Mk,i to
estimate the best local homography with maximum inlier matches,
denoted as HL1

k→i. The inlier matches satisfying HL1
k→i are excluded

and the procedure is repeated for the remaining matches to estimate
HL2

k→i. The above procedure is repeated until the number of remain-
ing matches is less a threshold.

4.2 Robust Feature Tracking with Multi-Homography
Representation

The estimated multiple homographies can be used to perform
guided matching, i.e. feature prediction and patch warping which
are challenging for traditional methods in the cases of fast mo-
tion and strong rotation. Firstly, since the positions for those ill-
conditioned 3D points are invalid or inaccurate, the camera pose
prediction is unreliable by a traditional motion model. Secondly, if
there are strong perspective distortions, simple template matching
or comparison with feature descriptors will become unreliable.

Compared to previous methods, we determine the search range
for well-constrained and ill-conditioned 3D points in different
ways. For well-constrained points whose 3D positions are reliable,
we only need to predict the camera pose of current frame Ci to

Figure 3: Local homography estimation. Top: 37 matches are ob-
tained by global homography and specific plane homographies. Bot-
tom: additional 153 matches are obtained by the estimated local ho-
mographies.

project the 3D points and determine the search location. We use
the global homographies HG

i to predict Ci. As introduced in Sec-
tion 4.1, the global homographies are derived from last frame Ii−1,
and the overlapping keyframe set of last frame is Ki−1. Without
loss of generality, we denote an arbitrary 2D feature in Fk ∈ Ki−1 as
xk and its corresponding 3D point as Xk. By xi = π(HG

k→ix
h
k), we

can get a 3D-2D correspondence (Xk,xi). The set of all such 3D-
2D correspondences is denoted as VCi = {(X j,x j)}. We can predict
the camera pose by solving

argmin
Ci

∑
(X j ,x j)∈VCi

||π(K(Ri(X j −pi)))−x j||δx . (6)

For ill-conditioned points, we first try π(HG
k→ix

h
k) directly as the

search location. If the tracking quality is poor, then a set of local ho-
mographies HL

k→i are estimated from the matched correspondences.

We try each of the search locations in {HL j
k→ixk|H

L j
k→i ∈ HL

k→i} for
those unmatched features. For each search location, the search
range is determined as a r×r rectangle region centered at the search
location. We set r = 10 and r = 30 for well-constrained and ill-
conditioned points respectively.

Our multi-homography representation not only can predict good
starting points but also can correct perspective distrotion. Given a
homography Hk→i, we warp the local patch around xk in keyframe
Fk to current frame Ii as

X (y) = Ik(H−1
k→i(π(Hk→ixh

k +yh))) (7)

where X (y) is the patch intensity at offset y relative to patch center.
y ∈ (−W/2,W/2)× (−W/2,W/2), W is the patch size and set to 8
in our experiments. For the points belonging to a 3D plane P j, we

use the derived planar homography HP j
k→i (see (2)) for patch warp-

ing. For other points, similar to the prediction of search range, we
first try global homography HG

k→i, then each of HL
k→i for those lost

tracked features if tracking quality is poor. Considering that strong
perspective change between consecutive frames seldom happens,
it is unnecessary to re-compute (7) for each input frame. We can
compute the change of the four corners for each warped patch, and
re-compute (7) only if the change is larger than a threshold.

Given a correct and tight search range and undistorted patch, we
can easily track the correspondence in the current frame. Similar to

4

PTAM, we compute zero-mean SSD scores at extracted FAST cor-
ners within the search region, and select the best one if the differ-
ence is less than a threshold. Note that our position prediction and
patch distortion correction do not assume any prior motion model,
which makes our approach robust to fast motion and strong rota-
tion. In addition, it does not require expensive invariant descriptor
computation or large-range patch searching, so that our local map
expansion can be executed in the foreground thread without delay.

Some previous methods [37, 14, 36] also use multiple homogra-
phies to obtain point correspondences, but for different purposes.
[37] uses expensive SIFT features for high quality structure-from-
motion, which cannot run in real-time on a CPU. Both [14] and
[36] aim to obtain dense correspondences on background pixels. In
contrast, our method uses FAST corners and global image align-
ment to quickly obtain initial matches, and then estimate local ho-
mographies to increase the number of matches if necessary. In our
method, since sufficient feature matches generally can be obtained
by the global homography and specific plane homographies, local
homography estimation is seldom invoked. Only in the case where
very large parallax exists between Fk and Ii, and the overlapping re-
gion consists of multiple separated planes, for those ill-conditioned
points, extensively trying each local homography becomes neces-
sary. As shown in Figure 3, 37 matches are obtained by global
and specific plane homographies, and additional 153 matches are
obtained by local homographies.

5 MAPPING

The proposed robust and efficient feature tracking allows real-time
local map expansion and optimization, which is crucial to support
fast motion and strong rotation. The foreground thread maintains
a local map containing a sliding window of most recent frames,
and the 3D points which are not well-constrained by keyframes but
having at least one observation in the sliding window. These 3D
points must be instantiated as soon as possible to track the subse-
quent camera poses, and must be refined continuously to reduce
drift. We propose an efficient method for local map expansion and
optimization, as described in Section 5.1. The optimization frame-
work can be extended to incorporate real IMU data. The global
map contains the keyframes, the well-constrained 3D points, and a
set of extracted 3D planes. If new well-constrained 3D points are
triangulated, we can use them to expand the existing 3D planes and
extract new 3D planes. The details will be described in Section 5.2.

5.1 RealTime Local Map Expansion and Optimization
For a 2D feature xk in Fk, once the correspondence xi in Ii is found,
we instantiate the 3D point X immediately. First, we compute the
ray angle as

α(i,k) = acos(
r⊤k ri

||rk|| · ||ri||
) (8)

where r j = R⊤
j K−1xh

j . In ideal case where the parallax is sufficient
with α(i,k) ≥ δα , we instantiate X by traditional triangulation al-
gorithm [9]. We set δα = 1◦ in our experiments. Unfortunately in
most cases, the parallax is insufficient at first observation. But on
the other hand, any depth of xk results in similar re-projection in
Ii, so we could safely assign arbitrary depth to xk at this stage. We
choose the mean depth value dk of keyframe Fk to initialize X as
X = dkK−1xh

k , and optimize X as

argmin
X

||π(KRk(X−pk))−xk||22 + ||π(KRi(X−pi))−xi||22. (9)

Depth error could affect camera tracking once there is sufficient
motion parallax. It is best to perform BA over the local map while
each new frame comes, but not feasible for real-time performance.
Instead we alternate the optimization for only 3D points or camera

poses while fixing the other. This strategy is very effective in prac-
tice and can significantly reduce the computation to allow real-time
performance even on a mobile device. At first glance this strat-
egy seems to be suboptimal. But in fact, we only adjust those ill-
conditioned 3D points here, keeping the well-constrained 3D points
fixed. The well-constrained 3D points are optimized by global BA
in the background and generally very accurate. Camera pose esti-
mation benefits from these well-constrained 3D points, and in turn
improves the accuracy of those ill-conditioned 3D points.

It is rather simple to optimize 3D points while fixing camera
poses. Each 3D point Xi can be optimized independently by mini-
mizing

argmin
Xi

∑
j∈VXi

||π(K(R j(Xi −p j)))−xi j||δx (10)

where VXi is the set of frame indexes for keyframes and the frames
in sliding window in which Xi is observed.

Each camera i could also be optimized independently as

argmin
Ci

∑
j∈Vi

||π(K(Ri(X j −pi)))−xi j||δx (11)

where Vi is the set of point indexes for the 3D points visible in
frame i. However, for extremely severe blur caused by fast cam-
era motion, any feature tracking method would fail. Those blurred
frames are lack of constraints for reliable camera pose estimation.
Since fast camera motion generally occurs occasionally and does
not last for a long time, we can use neighboring frames to constrain
the blurred frames. Specifically, we borrow the idea from visual-
inertial SLAM [26, 11, 20]. Assuming that we have IMU measure-
ments, namely the linear acceleration â and rotational velocity ω̂ ,
expressed in local frame. The state of camera motion is augmented
as

s = [q⊤ p⊤ v⊤ b⊤
a b⊤

ω]
⊤ (12)

where v is the linear velocity expressed in global frame, ba and bω
are time-varying bias of linear acceleration and rotational velocity
respectively. The true linear acceleration a and rotational velocity
ωωω are

a = â−ba +na (13)

ωωω = ω̂ωω −bω +nω (14)

where na ∼ N (0,σ2
na

I) and nω ∼ N (0,σ2
nω I) are Gaussian noise

of the inertial measurements. I is the 3 × 3 identity matrix. In
our experiments, we generally set σna = 0.01 m/(s2

√
HZ) and

σnω = 0.01 rad/(s
√

HZ) (we set σnω = 0.001 rad/(s
√

HZ) if real
IMU measurements are provided).The continuous time kinematic
model [1] describing the time evolution of the state is

q̇ =
1
2

ΩΩΩ(ωωω)q

ṗ = v

v̇ = R⊤a

ḃa = wa

ḃω = wω

(15)

where

ΩΩΩ(ωωω) =

[
−[ωωω]× ωωω
−ωωω⊤ 0

]
(16)

and [·]× denotes the skew symmetric matrix. ba and bω are mod-
eled as random-walk process driven by the white Gaussian noise
wa ∼ N (0,σ2

wa
I) and wω ∼ N (0,σ2

wω I) respectively. In our ex-
periments, we generally set σwa = 0.001 m/(s3

√
HZ) and σwω =

5

0.0001 rad/(s2
√

HZ). For discrete time state, we use the zero-th
order integrator proposed in [34] for quaternion propagation:

qi+1 = q∆(ωωω i, t∆i)⊗qi (17)

where

q∆(ωωω, t∆) =

[

ωωω
|ωωω | sin(|ωωω |

2 t∆)

cos(|ωωω |
2 t∆)

]
if |ωωω|> εω[ωωω

2 t∆
1

]
otherwise

(18)

t∆i is the time interval between consecutive frames i and i+ 1. ⊗
is quaternion multiplication operator. εω is a small value to avoid
division by zero. In our experiments, we set εω = 0.00001. The
true q∆(ωωω i, t∆i) can be approximated as

q∆(ωωω i, t∆i)≈
[

θ̃
2
1

]
⊗q∆(ω̂ωω i −bωi , t∆i) (19)

where θ̃ is a 3×1 error vector. Substituting (14) to (19) with rear-
ranging, we have

θ̃ ≈ 2
[
q∆(ω̂ωω i −bωi +nω , t∆i)⊗q−1

∆ (ω̂ωω i −bωi , t∆i)
]

1:3

≈ 2Gω nω
(20)

Gω is the Jacobian matrix with respect to the noise nω . Substituting
(19) to (17) with rearranging, we have

θ̃ ≈ 2
[
qi+1 ⊗q−1

i ⊗q−1
∆ (ω̂ωω i −bωi , t∆i)

]
1:3

(21)

Combining (20) and (21), we define the cost function and its co-
variance for the rotation component as

eq(qi,qi+1,bωi) =
[
qi+1 ⊗q−1

i ⊗q−1
∆ (ω̂ωω i −bωi , t∆i)

]
1:3

Σq = σ2
nω Gω G⊤

ω

(22)

Derivation for other components is trivial. The discrete time state
propagate is

pi+1 = pi +vit∆i +R⊤
i p∆(ai, t∆i)

vi+1 = vi +R⊤
i v∆(ai, t∆i)

bai+1 = bai +wat∆i

bωi+1 = bωi +wω t∆i

(23)

where
p∆(a, t∆) =

1
2

at2
∆

v∆(a, t∆) = at∆
(24)

The cost functions and corresponding covariances are

ep(qi,pi,pi+1,vi,bai) = Ri(pi+1 −pi −vit∆i)−p∆(âi −bai , t∆i)

ev(qi,vi,vi+1,bai) = Ri(vi+1 −vi)−v∆(âi −bai , t∆i)

eba(bai ,bai+1) = bai+1 −bai

ebω (bωi ,bωi+1) = bωi+1 −bωi

Σp =
1
4

σ2
na

t4
∆i

I

Σv = σ2
na

t2
∆i

I

Σba = σ2
wa

t2
∆i

I

Σbω = σ2
wω t2

∆i
I

(25)

Based on these relative constraints between consecutive frames
as defined in (22) and (25), we can define the following energy
function with all the motion states s1 · · ·sl in the sliding window as

argmin
s1 ···sl

l

∑
i=1

∑
j∈VCi

||π(K(Ri(X j −pi)))−xi j ||δx +
l−1

∑
i=1

||eq(qi,qi+1,bωi)||
2
Σq

+
l−1

∑
i=1

||ep(qi,pi,pi+1,vi,bai)||
2
Σp +

l−1

∑
i=1

||ev(qi,vi,vi+1,bai)||
2
Σv

+
l−1

∑
i=1

||eba (bai ,bai+1)||
2
Σba

+
l−1

∑
i=1

||ebω (bωi ,bωi+1)||
2
Σbω

(26)

where l is the size of sliding window, and ||e||2Σ = e⊤Σ−1e is the
squared Mahalanobis distance.

The above derivation assumes we have the inertial measurement
âi and ω̂i, but actually IMU sensor may be not available. For
linear acceleration, we can safely set âi = 0 because abrupt jump
rarely happens for AR applications. However, for rotational veloc-
ity, since the user may frequently turn around to see the whole AR
effect, we cannot set ω̂i = 0. Instead we align the consecutive SBIs
with feature matches to solve a best fit ω̂i

ω̂i = argmin
ω

(∑
x∈ΩΩΩ

||Ĩi(x)− Ĩi+1(π(KR∆(ωωω , t∆i)K
−1xh))||δI

+ ∑
(xi,xi+1)∈Mi,i+1

1
δx

||π(KR∆(ωωω , t∆i)K
−1xh

i)−xi+1||22)
(27)

where R∆(ωωω, t∆) is the rotation matrix of (18), and Mi,i+1 is the
set of feature matches between image i and i+ 1. δx controls the
weight of the residual error of feature matches, and set to 10 in our
experiments. We use Gaussian Newton algorithm to solve (27).

The above optimization framework can easily be extended to in-
corporate real IMU data. The only difference is that there may be
multiple IMU measurements between two consecutive frames. De-
note the set of IMU measurements between frame i and i+ 1 as
{(âi j, ω̂ωω i j, ti j)| j = 1 · · ·ni}, where âi j , ω̂ωω i j and ti j are j-th linear
acceleration, rotational velocity and time stamp respectively. Pre-
integration techniques [23, 7] can be used to pre-integrate these
IMU measurements, and replace the delta components of (18) and
(24) with

q∆
(
{(ω̂ωω i j −bωi , ti j)}

)
≈ q∆

(
{(ω̂ωω i j − b̂ωi , ti j)}

)
+

∂q∆
∂ bω

(bω − b̂ω)

p∆
(
{(âi j −bai , ω̂ωω i j −bωi , ti j)}

)
≈ p∆

(
{(âi j − b̂ai , ω̂ωω i j − b̂ωi , ti j)}

)
+

∂p∆
∂ba

(ba − b̂a)+
∂p∆
∂ bω

(bω − b̂ω)

v∆
(
{(âi j −bai , ω̂ωω i j −bωi , ti j)}

)
≈ v∆

(
{(âi j − b̂ai , ω̂ωω i j − b̂ωi , ti j)}

)
+

∂v∆
∂ba

(ba − b̂a)+
∂v∆
∂ bω

(bω − b̂ω)

where b̂ai and b̂ωi are the state of bai and bωi at the pre-integration
time. The Jacobians are evaluated at these states, and calculated
for once. More details can be found in [7]. Here we assume the
gravity component has been excluded and âi j is the user-generated
acceleration. It can be obtained by using sensor fusion algorithms
like [34] to refine the raw data from accelerometer and gyroscope.
In our experiments, we use the IMU measurements provided by an
iPhone 6 which have been filtered.

Compared to previous visual-inertial SLAM methods [26, 11,
20], our method does not jointly optimize 3D points in (26), and
does not marginalize states moved out of the sliding window either,
which makes the optimization very efficient. Normal equations are
rather sparse, with only non-zero elements along the diagonal band
corresponding to consecutive frames. Again, global localization
accuracy is guaranteed by the well-constrained 3D points optimized
by BA in the background.

6

Figure 4: The extracted 3D planes by fitting the recovered 3D points.

5.2 3D Planes Extraction and Global Map Optimization
Similar to [17], we perform local and global BA to refine the map
and camera poses of keyframes in the background. For each 3D
point in the new keyframe Fk, we first check the maximal ray an-
gle with existing keyframe by (8). If maxi α(i,k) ≥ δα and the
3D position is successfully triangulated, we mark the point well-
constrained. Then we expand the existing 3D planes visible in Fk
by the new well-constrained 3D points belonging to the plane. To
decide whether a 3D point X belongs to a 3D plane P, we could just
check the point-to-plane distance |n⊤X+ d|. However, satisfying
the plane equation is only a necessary but not sufficient condition
to decide whether X belongs to P because plane equation does not
contain the plane boundary information. We assume points belong-
ing to the same plane are close to each other in space, and check the
point-to-plane distance only for neighbors of those points already
assigned to the plane. We define the neighborhood by performing
Delaunay triangulation over the 2D features on keyframe Fk. A 3D
point X is added to the set VP of plane P if it satisfies three condi-
tions: 1) X has not been assigned to any plane, 2) X is connected to
another point in VP, 3) |n⊤X+d|< δP. We set δP = 0.01dk in our
experiments, where dk is the mean depth of keyframe Fk.

We use RANSAC algorithm [5] to extract new 3D planes. At
each RANSAC iteration, we randomly sample three connected
points to initialize an inlier 3D point set VP. A 3D plane hypothesis
P is generated from VP. Then we start an inner loop, in which plane
expansion and optimization are alternated iteratively. At each inner
iteration, we check the point-to-plane distance for those 3D points
X connected to the points in VP, and add X to VP if |n⊤X+d|< δP.
Then we optimize P using all points in VP by minimizing

argmin
P

∑
X∈VP

(n⊤X+d)2 (28)

and try to expand VP again. The inner iteration is repeated until
no points can be added to VP. We discard P and VP if |VP| < 30.
To avoid assigning a point to multiple planes, after RANSAC op-
eration, we sort the extracted planes in descending order of the
number of associated 3D point. Denote the sorted inlier set as
{VPi |i = 1 · · ·NP}. Starting from the first, for each VPi , if a 3D point
X ∈VPi is also included in previous planar point set VP j (j < i), we
remove this point from VPi . Figure 4 shows the extracted 3D planes.

The 3D plane parameters are also refined in global BA by adding
the point-to-plane constraints. We jointly optimize all the camera
poses of keyframes, 3D points and 3D planes by minimizing the
following energy function with Levenberg Marquart algorithm:

argmin
C,X,P

NF

∑
i=1

∑
j∈Vi

||π(K(Ri(X j −pi)))−xi j||δx

+
NP

∑
i=1

∑
j∈VPi

||n⊤
i X j +di||δP .

(29)

It should be noted that other functions in our paper are also solved
by Levenberg Marquart algorithm, except for (3), (5) and (27).

6 EXPERIMENTAL RESULTS

Module Time per frame
Feature extraction ∼ 2 ms
Feature tracking 2 ∼ 8 ms

Local map expansion and optimization 2 ∼ 4 ms

Table 1: Process time per frame with a single thread.

We have conducted experiments with several challenging ex-
amples on both PC and mobile devices. The test sequences with
640×480 resolution are captured by an iPhone 6 mobile phone. Ta-
ble 1 shows the time spent in different steps with a single thread on
a desktop PC with a Intel(R) Core(TM) i7-4770K CPU @ 3.5GHz
and 32GB memory. The feature tracking module generally only
takes about 2 ms per frame except when local homography estima-
tion or re-localization is invoked. So the computation in the fore-
ground thread usually takes no more than 8 ms per frame. While
running the recorded sequences, we set the frame rate to 60fps for
allowing sufficient time for local BA to refine the map. The com-
putation frame rate on an iPhone 6 can be around 20 ∼ 50 fps gen-
erally, which is fast enough for many mobile AR applications. The
datasets, executable app and SDK can be found in our project web-
page1.

6.1 Qualitative Evaluation
We make a comparison with other state-of-the-art monocular
SLAM systems, i.e. ORB-SLAM2 [27], PTAM [17, 18], LSD-
SLAM [4], RDSLAM [33], SVO [6], and DT-SLAM [10]. We
directly use the implementation provided by the authors.

Figure 5 shows an indoor example where the camera captured
a desktop with fast motion and strong rotation. The initialization
ways of different methods may be quite different. PTAM and RD-
SLAM require the user to specify two initial keyframes for initial-
ization. ORB-SLAM and DT-SLAM can automatically select two
keyframes with sufficient parallax for initialization. LSD-SLAM
and SVO directly initialize the map with random or mean depth.
Our system can either detect a known marker (e.g. an A4 paper)
or use the specified one or two frames for initialization. So in
the beginning, we moved the camera from side to side to ensure
each SLAM system can successfully initialize the map and camera
poses. Then the camera moved around the desktop with frequently
sudden rotation and fast movement.

We first compare the results by our method with four different
settings for sliding window based optimization: 1) discarding mo-
tion prior constraints from (26); 2) âi = 0 and ω̂i = 0; 3) âi = 0 and
ω̂ is estimated by solving (27); 4) using real IMU measurements.
As shown in Figures 5(a) and (b), tracking frequently fails in the
cases of fast motion and strong rotation if we discard motion prior
constraints or directly set ω̂i = 0. Other SLAM systems also have
this problem or suffer from serious drift as shown in (e)-(h). By
incorporating motion prior constraints with rotational velocity es-
timation, our method can faithfully recover the camera poses even
in the case of fast camera motion with severe blur as shown in Fig-
ure 5(c). With the real IMU measurements, the robustness can be
further improved, as shown in (d). We found that PTAM work more
robust than other methods (except our method) for this example.
The reason may be that PTAM uses pyramid matching and small
blur images which is not so sensitive to motion blur. In addition,
fronto-parallel patch assumption and delayed triangulation with lo-
cal map optimization in a background thread work well in this small
scene example. The results by RDSLAM, SVO and DT-SLAM are
included in the supplementary video.

1http://www.zjucvg.net/rkslam/rkslam.html
2We use the source code of ORB-SLAM2 from the website

https://github.com/raulmur/ORB SLAM2

7

Table 2: Localization error comparison in the TUM RGB-D dataset. From left to right: RMSE (cm) of keyframes, the starting ratio (i.e. dividing
the initialization frame index by the total frame number), and the tracking success ratio after initialization.

Group Sequence RKSLAM ORB-SLAM PTAM LSD-SLAM
A fr1 xyz 0.61/0%/100% 1.05/0%/100% 1.29/0%/100% 7.64/0%/100%
A fr2 xyz 0.43/0%/100% 0.23/0%/100% 0.29/0%/100% 6.32/0%/100%
A fr3 sitting xyz 1.98/0%/92% 1.31/5%/100% X 9.12/0%/100%
B fr1 desk 1.69/0%/100% 1.40/12%/100% 2.71/0%/44% 3.86/27%/100%
B fr2 desk 10.10/0%/97% 0.78/6%/100% 0.55/0%/20% 17.41/0%/100%
B fr3 long office 2.48/0%/100% 2.17/0%/100% 0.82/0%/31% 36.04/30%/100%
C fr1 rpy 1.26/0%/100% 5.53/4%/84% X 3.26/0%/11%
C fr2 rpy 0.41/0%/100% 0.23/32%/100% 0.56/0%/100% 3.71/0%/25%
C fr3 sitting rpy 1.44/0%/100% 0.19/93%/100% 2.44/0%/93% 3.36/0%/89%
D fr1 360 11.81/0%/95% 8.16/5%/11% X 8.25/0%/5%
D fr2 360 hemisphere 17.48/0%/88% 12.27/1%/65% 76.50/0%/33% 25.64/0%/19%
D fr2 pioneer 360 20.24/0%/86% 1.40/69%/46% 59.09/0%/98% 30.62/0%/41%

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5: SLAM result comparison of an indoor example by inserting
virtual cubes. (a) The result by RKSLAM without motion prior con-
straints. (b) The result by RKSLAM with setting âi = 0 and ω̂i = 0.
(c) The result by RKSLAM with rotational velocity estimation. (d) The
result by RKSLAM with real IMU measurements. (e) The result by
ORB-SLAM. (f) The result by PTAM. (g) The result by LSD-SLAM.

(a)

(b)

(c)

(d)

(e)

Figure 6: SLAM result comparison by inserting virtual cubes. (a)
The result by RKSLAM with rotational velocity estimation. (b) The
result by RKSLAM with real IMU measurements. (c) The result by
ORB-SLAM. (d) The result by PTAM. (e) The result by LSD-SLAM.

Figure 6 shows another challenging outdoor example whose
scale is much larger than the above indoor example. Again, our
method works rather well in this challenging example and signifi-
cantly outperforms previous methods. Even without IMU measure-
ments, our method still can faithfully recover the camera poses in
almost all frames. With real IMU measurements, the result is fur-
ther slightly improved, as shown in Figure 6(b). Please refer to
our supplementary video to watch more complete comparison and
another indoor example.

8

(a) (b) (c) (d) (e)

Figure 7: AR application on an iPhone 6. (a) The camera center is toward the A4 paper on the ground. (b) The recognized A4 paper with map
initialization. (c)-(e) Inserting three different chairs into the scene and watching them from three different viewpoints.

6.2 Quantitative Evaluation
We use the TUM RGB-D dataset [32] to perform quantitative eval-
uation and make comparison with ORB-SLAM, PTAM, and LSD-
SLAM. We select 12 sequences, classified into 4 groups accord-
ing to their motion type: A) simple translation; B) there are loops;
C) slow and nearly pure rotation; D) fast motion with strong rota-
tion. We only use RGB information for all methods. The RMSE
of keyframes and the completeness of camera trajectories are com-
puted and listed in Table 2. To evaluate the trajectory completeness,
we compute the starting ratio (i.e dividing the initialization frame
index by the total frame number), and the tracking success ratio
after initialization.

We define tracking failure as if the camera pose is not success-
fully estimated (for other methods) or relative localization error
to the keyframe with maximum common features is larger than
10cm (for our method, actually more strict). For the sequences in
group A, most methods obtain good results. The success ratio of
all other methods is low for the sequences in group D, which are
most challenging and quite similar to our sequences. In contrast,
our success ratio is much higher, and our RMSE is also good in
most sequences. Although ORB-SLAM has lower RMSE in more
sequences, the success ratio is rather low for the sequences in group
D. For the sequences in group B, our RMSE is larger than that of
ORB-SLAM which uses more expensive ORB features to better
handle loop closure.

6.3 AR Application
Here we show an AR application that the user can use a mobile
device to capture the scene and then insert one or multiple 3D fur-
niture models into his home to “see” the effect of furniture plac-
ing without imagination. Since the real size of the recovered 3D
structure by monocular SLAM is unknown, we need a method to
precisely estimate the scale so that the 3D furniture models can be
inserted into the scene with accurate size. However, even with the
noisy IMU measurements provided by a mobile device, the real size
is not easy to be precisely estimated immediately. A more reliable
method is to use a known size marker. In our AR application sys-
tem, we choose to use an A4 paper which can be easily obtained
by users. Making the camera center toward the A4 paper in the be-
ginning, our AR system can automatically detect its four edges with
camera pose estimation, as shown in Figures 7(a) and (b). After ini-
tialization, the user can freely download the 3D models in the item
list and insert them into the scene, as shown in Figures 7(c)-(e).
Please refer to the supplementary video for the better presentation
of this result.

7 CONCLUSIONS

In this paper, we have presented a novel keyframe-based monocular
SLAM system which can robustly handle fast camera motion and
strong rotation. In order to achieve this objective, we contribute
a novel multi-homography based feature tracking method which
can utilize the global and local planarity of the scenes to guide the
matching. This feature tracking method not only can robustly han-
dle fast camera motion and strong rotation but also very efficient

to allow real-time computation even on a mobile device. In addi-
tion, we propose a novel sliding-window based local map expan-
sion and optimization framework, which not only can triangulate
and optimize the new 3D points immediately without delay but also
can utilize the motion prior constraints among neighboring frames
to improve the robustness of camera pose estimation by simulating
IMU measurements. This framework also can be extended to incor-
porate real IMU measurements if available to further improve the
robustness and accuracy.

Similar to other feature point based visual SLAM methods, if
the scene is extremely textureless or there are many repeated tex-
tures/structures, our system may fail. If IMU measurements are
available, this problem can be alleviated. In our future work, we
also would like to combine quasi-dense matching or direct tracking
method like [4] to alleviate this problem.

ACKNOWLEDGMENTS

The authors would like to thank all the reviewers for their construc-
tive comments to improve this paper, and Hangzhou Pink Elephant
Digital Technology Co., Ltd for providing furniture 3D models.
This work was supported in part by the National Key Technology
Research and Development Program of the Ministry of Science
and Technology of China under Grant 2014BAK14B01, NSF of
China (Nos. 61232011 and 61272048), the Fundamental Research
Funds for the Central Universities (Grant No. 2015XZZX005-05),
and a Foundation for the Author of National Excellent Doctoral
Dissertation of PR China (Grant No. 201245).

REFERENCES

[1] A. B. Chatfield. Fundamentals of high accuracy inertial nav-
igation. AIAA, 1997.

[2] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 29(6):
1052–1067, 2007.

[3] T.-C. Dong-Si and A. I. Mourikis. Motion tracking with fixed-
lag smoothing: Algorithm and consistency analysis. In IEEE
International Conference on Robotics and Automation, pages
5655–5662. IEEE, 2011.

[4] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-
scale direct monocular SLAM. In 13th European Conference
on Computer Vision, Part II, pages 834–849. Springer, 2014.

[5] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: A paradigm for model fitting with applications to image
analysis and automated cartography. Commun. ACM, 24(6):
381–395, 1981.

[6] C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast semi-
direct monocular visual odometry. In IEEE International
Conference on Robotics and Automation, pages 15–22. IEEE,
2014.

9

[7] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza.
IMU preintegration on manifold for efficient visual-inertial
maximum-a-posteriori estimation. In Robotics: Science and
Systems, 2015.

[8] S. Gauglitz, C. Sweeney, J. Ventura, M. Turk, and T. Hollerer.
Live tracking and mapping from both general and rotation-
only camera motion. In IEEE International Symposium on
Mixed and Augmented Reality, pages 13–22. IEEE, 2012.

[9] R. Hartley and A. Zisserman. Multiple view geometry in com-
puter vision. Cambridge university press, 2004.

[10] C. Herrera, K. Kim, J. Kannala, K. Pulli, J. Heikkila, et al.
DT-SLAM: Deferred triangulation for robust SLAM. In IEEE
International Conference on 3D Vision, volume 1, pages 609–
616, 2014.

[11] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roume-
liotis. Consistency analysis and improvement of vision-aided
inertial navigation. IEEE Transactions on Robotics, 30(1):
158–176, 2014.

[12] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. Analysis
and improvement of the consistency of extended kalman filter
based SLAM. In IEEE International Conference on Robotics
and Automation, pages 473–479, 2008.

[13] V. Indelman, S. Williams, M. Kaess, and F. Dellaert. Infor-
mation fusion in navigation systems via factor graph based
incremental smoothing. Robotics and Autonomous Systems,
61(8):721–738, 2013.

[14] Y. Jin, L. Tao, H. Di, N. I. Rao, and G. Xu. Background mod-
eling from a free-moving camera by multi-layer homography
algorithm. In 15th IEEE International Conference on Image
Processing, pages 1572–1575, 2008.

[15] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard,
and F. Dellaert. iSAM2: Incremental smoothing and map-
ping using the bayes tree. International Journal of Robotics
Research, 31(2):216–235, 2012.

[16] C. Kerl, J. Stuckler, and D. Cremers. Dense continuous-time
tracking and mapping with rolling shutter RGB-D cameras.
In IEEE International Conference on Computer Vision, pages
2264–2272, 2015.

[17] G. Klein and D. W. Murray. Parallel tracking and mapping
for small AR workspaces. In 6th IEEE/ACM International
Symposium on Mixed and Augmented Reality, pages 225–234,
2007.

[18] G. Klein and D. W. Murray. Improving the agility of
keyframe-based SLAM. In 10th European Conference on
Computer Vision, Part II, pages 802–815. Springer, 2008.

[19] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transactions
on Information Theory, 47(2):498–519, 2001.

[20] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Fur-
gale. Keyframe-based visual-inertial odometry using nonlin-
ear optimization. The International Journal of Robotics Re-
search, 34(3):314–334, 2015.

[21] M. Li and A. I. Mourikis. High-precision, consistent EKF-
based visual-inertial odometry. The International Journal of
Robotics Research, 32(6):690–711, 2013.

[22] S. Lovegrove, A. Patron-Perez, and G. Sibley. Spline fu-
sion: A continuous-time representation for visual-inertial fu-
sion with application to rolling shutter cameras. In British
Machine Vision Conference. BMVA Press, 2013.

[23] T. Lupton and S. Sukkarieh. Visual-inertial-aided navigation
for high-dynamic motion in built environments without ini-
tial conditions. IEEE Transactions on Robotics, 28(1):61–76,
2012.

[24] M. Meilland, T. Drummond, and A. I. Comport. A unified
rolling shutter and motion blur model for 3D visual registra-
tion. In IEEE International Conference on Computer Vision,
pages 2016–2023, 2013.

[25] J.-M. Morel and G. Yu. ASIFT: A new framework for fully
affine invariant image comparison. SIAM Journal on Imaging
Sciences, 2(2):438–469, 2009.

[26] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint
kalman filter for vision-aided inertial navigation. In IEEE In-
ternational Conference on Robotics and Automation, pages
3565–3572. IEEE, 2007.

[27] R. Mur-Artal, J. Montiel, and J. D. Tardos. ORB-SLAM: a
versatile and accurate monocular SLAM system. IEEE Trans-
actions on Robotics, 31(5):1147–1163, 2015.

[28] C. Pirchheim, D. Schmalstieg, and G. Reitmayr. Handling
pure camera rotation in keyframe-based SLAM. In IEEE
International Symposium on Mixed and Augmented Reality,
pages 229–238, 2013.

[29] E. Rosten and T. Drummond. Machine learning for high-
speed corner detection. In 9th European Conference on Com-
puter Vision, Part I, pages 430–443. Springer, 2006.

[30] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:
an efficient alternative to SIFT or SURF. In IEEE Inter-
national Conference on Computer Vision, pages 2564–2571.
IEEE, 2011.

[31] H. Strasdat, J. M. Montiel, and A. J. Davison. Visual SLAM:
why filter? Image and Vision Computing, 30(2):65–77, 2012.

[32] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of RGB-D SLAM sys-
tems. In IEEE/RSJ International Conference on Intelligent
Robot Systems, pages 573–580, Oct. 2012.

[33] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao. Robust
monocular SLAM in dynamic environments. In IEEE Inter-
national Symposium on Mixed and Augmented Reality, pages
209–218, 2013.

[34] N. Trawny and S. I. Roumeliotis. Indirect kalman filter for 3D
attitude estimation. Technical Report 2005-002, University of
Minnesota, Dept. of Comp. Sci. & Eng., Mar. 2005.

[35] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-
bon. Bundle adjustment–a modern synthesis. In Vision algo-
rithms: theory and practice, pages 298–372. Springer, 1999.

[36] D. Zamalieva, A. Yilmaz, and J. W. Davis. A multi-
transformational model for background subtraction with mov-
ing cameras. In European Conference on Computer Vision,
pages 803–817. Springer, 2014.

[37] G. Zhang, Z. Dong, J. Jia, T. Wong, and H. Bao. Efficient
non-consecutive feature tracking for structure-from-motion.
In 11th European Conference on Computer Vision, Part V,
pages 422–435. Springer, 2010.

10

