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Abstract—Extracting high-quality dynamic foreground layers from a video sequence is a challenging problem due to the coupling of

color, motion, and occlusion. Many approaches assume that the background scene is static or undergoes the planar perspective

transformation. In this paper, we relax these restrictions and present a comprehensive system for accurately computing object motion,

layer, and depth information. A novel algorithm that combines different clues to extract the foreground layer is proposed, where a

voting-like scheme robust to outliers is employed in optimization. The system is capable of handling difficult examples in which the

background is nonplanar and the camera freely moves during video capturing. Our work finds several applications, such as high-quality

view interpolation and video editing.

Index Terms—Bilayer segmentation, depth recovery, motion estimation, video editing.

Ç

1 INTRODUCTION

THE prevalence of Internet video facilitates the develop-
ment of video editing techniques [4], [44]. Layer

extraction is one of the vital tools that allow users to
separate foreground and background images in a video. Its
importance lies in the ability to produce layers whereby
users can easily create special effects, such as inserting the
foreground object into a virtual environment, and to
accomplish necessary adjustment, including removing
unwanted objects or deforming them.

High-quality layer separation from a video is a very
challenging problem because tightly coupled color, depth,
and motion give rise to a large number of variables and
significant ambiguity in computation. Previous methods
made various assumptions on the background scene or
camera motion to simplify the problem. For example,
bilayer segmentation methods [14], [20], [35], [43] assume
that the camera is fixed and/or the background color
distribution is not complex. It is, however, very common
that a captured video does not meet these requirements. So,
methods that can relax these conditions are in demand.

Background modeling is an important step for bilayer
segmentation. If the background image is known,1 the
foreground estimate can be obtained with the color and
contrast information [33], [35]. Otherwise, both layers have
uncertain pixel assignments, making accurately identifying

them challenging. The latter scenario commonly arises

when using a handheld camera.
In this paper, we tackle the layer segmentation problem

with the input of only a video sequence taken by a freely

moving camera. Our objective is the high-quality dynamic

foreground extraction, which requires that the computed

layers have accurate and temporally consistent boundary in

multiple frames. In addition, dense motion fields and depth

maps need to be solved for. To accomplish these goals, our

method uses several new measures and contributes an

iterative optimization scheme to refine the depth and

motion estimates.
In the bilayer segmentation step, depth and motion are

used to handle layer occlusion and resolve color similarity.

Unlike traditional solutions that weight different terms in

an objective function, we employ a simple voting-like

strategy to effectively balance the set of terms and

automatically reject occasional outliers. The bilayer seg-

mentation result is used to refine the optical flow field on

the dynamic foreground, avoiding the errors caused by

connecting a foreground pixel with a background one.
One example is shown in Fig. 1, which illustrates the

input and output of our system. In this example, the

background is nonplanar, the color distribution is complex,

and the camera moves. All of them make bilayer segmenta-

tion challenging to solve. Our system can successfully

accomplish foreground extraction, dense motion field

construction, and background depth map estimation.

Results are shown in Figs. 1d, 1e, and 1f.
A preliminary version of the work appeared in [46]. In

this paper, we significantly enhance the system reliability.

Major improvements also include 1) incorporating the

shape matching cost and image segmentation into optical

flow estimation, 2) using the multiview stereo method for

more effective depth/motion estimation, and 3) a new

method that combines depth, color, and motion to define

the overall data cost. In addition, we apply our method to a

group of applications, including video composition and
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1. A static or rotating camera enables background construction by the
clean plate or image mosaicing techniques [7], [36].
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view interpolation, to demonstrate its effectiveness at
solving different video editing problems.

Assumptions. Similarly to other bilayer segmentation
methods, we assume that only the foreground object is
dynamic or moving. Our method has a quick manual
preprocessing step using GrabCut [32] to coarsely indicate
the foreground layer from a single frame for color
distribution estimation. Our method is capable of dealing
with background with significant depth variation. In
addition, our video can be taken by a freely moving camera
with translation, rotation, or even forward/backward
motion. Panning/static camera and occasionally stationary
foreground can be handled thanks to the employment of a
few effective measures.

Another assumption is that an abrupt and significant
lighting variation does not frequently arise in successive
frames. Otherwise, the basic photoconsistency constraint in
multiview geometry would be constantly unusable.

2 RELATED WORK

2.1 Bilayer Segmentation

Several bilayer segmentation methods [14], [16], [35] have
been proposed assuming that the camera is mostly
stationary and the background is known or can be easily
modeled. Kolmogorov et al. [20] made use of stereo videos.
Object color, gradient, and displacement are integrated to
infer the foreground layer in real time. The approaches
presented in [14], [35] estimate the foreground layer from a
Web camera video using different spatial and temporal
priors. In [43], Yin et al. computed two layers monocularly
even in the presence of distracting background motion. All
of these methods do not handle the scenarios in which the
camera undergoes arbitrary motion and the background
geometry is complex.

For high-quality foreground extraction, several interac-
tive image/video segmentation/matting techniques [11],
[12], [23], [24], [25], [32], [37], [38], [39] were developed.
Most of them only use the color/contrast information or
require special camera configuration. Frequent user inter-
action is generally needed for challenging video examples.
Recently, Bai et al. [2] proposed a robust interactive video
object cutout system. The motion estimate, instead of being
incorporated into energy minimization to help reduce the

segmentation ambiguity, is used to propagate a set of local
classifiers across frames. Liu and Gleicher [27] proposed
incorporating learned color and locality cues in an MRF
framework. In this method, the motion information is
estimated independently without considering layers. In
[15], Dong et al. proposed a fast bilayer segmentation
method that can effectively extract the dynamic foreground
layer. However, it is limited to rotational camera motion.

2.2 Optical Flow and Motion Segmentation

As our method also estimates motion, we briefly review
related work. The energy minimization framework was
originally proposed by Horn and Schunck [18]. It was
typically solved with a coarse-to-fine strategy [29]. There
have been quite a number of methods to improve the
robustness, accuracy, and efficiency [5], [9], [10], [22], [40],
[42]. Nevertheless, obtaining high-quality optical flow fields
in the presence of large displacement and occlusion is still
difficult [8]. Boundary-accurate segmentation only based on
the optical flow field is almost impossible.

Motion segmentation [1], [19], [21], [41] aims to coarsely
group pixels that undergo similar motion and separate
them into multiple layers. These methods cannot accom-
plish high-quality foreground extraction and usually yield
imprecise object boundaries, especially when occlusion or
disocclusion happens.

3 SYSTEM OVERVIEW

Given a video sequence with n frames, our objective is to
estimate the bilayer, motion, and depth information for each
pixel. We denote by ItðxÞ the color of pixel x in frame t. �tx
(also denoted as �tðxÞ) has a binary value, representing the
layer label for pixel x in frame t. The pixel belonging to the
dynamic foreground makes �tx ¼ 1; otherwise, �tx ¼ 0. We
set � ¼ 0 for all pixels initially. Denoting by ztx the depth
value of pixel x in frame t, the disparity DtðxÞ is defined as
DtðxÞ ¼ 1=ztx by convention. di;jðxÞ denotes the motion
vector of pixel x from frame i to j.

Our method iterates between two main phases, i.e., the
dense motion and depth estimation and bilayer segmenta-
tion phases, for two passes. Table 1 gives an overview of
our method.
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TABLE 1
Overview of Our Method

Fig. 1. Foreground extraction, motion estimation, and background
reconstruction achieved in our system. (a)-(c) Three selected frames
from a sequence. (d) Extracted foreground of (b). (e) Computed optical
flow field. (f) Computed background depth map.



We start by using the structure from motion (SFM)

method of Zhang et al. [47] to recover the camera motion

parameters from the input video sequence. We apply the

SIFT algorithm [28], which produces a set of feature tracks

across frames, to estimate the camera poses. The feature

tracks on the dynamic foreground can automatically be

rejected according to the multiview geometry constraint

[17], leaving only background tracks for the camera motion

estimation. The output of SFM includes the recovered

camera parameter set C for all frames, and the 3D positions

of the background feature tracks. We denote by Ct ¼
fKt;Rt;Ttg the camera parameters for frame t, where Kt is

the intrinsic matrix, Rt is the rotation matrix, and Tt is the

translation vector.
With the recovered camera poses, we employ the multi-

view stereo method of Zhang et al. [45] to infer the view-

dependent dense depth maps for all frames. It is notable that

the dynamic foreground object does not satisfy the multi-

view geometry constraint and thus possibly does not receive

correct depth estimates, as demonstrated in Fig. 2. Contra-

rily, the background depth can be accurately computed even

without masking the foreground object out. This is because

the moving object is a type of “noise” in the depth

estimation, and can be effectively handled together with

image noise, occlusions, and estimation outliers. The

computed dense depth maps will be used in the latter

bilayer segmentation process.

4 DENSE MOTION ESTIMATION

We estimate motion for all pixels (Step 2 in Table 1) to

facilitate the following layer separation. The main differ-

ence between our method and traditional optical flow

estimation is that our method uses the layer information to

effectively handle occlusion and textureless regions. Note

that in [26], the layers need to be manually labeled

beforehand, while in our method the layer parameters can

be automatically computed and updated. We use the in-

plane displacement vector dt;tþ1ðxÞ (or dtþ1;tðxÞ) to denote

the motion of pixel x from frame t to tþ 1 (or from tþ 1 to

t). oðxÞ 2 f0; 1g labels occlusion. If the pixel x is occluded

when mapping from frame t to tþ 1, ot;tþ1ðxÞ ¼ 1; other-

wise ot;tþ1ðxÞ ¼ 0.

4.1 Initialization and Notations

To begin with, we partition each frame using the mean-shift
color segmentation method [13] and then perform the
following operations: 1) If a segment contains both fore-
ground and background pixels (based on the current �
estimate), it further splits. 2) A very small segment (with
less than 10 pixels) will be merged to a neighboring
segment with the most similar mean color. When these
operations are done, we represent the motion of a segment
between two images using a planar transformation. Let lti
denote the ith segment in frame t. For the pixel x 2 lti, its
displacement vector dt;tþ1ðxÞ is written as

dt;tþ1ðxÞ ¼ At;tþ1
lti

�Ht;tþ1x̂� x; ð1Þ

where x̂ is the homogenous coordinate of x and � is the
scaling factor, i.e., the inverse of the third coordinate of
Ht;tþ1x̂. Ht;tþ1 is a 3� 3 matrix, which represents the global
image transformation caused by camera rotation or varying
focal length. With the estimated camera parameters C,
Ht;tþ1 is written as

Ht;tþ1 ¼ Ktþ1Rtþ1ðRtÞ>ðKtÞ�1: ð2Þ

�Ht;tþ1x̂ is the rectified position of x after camera motion
compensation. Further, to describe the remaining motion
components, we use the general affine model At;tþ1

lti
to

represent the transformation of a segment lti from image t to
tþ 1. It is a 2� 3 matrix and is expressed as

At;tþ1
lti
¼ a1ðltiÞ a2ðltiÞ b1ðltiÞ

a3ðltiÞ a4ðltiÞ b2ðltiÞ

� �
;

where a1ðltiÞ, a2ðltiÞ, a3ðltiÞ, and a4ðltiÞ control rotation and
scaling, and b1ðltiÞ and b2ðltiÞ are the translation components.

Equation (1) describes the parametrization of a displace-
ment vector. In what follows, for simplicity’s sake, we still
denote by d the motion vector. In the optimization process,
all ds are substituted by the right-hand side expression of
(1) and the variables to be optimized are actually the six
elements in A.

4.2 Objective Function

We define the following objective function to compute the
dense displacement maps:

arg min
d;o

Xn�1

t¼1

ðEt;tþ1ðd; oÞ þ Etþ1;tðd; oÞÞ; ð3Þ

whereEt;tþ1ðd; oÞ andEtþ1;tðd; oÞ are the bidirectional energy
terms representing the mapping from frame t to tþ 1 and the
other way around, respectively. Since they are similarly
defined, we only describe the construction of Et;tþ1ðd; oÞ.
Et;tþ1ðd; oÞ consists of the color constancy, motion/

occlusion smoothness, and segmentation terms and is
defined as

Et;tþ1ðAt;tþ1; ot;tþ1Þ ¼
X
x2It

mt;tþ1ðxÞ þ
X

y2NðxÞ
st;tþ1ðx;yÞ

2
4

3
5

þEt;tþ1
r ðAt;tþ1Þ;

ð4Þ
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Fig. 2. Depth recovery with dynamic objects. (a) Selected frames from
an input video. (b) Recovered depth maps. Although the depth estimates
for the dynamic foreground are problematic, they do not much affect the
background depth estimation.



where Nð�Þ denotes the set of neighborhood. The three
components are, respectively: 1) the data matching term
mt;tþ1ðxÞ, 2) the smoothness term st;tþ1ðx;yÞ that is
comprised of spatial motion smoothness and visibility
consistency, and 3) a segmentation regularization term.

4.2.1 Data Term mðxÞ ¼ mIðxÞ þmSðxÞ
It contains the color matching cost mIðxÞ and the shape
matching cost mSðxÞ. mIðxÞ models color constancy with
regard to possible occlusion and is given by

mt;tþ1
I ðx;dt;tþ1ðxÞÞ

¼
min

�
�t;tþ1
d ðx;dt;tþ1ðxÞÞ; �d

�
; ot;tþ1ðxÞ¼0; �tx ¼ �tþ1

x0 ;

min
�
�t;tþ1
d ðx;dt;tþ1ðxÞÞ; �o

�
; ot;tþ1ðxÞ¼0; �tx 6¼ �tþ1

x0 ;

�o; ot;tþ1ðxÞ¼1;

8><
>:

ð5Þ

where x0 ¼ xþ dt;tþ1ðxÞ, and �t;tþ1
d ðx;dt;tþ1ðxÞÞ is a match-

ing function:

�t;tþ1
d ðx;dt;tþ1ðxÞÞ ¼ kItþ1ðxþ dt;tþ1ðxÞÞ � ItðxÞk2:

�o in (5) is a penalty, preventing all pixels from being

labeled as occlusion [34]. �d is a truncated value larger than

�o to determine the upper limit of the cost. If ot;tþ1ðxÞ ¼ 0

and �tx 6¼ �tþ1
xþdt;tþ1ðxÞ, there possibly exists occlusion.

On the other hand, we notice a foreground pixel x in

frame t should have its corresponding pixel x0 in frame

tþ 1 also in the foreground. We therefore define the shape

matching function as

mt;tþ1
S ðxÞ ¼ ���tx

�
�tx � �tþ1

xþdt;tþ1ðxÞ
�2
; ð6Þ

where �� is a weight. �tx and ð�tx � �tþ1
xþdt;tþ1ðxÞÞ

2 cause the

correspondence to be enforced only in the foreground layer.

This shape matching term significantly improves motion

estimation, especially for pixels with large displacement in

our experiments.

4.2.2 Smoothness Term sðx;yÞ
It encourages motion and occlusion smoothness and is
defined as

st;tþ1ðx;yÞ ¼ �s�t;tþ1
s ðx;yÞ þ �ojot;tþ1ðxÞ � ot;tþ1ðyÞj

þ �wjot;tþ1ðxÞ �Wt;tþ1ðxÞj;
ð7Þ

where �s and jot;tþ1ðxÞ � ot;tþ1ðyÞj are the spatial smooth-
ness constraints for displacement and occlusion. jot;tþ1ðxÞ �
Wt;tþ1ðxÞj is the temporal constraint. All �s are weights. �s
is a robust function written as

�t;tþ1
s ðx;yÞ ¼

�
1�

���tx � �ty���
�minfkdt;tþ1ðxÞ � dt;tþ1ðyÞk2; �sg;

which indicates that if two neighboring pixels belong to
different layers after bilayer segmentation, the spatial
smoothness does not need to be preserved. �s controls the
maximum cost.

In the last term jot;tþ1ðxÞ �Wt;tþ1ðxÞj, Wt;tþ1ðxÞ 2 f0; 1g
is a precomputed binary value based on the displacement

dtþ1;t, indicating whether or not pixel x in It receives a

projection from Itþ1 based on the current dtþ1;t [34].

Wt;tþ1ðxÞ has value 1 if there is no corresponding pixel in

Itþ1 for ItðxÞ, implying x is likely to be occluded in Itþ1.

4.2.3 Segmentation Regularization

We express the segment regularization term Er as a

function of the elements of At;tþ1
lti

. It is written as

Et;tþ1
r ðAt;tþ1Þ ¼ �A

XK
i¼1

��lti���ða1

�
lti
�
� 1
�2 þ a2

�
lti
�2

þ a3

�
lti
�2 þ

�
a4ðlti

�
� 1
�2�

;

ð8Þ

where jltij denotes the number of pixels in lti,K is the segment

number in the frame t, and �A is a weight. Equation (8)

imposes a strong first-order intrasegment smoothness

constraint, which regularizes the affine parameters and

enforces translational motion. Because matching in ubiqui-

tous textureless regions is usually ill-posed, incorporating

this regularization term can avoid large affine distortion.

4.3 Solving the Energy Function

The energy defined in (4) is a complex one. We solve for a

dense displacement map with the consideration of occlusion

and segmentation. The occlusion variables in o are initially

set to zeros. Note that in the aforementioned SFM step, the

SIFT algorithm is used to obtain a set of sparse feature tracks

linking corresponding pixels among frames. They define a

set of features in each frame together with the displacement

vectors. We use these points to triangulate the frames, as

illustrated in Fig. 3a. Motion vectors of all pixels are

initialized using triangular interpolation in each triangle.

The matrix At;tþ1
lti

for each segment lti is initialized with

a1ðltiÞ ¼ 1, a2ðltiÞ ¼ 0, a3ðltiÞ ¼ 0, and a4ðltiÞ ¼ 1. b1ðltiÞ and

b2ðltiÞ are initialized as the respective element values in the

mean motion vector for all pixels in segment lti.
After initialization, the motion estimation method alter-

nates between the following two steps in a maximum of

three passes:

1. Fix o. Equation (7) is simplified to �s�
t;tþ1
s ðx;yÞ. We

solve for the six elements of At;tþ1
lti

using the

Levenberg-Marquardt (LM) optimization. d is com-

puted using (1).
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Fig. 3. Motion initialization and interpolation. (a) We triangulate the
tracked features and interpolate the in-plane displacement vectors for all
pixels using the triangular interpolation. (b) An amplified region.



2. Fix d and update o by minimizing (4). The
segmentation regularization term (8) and the term
�s in (7) do not involve o and are thus omitted in this
step. Each element in the occlusion map o has a
binary label. We use graph cuts [6] to compute them.

Fig. 4 shows a motion estimation example. Figs. 4a and
4b show two consecutive frames. To visualize the dense
optical flow, we adopt the color coding in [3], where the
chromaticity is used to distinguish the motion direction and
the intensity corresponds to the motion magnitude, as
shown in Fig. 4c. The computed optical flow and occlusion
maps using the above method are shown in Figs. 4d and 4e,
respectively. Because, in the first place we have no layer
information and set �s to all zeros, visual artifacts (due to
some segments spanning over different objects) are caused
around the object boundary.

The computed maps in Figs. 4d and 4e are used in the
bilayer segmentation step thereupon (to be detailed in
Section 5) to update the � map, where the result is shown in
Fig. 4f. In the second iteration (Step 4 in Table 1), we
perform optical flow estimation again to refine motion and
occlusion. The results are shown in Figs. 4g and 4h.

4.4 Dense Track Generation

After solving for the dense motion vectors, we link each
pixel forward and backward in the neighboring frames to
eventually form dense motion tracks. They will facilitate the
following bilayer segmentation. To reduce the accumulated
error in this process, we limit the formed tracks (illustrated
in Fig. 5) not longer than 20 frames. We also break a link in
between pixels ItðxÞ and Itþ1ðx0Þ if any of the following
criteria is triggered: 1) ot;tþ1ðxÞ ¼ 1 or otþ1;tðx0Þ ¼ 1; 2) the
optical flow consistency error

et;tþ1
flow ðxÞ ¼ kd

t;tþ1ðxÞ þ dtþ1;tðx0Þk ð9Þ

is larger than 2 pixels. Here, x0 is the corresponding pixel of
x in frame tþ 1, i.e., x0 ¼ xþ dt;tþ1ðxÞ. We denote the

forward and backward half tracks as XF ¼ fxtjrt¼iþ1g and

XB ¼ fxtji�1
t¼l g, respectively, for pixel x in frame i.

Further, with the recovered depth maps (detailed in

Section 3), we project each pixel to other frames to obtain

the corresponding X0F ¼ fx0tjrt¼iþ1g and X0B ¼ fx0tji�1
t¼l g. If

pixel x refers to a static point, its depth estimate is usually

very accurate, and consequently, XF (or XB) should be near

to X0F (or X0B). Pixels on the dynamic object, on the

contrary, generally receive mistaken depth estimate, as

shown in Fig. 2. Also, to exclude the effect of occlusion,

which goes either forward or back, we compare two half

tracks, and select the pair with minimum difference to

measure the foreground/background confidence:

MtðxÞ ¼ minffðXF ;X0F Þ; fðXB;X0BÞg; ð10Þ

where fðXF ;X0F Þ ¼ maxt¼iþ1;...;rkxt � x0tk and fðXB;X0BÞ ¼
maxt¼l;...;i�1kxt � x0tk. If MtðxÞ is large, it is likely that the

pixel x is in the foreground.MtðxÞ will be used to define a

confidence measure for bilayer segmentation.

5 BILAYER SEGMENTATION

The computed optical flow can help identify layers. But its

quality is not high enough to guarantee accurate foreground

extraction. We integrate other cues, such as color, contrast,

and depth, in our method to accomplish this goal.
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Fig. 4. Optical flow estimation. (a)-(b) Frames 16 and 17. (c) A reference color wheel for motion coding. (d) Initial optical flow field d16;17. (e) Initial
occlusion map o16;17. (f) Bilayer segmentation result �16 in the second iteration. (g) Updated optical flow field with the � map shown in (f). (h) Refined
occlusion map. (i) Close-up of (d). (j) Close-up of (g).

Fig. 5. Optical flow track illustration in multiple frames.



5.1 Data Term

With the computed depth maps (described in Section 3), the
3D warping technique [30] can be used to render new views
by projecting pixels from one frame to other. In our method,
we warp the neighboring 2l frames, i.e., fIt�l; . . . ; Itþlg to
frame t using the depth information. We reiterate that we
do not assume all pixels have correct depths. Instead, our
method collects depth statistics, using multiple frames to
mitigate the influence of mistakes in the layer computation.

Warping neighboring frames to the present one allows
using multiple cues. We employ the background subtrac-
tion, local color statistics, and depth/motion consistency
measures (denoted by Lc, Lg, and Lm, respectively), whose
construction will be detailed later in this section. It is notable
that these measures evaluate layer separation from different
angles and thus are similarly important for producing the
final result. It is also unknown in advance which one is more
reliable for a specific example. In our method, we adopt a
simple and yet very effective voting-like scheme to combine
these measures and express the data cost as

Ed
�
�tx
�
¼ median

�
Lc
�
�tx
�
; Lg
�
�tx
�
; Lm

�
�tx
��
; ð11Þ

where �tx is the foreground label for pixel x in frame t. The
data term favors the majority of the measures. It is robust to
outliers because each measure does not directly affect the
final result. An occasional degradation of one term does not
matter as much as using a weighted sum scheme.

During warping, we exclude foreground-layer pixels,
where �tx is labeled 1 in the previous iteration. Initially,
since all �s are set to zeros, we alternatively exclude pixels
for which MtðxÞ is larger than a threshold. The image and
disparity map warped from It

0
to It are denoted as Ît

0;t and
D̂t0;t respectively. Fig. 6 shows an example. The red pixels
are those receiving no projection during the warping. We
now describe the three measures.

5.1.1 Background Subtraction Measure

With the inevitable estimation error, the warped points may
deviate from their correct positions. We thus apply the

following method to locally search the best match. The
appearance consistency error for x with respect to It and
Ît
0;t is given by

At0;tðxÞ ¼ 1

jW jmin
x0

X
y2W
kItðxþ yÞ � Ît0;tðx0 þ yÞk; ð12Þ

where W is a 3� 3 window for block matching and x0 is in
the neighborhood region of x, where kx0 � xk � r, as
illustrated in Fig. 7. In our experiments, r ¼ 2 (pixels).

In addition to warping color images, we also construct
the warped disparity map D̂t0;t and define the disparity
consistency error as the blockwise minimum difference
between pixels. It is given by

Dt0;tðxÞ ¼ 1

jW jmin
x0

X
y2W
jDtðxþ yÞ � D̂t0;tðx0 þ yÞj : ð13Þ

This disparity consistency error will be used in defining the
depth/motion consistency measure.

After block matching, we gather a set of At0;tðxÞ for each
pixel x in frame t with respect to different ts as we have
warped multiple frames to frame t. Their statistics reflect
the chance that one pixel receives the correct depth
estimate. For instance, if the residual error At0;tðxÞ is
consistently large for multiple ts, it is quite possible that
pixel x will be in the dynamic foreground layer or be
occluded in most frames. To abstract this type of informa-
tion, for each x, we apply the median filter to all At0;tðxÞs,
where t0 ¼ t� l; . . . ; tþ l, which yields

AtðxÞ ¼ medianfAt�l;tðxÞ; . . . ;Atþl;tðxÞg: ð14Þ

A large median value AtðxÞ implies that the color of pixel x
in the present frame is quite different from the majority of
the warped background color. So, pixel x is very likely to be
in foreground.

Similarly, we compute the median value of the disparity
consistency errors

DtðxÞ ¼ medianfDt�l;tðxÞ; . . . ;Dtþl;tðxÞg: ð15Þ

DtðxÞ will be used in defining the depth/motion consis-
tency measure Lm.

Finally, we express the layer likelihood based on the
background subtraction measure as
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Fig. 6. 3D warping. The neighboring frames are warped to It. The red
pixels are those receiving no projection during the warping process.

Fig. 7. Local block matching. The warped pixel x in Ît
0 ;t may slightly

deviate from its correct position. We perform local search to reduce
error. The red solid rectangle is the matching windows W , and the blue
dashed circle indicates the search region.



Lcð�tx ¼ 0Þ ¼ AtðxÞ
AtðxÞ þ �c

;

Lcð�tx ¼ 1Þ ¼ �c

AtðxÞ þ �c
;

ð16Þ

where �c ¼ 5 � 13 in our experiments, controlling the

labeling threshold. AtðxÞ > �c yields Lcð�tx ¼ 0Þ > 0:5 >

Lcð�tx ¼ 1Þ, indicating that x is likely a dynamic foreground

pixel.
This measure is sometimes error-prone if the foreground

and background pixels have similar colors. To overcome it,

in this system, other statistics models are also employed.

5.1.2 Local Color Statistics Measure

Previous bilayer segmentation methods [25], [32], [37]

employ the Gaussian mixture model (GMM) to describe

color. The typical scheme is to sample color and build two

global GMMs for background and foreground, respectively.

In our method, as we process general videos in which the

background image varies over time, building a global

background GMM is not appropriate. Here, we construct

them separately for each frame.
With the set of warped images for each frame t, as shown

in Fig. 6, we stack them and apply median filtering to each

pixel to approximate the background image B̂t, as shown in

Fig. 8b. Background regions that are consistently occluded

in the whole sequence find no color information (shown in

red in Fig. 8b). We apply a simple completion method [31]

to infer them, as shown in Fig. 8c. Then, the Mean Shift

algorithm [13] is employed to segment B̂t (Fig. 8d) followed

by using a Gaussian distribution Nð�bk;�b
kÞ to model the

color in each segment Sk. Directly propagating the

estimated background color models into the missing areas

for completion is also a choice. Note that background

completion may produce error. It is, however, not influen-

tial because we only use the statistical color model but not

the respective pixel values. Moreover, as we remove the

foreground estimate in 3D warping, occasional error is
quickly eliminated in iterations.

With the background color models, for each pixel, we
search the distributions that it possibly belongs to in a local
area, as shown in Figs. 8d and 8e. The background color
probability is written as

pð�tx ¼ 0Þ ¼ max
l

j¼1
N
�
ItðxÞ

���bmj
;�b

mj

�
; ð17Þ

where l is the number of the background samples in the
local window (Fig. 8e) and mj indexes the corresponding
Gaussian cluster for each sample.

The foreground color model construction is easier. We
compute from a single frame the foreground region, as shown
in Fig. 8f, using GrabCut [32]. Based on it, we construct the
foreground color GMM with Gaussian distributions
fNð�f1 ;�

f
2Þ; Nð�

f
2 ;�

f
2Þ; . . . Nð�fKf

;�f
Kf
Þg. The probability that

one pixel belongs to the foreground layer is accordingly
expressed as

pð�tx ¼ 1Þ ¼
XKf

k¼1

wfkN
�
Itx
���fk;�f

k

�
; ð18Þ

where wfk is the computed weight corresponding to the
kth component of the GMM and Kf is the total number of
the clusters. The definition difference between (17) and (18)
is due to the use of local and global color models.

Finally, the local color statistics measure is defined as:

Lgð�txÞ ¼
log pð�txÞ

log pð�tx ¼ 0Þ þ log pð�tx ¼ 1Þ ; ð19Þ

where the denominator is for normalization. Fig. 8g shows
the local color statistics measure map. A large value reflects
high confidence that a pixel belongs to the foreground layer.
Our model is different from the one in [15] because we do
not assume rotational camera motion. There also does not
exist a panoramic background image that can be estimated
beforehand.

5.1.3 Depth/Motion Consistency Measure

Depth/motion information is also essential in our method
for identifying foreground pixels. We combine disparity
consistency error D, which is defined in (13) and (15), with
the motion consistency errorM, described in Section 4.4, to
express another likelihood:

Lmð�tx ¼ 0Þ ¼ max
MtðxÞ

MtðxÞ þ �m
;
DtðxÞ

DtðxÞ þ �d

( )
;

Lmð�tx ¼ 1Þ ¼ 1� Ltm
�
�tx ¼ 0

�
:

ð20Þ

Here, �d and �m are two thresholds and are set to 0:2ðDmax �
DminÞ and 8 � 10, respectively, where ½Dmin; Dmax� is the
approximated disparity range of the scene. Equation (20)
implies that only when both D and M are small are we
confident that the pixel is in the background layer.

5.2 Smoothness Terms

With the data cost defined in (11), we optimize the
following function with the consideration of the spatial
and temporal smoothness:

ZHANG ET AL.: ROBUST BILAYER SEGMENTATION AND MOTION/DEPTH ESTIMATION WITH A HANDHELD CAMERA 609

Fig. 8. Warped color statistics. (a) One frame from a sequence.
(b) Estimated background image by warping 30 neighboring frames to
(a). The red pixels do not receive projection. (c) Completed background
image by inpainting. (d) Segmented background image by Mean Shift.
(e) The color in each segment is modeled by a Gaussian distribution.
Three segments are included in the local region centered at x. (f) Initial
foreground layer for GMM training. (g) The confidence map of the local
color statistics.



EBð�Þ ¼
Xn
t¼1

X
x2It
ðEd

�
�tx
�
þ �S

X
y2NðxÞ

Es

�
�tx; �

t
y

�
þ �T G

�
�tx
��
;

ð21Þ

where Esð�tx; �tyÞ and Gð�txÞ are the spatial and temporal
smoothness terms, respectively, which are described as
follows: �S and �T are weights.

5.2.1 Spatial Smoothness

Strong edges of the background image could mistake the
bilayer segmentation. We attenuate them when enforcing
the spatial smoothness.

When computing the appearance consistency error At

using median filtering, it at the same time finds the matched

pixel for x from a warped image. Suppose it is pixel x� in

Ît
�;t. We denote by gt

�;tðx�Þ and gtðxÞ the corresponding

gradients in It
�;t and It, respectively. We set gt

�;tðx�Þ ¼ 0 if it

cannot be computed due to the lack of the matched pixel

after warping. Then, we define the following function,

which is similar to the one in [35], to attenuate the

background contrast:

dtaðxÞ ¼ kgtðxÞk
2 � 1� e�

A
t
ðxÞ2

2�5�5

1þ
� gt� ;tðx�Þ

5

�2
e�
A
t
ðxÞ2

2�10�10

:

It means if AtðxÞ is small, it is quite possible that pixel x is
in the background layer, and thus, the contrast should be
attenuated more significantly.

Finally, the spatial smoothness term is written as

Es

�
�tx; �

t
y

�
¼
���tx � �ty�� � exp

�
� �dtaðx;yÞ

�
; ð22Þ

where x and y are neighboring pixels, and � is a robust
parameter that weights the color contrast. It is set to

ð2hkIx � Iyk2iÞ�1, where h�i denotes the expectation opera-
tor, same as the one defined in [35]. Esð�x; �yÞ indicates that
if both x and y are in the foreground (or background) layer,
Es has zero value. Otherwise, the smoothness strength is
adaptively adjusted according to the color contrast.

5.2.2 Temporal Consistency

This term is defined bidirectionally as

G
�
�tx
�
¼ Gt;tþ1

�
�tx
�
þ Gt;t�1

�
�tx
�
: ð23Þ

Let pixel x0 in Itþ1 be the corresponding one of x in It

according to the estimated motion vector. Gt;tþ1ð�txÞ is
expressed as

Gt;tþ1
�
�tx
�
¼
���tx � �tþ1

x0

�� � wt;tþ1
flow ðxÞ;

where j�tx � �tþ1
x0 j ¼ 1 if the � labels are different. Or else, no

temporal smoothness penalty will be enforced. wt;tþ1
flow ðxÞ

penalizes the label inconsistency based on the measure of
forward and backward optical flow (9) and the pixel color
difference. It is given by

wt;tþ1
flow ðxÞ ¼ exp �kd

t;tþ1ðxÞ þ dtþ1;tðx0Þk2

�2
flow

 !
�

exp �kI
tðxÞ � Itþ1ðx0Þk2

�2
color

 !
;

ð24Þ
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TABLE 2
The Statistics of the Tested Sequences

TABLE 3
The Parameters

Fig. 10. All coarse foreground regions used in the examples listed in
Table 2. They are used in the foreground color modeling (Section 5.1).

Fig. 9. Removing foreground outliers. (a) One video frame. (b) The
computed foreground mask that contains a few isolated regions. The
small ones are outliers. (c) The extracted foreground layer.



where �flow ¼ 1:4 and �color ¼ 15. Gt;t�1ð�txÞ is defined
similarly.

5.3 Overall Computation

In the bilayer segmentation step, to reduce the complexity
in computing the data cost for each frame, we only select
20-30 frames, with the interval of 5 frames between each, to
perform 3D warping. The minimum interval between the
reference frame and sampling frames is generally set to
10 � 20. After the data and smoothness terms are computed,
we apply graph cuts to compute the � maps by minimizing
EBð�Þ. Each time we solve for 10 maps sequentially.

Due to inevitable estimation error and image noise, the
extracted foreground may contain multiple isolated regions,
as shown in Fig. 9b. Most of them are small outliers.
Therefore, suppose there are m moving objects, we first
select n (n � m) largest segments, each containing at least
400 pixels. Then, we further select the segments from the
remaining ones (containing at least 400 pixels), whose
smallest distance to these n segments is less than a
threshold. This simple strategy works well empirically.

After computing � in the first pass, we go back to Step 2
in Table 1 and further refine the motion and depth maps as
described in Section 4. Two overall passes are sufficient to
achieve high-quality bilayer segmentation.

The final step is to recompute the background images
and the depth maps based on the � estimate using the
method of Bhat et al. [4] (Step 5 in Table 1). We also update
the motion vectors for the background pixels in accordance
with the pixel correspondences established using the depth
information. It is found that the depth computed with the
multiview geometry constraint is in general more accurate
than the optical flow estimate. We will show in Fig. 12m
how the final refinement is useful.

An optional function is provided in our system to refine
the foreground boundary by matting [2] such that the
extracted layers are usable in other video composition
applications.

6 EXPERIMENTAL RESULTS

We experimented with several challenging examples
where the videos2 are taken by a handheld camera and
strong vibration exists. Table 2 lists the number of frames
and resolutions.

In our implementation, the optical flow is estimated in
the grayscale channel (the scale range is ½0; 255�). Appear-
ance consistency error (12) uses the YUV color space. Other
computation is performed in the RGB color space. Our
experiments are conducted on a desktop PC with a 4-core
Xeon 2.0 GHz CPU. The parameter setting is easy, as shown
in Table 3 and described in Section 5.

Fig. 10 contains the computed foreground regions for the
foreground color distribution modeling in all examples
(described in Section 5.1). Each sequence uses only one such
region, which can be quickly obtained by GrabCut [32]. The
results do not need to be very accurate for the purpose of
color distribution computation.

The processing time depends on the number of frames
and image resolution. For a sequence with resolution 720�
576 (pixels), the depth estimation (Step 2.1 of Table 1) in the
first iteration spends 3 minutes for each frame. In the second
iteration, depth refinement runs much faster (a few seconds
for each frame) because only depths around the foreground
boundaries need to be updated. In each iteration, the motion
estimation (Step 2.2 of Table 1) uses 1 minute on average to
process one frame. The computation time for bilayer
segmentation is about 30 seconds per frame, where over
95 percent of it is spent on the data cost computation.

6.1 Workthrough Example

We use the example shown in Fig. 11 to illustrate how our
method works. In the first iteration, the estimated appearance
consistency error map A and the disparity consistency error
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Fig. 11. Bilayer segmentation. (a) One video frame. (b) The appearance consistency map A. (c) The disparity consistency map D. (d) The track
consistency map M. (e) The likelihood Lg with the local color statistics model. (f) The computed data costs for all pixels. (g) The background
attenuation map. (h) The extracted foreground image.

2. The supplemental video can be found at http://www.cad.zju.edu.cn/
home/gfzhang/projects/segmentation/motioncut/.



map D (linearly scaled for illustration in Figs. 11b and 11c,
respectively) contain very small values for the background
pixels. Although we do not perform segmentation here,
large-value pixels coarsely shape the foreground. So, these
maps provide essential information for bilayer segmentation.
Nevertheless, there are errors, as highlighted in the green
rectangles, which mistake the background depths as the
foreground’s. This is why we introduce the motion consis-
tency measure M, as illustrated in Fig. 11d, to gather
confidence from another perspective. Different errors seldom
arise in the same place.

The likelihood map Lg computed with the local color
statistics model in the first iteration is shown in Fig. 11e.
Combining the terms defined in (11), the data cost is
computed as shown in Fig. 11f (linearly scaled for
illustration). Except for some isolated noise, the foreground
object has reasonable confidence to be correctly labeled. The
background tree trunk has salient boundary and thus needs
to be attenuated. The smoothness cost map is shown in
Fig. 11g, where the background edges are suppressed. With
the computed data and smoothness terms, a high-quality
foreground image can be extracted, as shown in Fig. 11h.

We also show the motion/depth maps estimated in the
two iterations. With the two consecutive frames shown in
Figs. 12a and 12b, the initial optical flow and depth maps

for Figs. 12a are computed (shown in Figs. 12c and 12d,
respectively). Note that in the first pass, zero-�s provide no
information, making the flow and depth estimates erro-
neous. In the second iteration, with the updated � shown in
Fig. 12e, the flow result is refined (shown in Fig. 12f). Visual
artifacts around the object boundary are reduced, as
highlighted in the green rectangles.

With the resulting � map in Fig. 12e, we then infer the
final background image, as shown in Fig. 12g. The depth
maps are also completed, as shown in Fig. 12h. The optical
flow field is updated in accordance with the layer and
depth information (Fig. 12m). To verify the quality of the
recovered depth, we synthesize new images from different
views by 3D warping and show them in Figs. 12k and 12l.
Each pixel is a vertex and the surface discontinues when the
disparity contrast is large (for example, along the tree trunk
boundary). The results accurately preserve object shapes
and the order of occlusion. Our system also allows refining
the layer boundary, as shown in Fig. 13c, by matting.

6.2 More Open Area Examples

We show more examples to demonstrate the effectiveness
of the proposed method. In the “Stair” sequence shown in
Fig. 14, both the background color and depth are complex
with thin handrail and lamp posts. Our method successfully
extracts the dynamic foreground, and computes the optical
flow and depth maps. To insert the extracted foreground
image to another video, we assign planar depth values to
the object3 and align the camera poses between the source
and target frames. Fig. 15 shows a few frames selected from
the rendered video. It is visually compelling due to the
high-quality bilayer segmentation. Note that naively past-
ing the walking man to the target video in a frame-by-frame
manner results in serious drift problem.

To evaluate how good the depth and motion estimates
are, we show more view interpolation results. Figs. 16a, 16b,
and 16c include the 85th, 90th and 95th frames, respectively.
We warp frames 85 and 95 onto frame 90, and linearly blend
them. To handle occlusion, the warping is performed for the
foreground and background layers, respectively. The layer
results are merged to synthesize the novel view shown in
Fig. 16d. The difference map between the interpolated
result and the ground truth image is shown in Fig. 16g,
which has near-zero values for most pixels and small error
only on the object boundary.
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Fig. 13. Boundary refinement. (a) Part of an input frame. (b) Binary
segmentation result. (c) Fractional boundary after matting.

Fig. 12. Motion/depth refinement. (a)-(b) Two consecutive frames.
(c) The initial optical flow estimate with all zero �s. (d) The initial depth
map of (a). (e) The computed � map in the second iteration. (f) The
accordingly updated optical flow. (g) The final background image.
(h) The final background depth map. (i) Magnified regions of (c).
(j) Magnified regions of (f). (k)-(l) Synthesized novel views. (m) The final
optical flow field.

3. It is because the depth of the dynamic objects cannot be recovered with
multiview geometry.



With the estimated depth and motion, we produce the
“slow shot” visual effect, which “densifies” the video by
synthesizing frames in between originally consecutive ones.
In our experiments, in between any two frames t and tþ 1,
we insert four or nine more frames by view interpolation.
Please refer to our supplemental video, which can be found
at http://www.cad.zju.edu.cn/home/gfzhang/projects/
segmentation/motioncut/, for the complete sequences and
more examples.

6.3 Indoor Example

To further demonstrate the robustness of the proposed
method, we use a Web camera (Logitech Quick-Cam
Pro 9000) to capture an indoor sequence (shown in
Fig. 17) in low light. This sequence contains strong
noise and luminance variation among frames. In
addition, most of the regions are textureless, which is
very challenging for the motion and depth estimation.
Our method is robust to these problems. The complete
result is included in our supplementary video, which

can be found at http://www.cad.zju.edu.cn/home/
gfzhang/ projects/segmentation/motioncut/.

7 SPECIAL CASE DISCUSSION

We show a few examples that are generally regarded as

special and challenging in bilayer segmentation and

provide more discussion in this section.

7.1 Rotational Camera Motion

The first type of example we discuss is those captured by

static or rotating-only cameras. In this case, the depth

cannot be recovered due to the lack of the multiview stereo

constraint. Our system, however, still works because view

warping and background estimation can be relied on to

solve for bilayer segmentation. No change is needed in our

system except for constant depth initialization for all pixels

such that the depth consistency measure in (20) does not

really function.
We show in Fig. 18 a video example taken by a rotating

camera (the complete sequence included in the supplemental

video, which can be found at http://www.cad. zju.edu.cn/

home/gfzhang/projects/segmentation/motioncut/). Con-

stant depth is used. The computed foreground image and
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Fig. 14. “Stair” example. (a) One input frame. (b) The extracted foreground image. (c) The computed optical flow map. (d) The estimated background
image. (e) The recovered background depth map.

Fig. 16. View interpolation. (a)-(c) Frames 85, 90, and 95 of the “Stair”
sequence. (d) Interpolated frame 90, using the motion and depth
information of frames 85 and 95. The absolutely black pixels are the
missing ones. (e) Close-up of (b). (f) Close-up of (d). (g) Difference
image of (e) and (f).

Fig. 15. Inserting the extracted foreground layer into another video.

Fig. 17. An indoor example. (a) Original frames. (b) Extracted
foreground images. (c) Optical flow fields. (d) Background depth maps.



flow field are shown in Figs. 18b and 18c, respectively. It is
actually an easier example than others by disregarding the
depth terms.

7.2 Occasionally Static Foreground

In general, bilayer segmentation assumes that the fore-
ground object moves with the static background scene. All
previous methods cannot handle the scenario where the
foreground object stays stationary in quite a few continuous
frames if the background image (or its color distribution) is
unknown. Our system also cannot perfectly handle long-
time static foreground as the background information (i.e.,
color, motion, and disparity) may mistakenly include that
from the foreground layer, and accordingly mislead bilayer
segmentation. Our method however allows stationary fore-
ground in dozens of successive frames. Fig. 19 shows an

example where a man stands still in the first 50 frames and
then begins to walk. Our system successfully extracts him.

7.3 Occlusion

It is inherently difficult to compute accurate motion for
occluded objects. Fortunately, it generally does not affect
our bilayer segmentation because the background subtrac-
tion, local color statistics, and depth/motion consistency
measures work together in the voting-like scheme, which is
robust to occasional motion estimation error. We show a
few examples in this paper, which include the partial
occlusion by the wall (Fig. 20) and the occlusion between
foreground objects (Fig. 22).

Our system is not restricted to near-planar foreground
extraction. Fig. 21 shows a sequence containing a moving
3D cube. Our method segments it out, and obtains the dense
motion field.
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Fig. 18. Video taken by a rotating camera. (a) Two selected frames.
(b) Extracted foreground images. (c) Computed optical flow maps.

Fig. 19. “Static-Man” example. The man stays stationary in the first 50 frames, and walks in the remaining frames. (a) Selected frames (the 1, 50 and
100 frames). (b) Extracted foreground. (c) Background depth maps. (d) Optical flow estimates.

Fig. 20. “Occluded-Man” example. (a) One selected frame. (b) The
extracted foreground image.

Fig. 21. “Cube” example. (a) One frame from a video. (b) Extracted
foreground cube. (c) Computed optical flow map.



7.4 Multiple Foreground Objects

Although our system is mainly developed for extracting
one foreground object, it can be employed to handle
multiple moving objects with the procedure described in
Section 5.3. Fig. 22 shows an example that contains two
persons at different depths. Our extracted foreground
images are shown in Figs. 22c and 22d. Note that if there
are many foreground objects with small sizes, it will be
difficult for our system to distinguish them from outliers.

7.5 Limitations

The current system still has the following limitations: First, if
the background layer does not have sufficient features or is
extremely textureless, the camera parameters and motion/
depth estimation could be difficult. Second, our system
assumes the background is static to satisfy the photoconsis-
tency constraint. Pixels with significant appearance change
due to illumination variation, reflection, or shadow will be
recognized as foreground accordingly. Fig. 23 shows an
example where the sequence contains a walking person with
his shadow on the ground. Our method classifies the
shadow as part of the foreground layer. Similarly, unmoving
objects will be regarded as background. An example is the
static person in Fig. 24. Only his waving arm is segmented
into the foreground layer.

8 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a complete system for high-
quality bilayer segmentation, and motion and depth
estimation from videos taken by a handheld camera. Our

method alternates between two major steps. In the first one,
we estimate the camera motion parameters, the optical flow
fields, and the depth maps. The visibility, segmentation, and
layer information is encoded for handling occlusion
and textureless regions. In the second step, we take depth
and motion into layer separation. We have proposed a
simple voting-like scheme to reliably detect the moving
objects. A few postprocessing steps finally compute the
motion fields and the background color/depth images.

Presently, our system assumes static background and
identifies dynamic regions as foreground. The bilayer
segmentation cannot separate multiple moving layers. Part
of our future work will be along this line to accomplish
robust multilayer segmentation with regard to more
diversified occlusion and color constraints.
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