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Templateless Non-Rigid Reconstruction and Motion
Tracking With a Single RGB-D Camera

Kangkan Wang, Guofeng Zhang, Member, IEEE, and Shihong Xia, Member, IEEE

Abstract— We present a novel templateless approach for
nonrigid reconstruction and motion tracking using a single
RGB-D camera. Without any template prior, our system
achieves accurate reconstruction and tracking for considerably
deformable objects. To robustly register the input sequence
of partial depth scans with dynamic motion, we propose an
efficient local-to-global hierarchical optimization framework
inspired by the idea of traditional structure-from-motion. Our
proposed framework mainly consists of two stages, local nonrigid
bundle adjustment and global optimization. To eliminate error
accumulation during the nonrigid registration of loop motion
sequences, we split the full sequence into several segments and
apply local nonrigid bundle adjustment to align each segment
locally. Global optimization is then adopted to combine all
segments and handle the drift problem through loop-closure
constraint. By fitting to the input partial data, a deforming
3D model sequence of dynamic objects is finally generated.
Experiments on both synthetic and real test data sets and
comparisons with state of the art demonstrate that our approach
can handle considerable motions robustly and efficiently, and
reconstruct high-quality 3D model sequences without drift.

Index Terms— Templateless, non-rigid reconstruction, motion
tracking.

I. INTRODUCTION

NOWADAYS, RGB-D cameras, such as Microsoft Kinect,
Intel RealSense, or Asus Xtion Pro, have become an

affordable commodity for everyday users. With the availability
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of these depth sensors, great progress has gained in the field
of nonrigid reconstruction and tracking with a single depth
camera. To reduce solution space and make this problem
tractable, the major route is to take advantage of template
priors [1]–[5]. Although tracking accuracy has largely been
increased, these approaches require to build template priors
beforehand. However, a large number of deformable objects
cannot be completely modeled by template priors, e.g., mod-
eling the activity of a person grasping nonrigid deforming
clothes using embedded skeleton. On the other hand, some
works [6]–[9] tried to track the motion of deforming objects
and reconstructed detailed surface geometry only using raw
partial data from different views. These approaches are quite
appealing and suitable for practical applications because they
do not rely on any template priors. However, this problem
is much more challenging since only visible parts of the
objects can be captured at each time instant. Previous works
without templates are limited to handle quasi-rigid objects,
small deformation or partial view reconstruction.

In this paper, we propose a templateless nonrigid 3D
reconstruction with dynamic motion tracking using a single
depth camera. The input of our system is a single-view
depth sequence of a deformable object captured from different
views at different time instants. Our system tracks the object’s
motion and reconstructs a 3D object model by fusing visible
partial data together. From the reconstructed model and tracked
motion, a moving 3D model sequence can be generated that is
consistent with the input partial data. Fig. 1 shows a complete
example generated by our system. In this example, a person is
kicking with large motion. Our system can faithfully recover
the time-varying 3D model sequence of the moving person.
It should be noted that all our results are obtained by a single
depth sensor and no template priors are used. Our proposed
method not only can obtain visually comparable results as the
state of the art [9], but also is nearly 50 times faster than [9]
(about 12 minutes to handle a sequence of a human body with
400 frames using our method). The average processing speed
is about 1 − 2 seconds per frame, which can provide users
immediate feedback of reconstruction results.

Nonrigid objects always deform with time-varying and
arbitrary motion, and there is a huge parameter space for
nonrigid deformation. So registration error accumulates
rather fast and severe drift problem occurs when registering
nonrigid loop-closure sequences with noisy and incomplete
data from a single depth sensor. Approaches based on
structure-from-motion (SfM) [10] have recently obtained good
performance for rigid 3D reconstruction and tracking [11], [12]
because it poses strong constraints to bundle all frame data

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



WANG et al.: TEMPLATELESS NON-RIGID RECONSTRUCTION AND MOTION TRACKING 5967

Fig. 1. A person is kicking legs with large deformations in front of a
Kinect camera. Without template priors, our system generates the moving 3D
model sequence. (a) Input depth scan sequence. (b) Reconstructed 3D model
sequence.

together through point correspondences and thus leads to
robust tracking results. Motivated by the demonstrated
success of traditional SfM [13]–[15], we propose a nonrigid
global registration framework for nonrigid depth sequences.
Compared with previous templateless methods, our approach
not only achieves high accuracy and robustness of nonrigid
reconstruction and tracking, but also effectively solves the drift
problem under nonrigid registration of loop-closure motion
sequences. This is made possible by an efficient local-to-global
hierarchical optimization framework. On the first hierarchy
level, we register each local segment accurately and mitigate
error accumulation using local nonrigid bundle adjustment.
On the second hierarchy level, global optimization is applied
to refine globally consistent deformations of all segments and
merge all depth scans together. During global optimization,
we need to compute deformations only for each segment but
not for all depth scans which greatly reduces the number of
unknowns. Computation and memory cost are tremendously
decreased during global optimization for large data. Our
method can obtain reconstruction quality that is rather close
to the state of the art [9] but with much less computation
and memory cost, which achieves a compromise between
computational complexity and reconstruction accuracy. The
proposed method can handle drift problem more effectively
than the state of the art when fully-automatically both
reconstructing and tracking for non-rigidly deforming objects
from depth data captured by a single RGB-D camera.

In addition, our local-to-global hierarchical optimization
framework can easily deal with multiple depth sequences.
Our method can quickly and efficiently reconstruct geometry
surfaces in different sequences, and then integrate them to
obtain the complete model. It allows the user to capture
more sequences to cover the whole object without the need
of re-computing the data from the beginning, which can
significantly improve the user experience since the capturing
and processing time is significantly reduced. Due to the low

cost and high efficiency of our nonrigid reconstruction system,
we believe that our approach can be conveniently employed
in many applications about reconstruction and tracking of
dynamic objects. In summary, the main contributions of our
technique are as follows:

• A novel templateless system for non-rigid reconstruction
and motion tracking using a single RGB-D camera.
Compared to the state of the art, our method not only can
handle considerable deformations and motions robustly,
but also can solve drift problem more effectively.

• A local-to-global hierarchical optimization framework
which can effectively register non-rigid loop-closure
depth sequences with noisy and incomplete data. This
framework combines an efficient local nonrigid bundle
adjustment and a robust global optimization to elimi-
nate error accumulation, largely improving registration
accuracy and computational efficiency for dynamic depth
sequences.

• Compared to state-of-the-art methods, our method is
much faster and requires less memory cost. Especially,
our method can effectively handle multiple depth
sequences and provide users immediate feedback of
reconstruction results, which significantly improves the
user experience.

II. RELATED WORK

The approaches for nonrigid reconstruction and tracking
from depth data can be classified into two categories, template-
based and templateless methods. Here, we briefly review the
recent related works, respectively.

A. Template-Based Methods

Template-based methods need to use template priors such
as embedded skeleton, template models, or parametric mod-
els, to reconstruct 3D models and motions of dynamic
objects with depth cameras. KinectsMocap [1] exploited artic-
ulated motion prior of skeleton embedding to capture perfor-
mance of interacting characters using three handheld Kinects.
Zhang et al. [2] proposed to recover dynamic 3D models of
human bodies by fitting a pre-trained personalized model to
input point clouds of frontal view. Zollhöfer et al. [3] proposed
a real-time nonrigid reconstruction system which first created
a high-quality base template of the object and then deformed
the template to track the object. Guo et al. [4] presented a
motion tracking method through L0 regularization to robustly
reconstruct non-rigid geometries and motions using a single
depth sensor. They did not adopt skeleton information, but
needed to obtain 3D mesh templates of the deforming targets.
Other methods [5], [16]–[19] need to first learn a parametric
model of the target object from a training dataset and use the
parametric model to fit input data. However, these methods
fail to reconstruct 3D models that cannot be represented by
the dataset. For example, Bogo et al. [5] drove a SCAPE-
based human body parametric model to a monocular RGB-D
sequence containing a moving user. Because the parametric
model is learned from a large 3D model dataset of undressed
human bodies, their method could not reconstruct 3D models
of dressed human bodies or other targets.
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Fig. 2. The pipeline of our system. (a) Data preprocessing. (b) Local nonrigid bundle adjustment. (c) Global optimization. (d) Generating dynamic 3D model
sequence. Please refer to Sect. III for a detailed description.

B. Templateless Methods

In recent years, some researchers tried to recover nonrigid
surfaces and motions without template priors. The core task
of these methods is to accurately register partial surfaces at
different time instants together. Liao et al. [6] proposed a linear
global warping algorithm which can reconstruct complete 3D
deformable models over time using a single depth camera
by assuming known point correspondences between partial
surfaces. Tong et al. [20] built a system of scanning static
full human bodies using three Kinects and a turntable which
is complex. Zeng et al. [7] presented a method for quasi-rigid
objects modeling from a sequence of depth scans which failed
to handle dynamic objects. 3D Self-Portraits [21] allowed
ordinary users to capture full 3D models of themselves, but
it required users keeping the same pose during scanning.
A real-time system, DynamicFusion [8] was proposed for
reconstructing and tracking nonrigid scenes. Another real-time
system, VolumeDeform [22] preserved fine-scale detail in
the reconstruction by using a higher-resolution deformation
field than the coarse one in DynamicFusion. Both systems
are successful for nonrigid partial view reconstruction,
but could not handle drift problem with dynamic motion.
When sequentially registering loop-closure motion sequences
with noisy and occluded data from a single depth sensor,
registration error accumulates rather fast and eventually leads
to serious drift problem. However, the implicit loop closure
fails to distribute the tremendous accumulated error. Recently,
Guo et al. [23] proposed a real-time system for simultaneously
recovering object geometry and surface albedo using a single
RGB-D camera, however, without considering drift problem.
Dou et al. [24] proposed a new system for live multi-view
performance capture using 8 depth cameras. Wang et al. [25]
presented a system for reconstructing complete watertight

and textured models of moving subjects using three or four
handheld depth sensors. However, these systems with multiple
depth sensors failed to handle drift problem.

Dou et al. [9] dealt with drift problem through error dis-
tribution and further used a bundle adjustment algorithm to
optimize the recovered shape. Their error distribution detects
loop closures through pairwise registration between two scans.
However, this loop-closure detection is not robust and accurate
because it is hard to recognize overlapping areas among all
partial scans especially under occlusion and dynamic motion.
So a final nonrigid bundle adjustment was required to refine
deformations, surface geometry, and point correspondences
simultaneously, which is very expensive in computation and
memory. In contrast, our method successfully identifies loop
closures and builds accurate correspondences in a robust and
effective way, and then optimizes both deformations and
surface geometry with fixed correspondences. Through an
efficient local-to-global hierarchical optimization framework,
we achieve a very high reconstruction accuracy with less
computation and memory cost.

III. OVERVIEW

We propose an effective approach for templateless
nonrigid reconstruction and motion tracking with an RGB-D
camera (e.g. Kinect). Fig. 2 gives the pipeline of our system.
There are mainly four steps. In the first step, raw depth data
is preprocessed to extract deforming targets and generate
deformation graphs for extracted depth scans. In the second
step, we divide the whole depth sequence into several local
segments, and register all depth scans in each segment
separately through local nonrigid bundle adjustment. In the
third step, global optimization is employed to merge all
segments and eliminate the drift problem in a global way.
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A watertight or partial 3D model of the object is generated
using Poisson surface reconstruction [26] or volumetric
fusion [27] from all registered depth scans. Our method
registers all scans and tracks the object’s motion simultane-
ously without any template prior. In the fourth step, with the
estimated motion and temporal information, the recovered
3D model is deformed back to each depth scan to create a
dynamic 3D model sequence which fits to the input depth data
well.

IV. DEFORMATION MODEL

We first introduce a deformation model to describe nonrigid
deformation of surface. Due to the success in recent works [4],
[7], [9], we employ embedded deformation model [28], [29] to
parameterize the non-rigid deformations. Embedded deforma-
tion computes a warping field based on a deformation graph.
Sparse nodes are uniformly sampled throughout the surface,
and neighboring nodes are connected with edges. Each node
of the graph induces a deformation within a local influence
region. The deformation of the surface is represented by local
affine transformations Ai , ti of all nodes xi . Deformation of
each point v j is determined by its K nearest nodes using a
set of fixed weights w(v j , xi ) = (1 − d(v j , xi )/dmax)2, with
d(v j , xi ) the geodesic distance between v j and xi , dmax the
geodesic distance of v j to its K + 1-th nearest node. For
point v j , its new position after the non-rigid deformation is
computed as,

v
′
j =

∑

xi

w̄(v j , xi )[Ai (v j − xi ) + xi + ti ]. (1)

and its new normal is the weighted sum of each nor-
mal transformed by the inverse transpose of the node
transformations,

n
′
j =

∑

xi

w̄(v j , xi )A−1T
i n j . (2)

where w̄(v j , xi ) are the normalized weights of w(v j , xi ).
According to [28], the unknown transformations Ai , ti are
estimated by minimizing the following energy,

Etol = w f it E f it + wrigid Erigid + wsmooth Esmooth. (3)

The fitting term E f it forces v j to move to its corresponding
point c j , and is defined as,

E f it =
∑

v′
j ∈C

αpoint ∥ v
′
j − c j ∥2

2 +αplane | nT
c j

(v
′
j − c j ) |2 .

(4)
where C contains all points that have correspondences, nc j is
the normal of c j , αpoint and αplane are weights for point-to-
point and point-to-plane metric, respectively. The rigid term
Erigid encourages the affine transformation to be as rigid as
possible,

Erigid =
∑

xi

((aT
1 a2)

2 + (aT
2 a3)

2 + (aT
3 a1)

2

+ (1 − aT
1 a1)

2 + (1 − aT
2 a2)

2 + (1 − aT
3 a3)

2). (5)

where a1,a2 and a3 are column vectors of Ai . The smooth
term Esmooth constrains affine transformations of neighboring
nodes to be similar, restricting consistent motion difference on
the spatial domain,

Esmooth =
∑

x j

∑

xi∈N(x j )

w(x j , xi ) ∥ Ai (x j − xi ) + xi

+ ti − (x j + t j ) ∥2
2 . (6)

Two regularization terms effectively constrain over-flexibility
of nonrigid deformation and prevent deforming in unreason-
able ways. The correspondences C are built using a method
similar to [1], and our method combines point position and
normal. Assuming that a source scan is deformed to a target
scan, we define a distance measure F between point p on
target scan and point v on source scan

F(p, v) = max(1− ∥ x p − xv ∥
θx

, 0)∗max(n p ∗nv , 0). (7)

where x p, n p and xv , nv denote the position and normal of p
and v, respectively. The maximum distance θx is set to 100mm.
For each point p on target scan, we find the point ṽ from
source scan to maximize F . If the maximum F(p, ṽ) > 0,
the correspondence (p, ṽ) is correct, otherwise it is pruned.
From the definition, a correspondence is valid only if the
surface normal difference of the two points is no more than 90°
apart and the distance between them is less than 100mm.
The condition of surface normal is used so that front-facing
surfaces will not be matched to back-facing surfaces. For each
point on the target scan, we searches the correspondence from
the source scan. Thus, point ṽ of source scan may have several
corresponding points in the target scan. In general, we use the
correspondence with the nearest distance to ṽ or take the mean
value of all corresponding points of ṽ. In our experiments,
we find for some large motions the correspondence is prone
to be inaccurate and the tracking fails by using the nearest
neighbor method or mean value method. Instead, we take
the correspondence with the largest distance to ṽ which can
register source scan to target scan more accurately. An example
of comparison between two correspondence finding methods
is shown in Fig. 3.

A. Deformation Graph Generation for Partial View

Before deformation graph generation, we extract the target
objects from each raw depth scan by segmenting background
and the ground, and further removing outlier points using
Point Cloud Library [30]. Since extracted surfaces only have
partial data of deforming objects and the shapes are always
varying, it is more difficult to generate deformation graph
than for the template model with a fixed shape. We uniformly
sample sparse nodes throughout the surface and keep geodesic
distance between any two nodes above δ1. A variant of fast
marching method is used to efficiently compute approximate
geodesic distances [31]. For each node, we find the nearest
r nodes and link it with the neighboring node using an edge
if two conditions are satisfied. First, two nodes have a geodesic
distance less than δ2. Second, there are at least p points on the
line connecting two nodes to ensure different parts of objects
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Fig. 3. Comparison of two correspondence finding methods. (a) two depth
scans in the “SideKick” data from [4]; (b) registration result using the
correspondences with the nearest distance; (c) registration result using the
correspondences with the largest distance. The light grey scan is deformed to
light blue scan. Registration fails (e.g. left foot) using the correspondences
with the nearest distance. In contrast, accurate registration is achieved using
the correspondences with the largest distance. Please refer to the last paragraph
of Sect. IV for our correspondence finding method.

Fig. 4. Two examples of generated deformation graph for partial data.
(a, d) extracted depth scan; (b, e) generated deformation graph;
(c, f) deformation graph shown in another view. Left: the different parts
are not attached even though they are close with each other (surrounded in
rectangle). Right: small patches are connected to neighboring patches with
relaxed regularization (shown in blue lines).

are not connected. After computing the edges for all nodes,
node ni may have rl edges less than r . For all remaining
r − rl neighboring nodes, we add an edge if one neighboring
node is disconnected with ni on the deformation graph. In this
way, small surface patches caused by occlusion are connected
to nearby surface patches so that they can deform together.
Without these added node edges, small patches could deform
arbitrarily if they do not have correspondences on the target
surfaces. To deform small patches to correct positions, these
added edges should have relaxed regularization Esmooth in
Eq. 6 by using a lower smooth weight (wsmooth = wsmooth ∗
0.01 in our experiments). Two examples of deformation graph
generation are shown in Fig. 4.

V. LOCAL NONRIGID BUNDLE ADJUSTMENT

In this section, we register all depth scans in each seg-
ment into a local reference frame. We first formulate the
nonrigid bundle adjustment, and then introduce a simple yet
efficient strategy for local segmentation. Finally, we describe
the method for registering local segments.

A. Nonrigid Bundle Adjustment

Inspired by 3D reconstruction for rigid scenes [12], we pro-
pose a nonrigid bundle adjustment for nonrigid reconstruction
and define the energy as

ETi ,g =
n∑

i=1

(w f it Edata(Ti , g) + wrigid Erigid (Ti )

+ wsmooth Esmooth(Ti )). (8)

where n is the number of depth scans, Ti : (A, t) is affine
transformation set of all nodes on the i th depth scan Di , and
g is a global point set in the reference frame. The data term
for the i th depth scan is defined as

Edata(Ti , g) =
∑

(v j ,g j )∈Ci

αpoint ∥ v
′
j − g j ∥2

2

+ αplane | nT
g j

(v
′
j − g j ) |2 . (9)

where v j is a point on the i th depth scan Di , g j is the
corresponding global point of v j , ng j is the normal of g j , v

′
j

is the deformed position of v j through Ti , and Ci denotes cor-
respondence set between Di and global point set. Erigid (Ti )
and Esmooth(Ti ) mean deformation Ti should satisfy rigid
and smooth constraints as defined in Eq. (5) and Eq. (6),
respectively. In our experiments, we set w f it = 1, wrigid = 1,
wsmooth = 100, αpoint = 1.0, and αplane = 0.1. We solve
this non-linear problem using Levenberg-Marquardt algo-
rithm [14]. The use of a point-to-plane term is a well-known
strategy to speed up convergence [32]. We use point-to-plane
term in registering local segments, but do not use it in global
optimization. That is because in our global optimization, the
minimization converges fast with a good initialization. Also,
only using point-to-point metric not only can simplify our
global optimization, but also can generate accurate results. Our
nonrigid bundle adjustment energy aims to refine deformations
of all frames and global points simultaneously. In traditional
SfM [10], global points are obtained through triangulation on
2D pixels. In our case, since depth information is available,
we can initialize global points using raw points of depth
scans. There are mainly two advantages for our nonrigid
bundle adjustment framework. Firstly, by bundling all frames
closely together through correspondences with global points,
robust registration is achieved for non-rigid depth sequences.
Secondly, compared to partial depth scans especially with
serious occlusion, global points in local segments integrate all
depth scans and contain more information of modeling targets,
which is beneficial for the success of our global optimization.

B. Local Segmentation

Zhang et al. [15] contributed an effective segment-based
coarse-to-fine SfM algorithm for robustly handling multiple
color sequences. Inspired by their segment-based idea, we
segment the entire sequence into several subsequences through
local segmentation. We first select some key frames scat-
tered in the sequence with the most number of nodes since
they contain the most information of objects. Make sure
that there are at least m frames between two key frames.
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Fig. 5. Comparison of local segmentation with uniform segmentation [9], [12]
on “Pillow” data (top row) and a human body data (bottom row). (a) depth
scans; (b) the reconstructed 3D models using our local segmentation; (c) the
reconstructed 3D models using uniform segmentation.

Initially, all frames between two key frames are classified
as a local segment. In each segment, the first key frame
is considered as a local reference frame, and local seg-
ment is registered sequentially. Large registration error always
occurs when registering two partial data with less overlapping
region. Thus, during registering each segment, we detect new
segments dynamically to eliminate large registration error.
Specifically, after registering current depth scan Di to refer-
ence frame in current segment Sl , we compute the overlap ratio
d(D̃i , Rl) between registered depth scan D̃i and the reference
scan Rl using the method in section VI. If d(D̃i , Rl) < r (we
use r = 40%), Sl is then split and a new segment is generated
including unprocessed frames in Sl . Registering and detecting
local segment continue till the end of the total sequence.
An example of detected local reference frames is shown in
Fig. 2(b) (the leftmost four depth scans in local segmentation).
Under local segmentation, the total sequence is divided into
L segments S1, S2, . . . , SL . In each segment, registration is
applied separately and all depth scans are aligned.

To testify the advantages of our local segmentation, we
compare our method to the segmentation method adopted
in [9] and [12] (we call uniform segmentation). The uni-
form segmentation is to divide the input sequence into many
subsegments and each subsegment is with N consecutive
frames (N = 30 in our test). The test data includes the
“Pillow” data and a human body data. The comparison results
are shown in Fig. 5. On the “Pillow” data, reconstructed results
obtained using uniform segmentation are with similar accuracy
as us. However, due to serious occlusion in the human body
data, there are clear artifacts on reconstruction results using
uniform segmentation. The comparison results demonstrate
that our proposed segmentation method is more effective to
eliminate accumulated error than the uniform segmentation
for nonrigid sequence registration.

Fig. 6. The procedure of registering local segment. All frames in local
segment are registered with global points. The correspondences are denoted
using dots of different colors. Please refer to Sect. V-C for a detailed
description.

C. Registering Local Segment

The procedure of registering each local segment is illus-
trated in Fig. 6. The global point set g is initialized with all
points of a reference frame. For the subsequent frames, we
repeat four steps to align each depth scan to the reference
frame. In the first step (Fig. 6(a)), we register current depth
scan Di to previous one Di−1, and find the point correspon-
dences (vi

j , vi−1
j ) between them. In the second step (Fig. 6(b)),

based on correspondences (vi−1
j , g j ) between Di−1 and global

points g, we can build correspondences (vi
j , g j ) between Di

and g. Using all correspondences (vi
j , g j ), Di is initially

registered to the reference frame. In the third step (Fig. 6(c)),
Di is further registered to the reference frame by newly
searched correspondences with global point set g. In the fourth
step (Fig. 6(d)), correspondences are established between Di

and g, and global point set is updated by adding unmatched
points on Di . By repeating the four steps, global point set
is enlarged as the frame number increases. Both the first and
third steps are in an iterative process between correspondence
finding and surface deformation. We search correspondences
using the method described in section IV. When building
correspondences in the third step, we only use global points
that overlap with previous several frames to reduce the search
range and improve the correspondence accuracy. Based on the
established correspondences among depth scans and global
points g, we locally refine node transformations of all frames
and 3D positions of global points using nonrigid bundle
adjustment in Eq. (8) to accurately align all depth scans.

VI. GLOBAL OPTIMIZATION

After finishing local nonrigid bundle adjustment for each
segment, we obtain a global point set and deformations for
each frame in each segment. In the following, we would like
to obtain globally consistent deformations for all frames in
the total sequence, and reconstruct a 3D model of the objects
based on registered depth scans. One way is to compute a
deformation for each frame to align with a global point set,
and optimize all deformations of each frame and 3D positions
of the global points simultaneously. However, the computation
of this method is exhaustive and tremendous memory space is
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Fig. 7. (a-c) Illustration of registering Gi with G!. (d-f) Illustration of
loop-closure detection between G̃i and G̃l . Please refer to Sect. VI for a
detailed description. (a) Registering Gi to G! through initial registration with
G̃i−1. (b) Building correspondences between mapped point set Ḡi and G̃i−1.
(c) Updating global point set G! and denoting the corresponding point
set of Ḡi in G! with G̃i . (d) Deforming G̃i to G̃l . (e) Loop-closure
verification through correspondences between aligned point set Ĝi and G̃l .
(f) Updating global point set G! and refreshing correspondences between
{G̃k}k=i

k=1 and G!.

Notations used in global optimization
L the number of local segments
Gl the global point set of segment l
E Dl the deformation graph of Gl
! the reference frame of the total sequence
G! the global point set in !
Ḡi the registered point set of Gi into global reference frame !
G̃i the corresponding point set of Gi in G! after registering Gi

and adding unmatched points into G!, which is a subset of
G!

Ĝi the registered point set of G̃i to G̃l

required if a relatively large number of frames are involved in
the optimization. In this section, we propose an efficient global
optimization to minimize the accumulated error and eliminate
the drift.

Through registering local segment, all frames in each seg-
ment are non-rigidly aligned with the corresponding global
point set in local frame denoted as G1, G2, . . . , GL for L
segments. Since correspondences are established between all
frames and the global point set in each segment, we can
achieve the goal of registering all frames in the whole sequence
by aligning all these global point sets together. In this way, it is
only necessary to compute deformations for the global point
set of each local segment but not for all frames. Thus, the num-
ber of variables is largely reduced, and the computation and
memory space is significantly decreased during the optimiza-
tion. A deformation graph E Dl is computed for each global
point set Gl . We employ the same framework in registering
local segment to align G1, G2, . . . , GL . The reference frame
of the total sequence is set to the first frame denoted as !.
We define a global point set G! in ! initialized using G1.
Assuming Gi−1 has been registered to G! and unmatched
points are added into G!, we denote the corresponding point
set of Gi−1 in G! as G̃i−1 which is a subset of G!. We
now describe the process of registering Gi with G!. An
illustration of this process is shown in Fig. 7(a-c). Since there
is a common depth scan between neighboring segments, we
can register Gi to G̃i−1 using the common scan as initial

Fig. 8. Loop-closure detection of [9] and our method. (a, b) Two aligned
partial scans created as [9]. (c) Due to small overlap, there is high registration
error between two scans and loop closure fails to be detected using method
in [9]. (d) A global scan formed by global points in reference frame of the
total sequence. (e) Each can is registered to the global scan accurately using
our method. (f) Registration of two scans by removing global scan from (e).
It shows that loop closures between two aligned scans are successfully
identified using our method.

correspondences. Then, Gi is further deformed to G! using
newly built correspondences, and obtain a mapped point
set Ḡi . We match Ḡi with G̃i−1, and G! is updated by adding
unmatched points in Ḡi . We use G̃i (a subset of G!) to denote
the corresponding points of Ḡi in the global point set G!.
Performing registration on consecutive segments can alleviate
but not completely address the drift problem. Hence, we detect
loop closures and use global optimization to eliminate the drift.

Loop closures are detected between G̃i and each previous
aligned point set {G̃l}i−K

l=1 (we set K = 2 in our experiments to
ensure enough movement). Detection between G̃i and G̃l con-
sists of two steps. In the first step, we search correspondences
between G̃i and G̃l using the method described in section IV.
Correspondence is correct if two points have a distance within
δ = 5cm and have a compatible normal angle less than 90°.
To measure the overlap of G̃i and G̃l , we define the overlap
ratio as

d(G̃i , G̃l) = Ci

Mi
(10)

where Ci is the found correspondence number and Mi is the
point number in G̃i . In the second step, if d(G̃i , G̃l) ≥ r1
(we use r1 = 30%), we then perform a direct alignment of G̃i
towards G̃l resulting in aligned point set Ĝi . Correspondence
is searched within δ = 1cm and the overlap ratio is recomputed
between Ĝi and G̃l . If d(Ĝi , G̃l) ≥ r2 (we use r2 = 50%),
we think there is a loop closure between G̃i and G̃l . An illus-
tration of loop-closure detection is given in Fig. 7(d-f). Since
the number of segments is small, there are only a few times
of loop-closure detection for each segment. Our loop-closure
detection is directly applied on the global point set G! which
is more effective to detect all loop closures and solve the drift
problem.

Fig. 8 illustrates a comparison between our method and
loop-closure detection of [9]. In [9], aligned scans are gen-
erated by fusing consecutive 10 frames, and loop closure is
identified by registering them. However, because of small
overlap between two scans, it is challenging to accurately
register them and then detect the loop closure. Thus, it is
infeasible to recognize all loop closures through pairwise
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Fig. 9. Comparison with [7]. (a), (d), (g) some depth input; (b), (e), (h) the reconstructed 3D models by our method; (c), (f), (i) the reconstructed 3D models
by [7].

registration of scans. In our method, global points G! fuse
more complete data and each local segment is aligned and
built point correspondences with G!. Based on these point
correspondences, overlapping regions among all segments are
accurately detected.

If a loop closure is detected, the matched correspondences
are merged between G̃i and G̃l . G! is updated, and the
correspondences are then refreshed between {G̃k}k=i

k=1 and G!.
With the updated global points and correspondences, we
globally refine the deformations of {E Dk}k=i

k=1 and 3D points
in G! by employing nonrigid bundle adjustment in Eq. (8).
We can uniformly sample G! to reduce computational com-
plexity using a method similar to [12]. Through iterative loop-
closure detection and global optimization, we can eliminate
the drift problem. After handling all segments, all depth scans
are registered together based on known point correspondences
with corresponding global point set in the local frame. Finally,
a watertight or partial 3D model is obtained using Poisson
surface reconstruction [26] or volumetric fusion [27].

VII. GENERATING DYNAMIC 3D MODEL SEQUENCE

In this section, we generate a dynamic 3D model sequence
that fits to the input depth scans by deforming the recovered
model back to each frame. After global optimization in previ-
ous section, all depth scans are aligned with the reconstructed
model and the correspondences can be established between
each mapped depth scan and the reference model. Note that
the correspondences have been built during registering scans.
The reconstructed model is then deformed to each raw depth
scan using the correspondences. In order to solve the jittering
problem of the recovered model sequence, we introduce a tem-
poral constraint to smooth the recovered motion and predict
reasonable positions for occluded parts. We compute the model
deformation by minimizing the following energy

ETi =
N∑

i=1

(w f it
∑

(v j ,pi
j )∈Ci

∥ vi
j − pi

j ∥2
2

+ wrigid Erigid (Ti ) + wsmooth Esmooth(Ti ))

+ wtemp

Vn∑

j=1

N−1∑

i=2

∥ 2vi
j − vi−1

j − vi+1
j ∥2

2 . (11)

where v j is a vertex on the recovered model, pi
j is the

correspondence point for v j on i th depth scan, and vi
j is

the transformed position of v j to i th depth scan. Vn is the
vertex number of the model, wtemp is the weight of the
temporal constraint, and Ti is the deformation of the model
to i th depth scan. Erigid (Ti ) and Esmooth(Ti ) impose that
model deformation to i th depth scan should satisfy rigid
and smooth constraints, respectively. In each minimization,
N consecutive frames are refined together. Then, for each
depth scan, there are N estimated model deformations. The
final model is computed by averaging all deformed models.
Some reconstruction results are shown in Fig. 16.

VIII. EXPERIMENTS

In this section, we evaluate our approach on both real and
synthetic data, and compare our method to state-of-the-art
techniques.

A. Comparison With Implicit Loop Closure [7]

Implicit loop closure is adopted in both [7] and
DynamicFusion [8] to distribute accumulation error. The two
systems have a similar framework for nonrigid depth sequence
registration. Zeng et al. [7] proposed a reconstruction method
for quasi-rigid objects, while DynamicFusion [8] was proposed
to reconstruct partial surfaces but not watertight models for
dynamic objects. Here, we compare our method to [7]. We cap-
ture a test sequence of a full human body with a single Kinect.
During scanning, the subject keeps his pose while turning
around in the front of the depth camera. Fig. 9 shows the
comparison of our method with [7] in reconstruction quality.
There are clear artifacts in the reconstructed result using [7]
because implicit loop closure fails to build correct loop-closure
constraint if the accumulation error is too large. In contrast,
our method faithfully reconstructs the high-quality 3D model.

B. Comparison With Error Distribution of [9]

Dou et al. [9] proposed a reconstruction system for contin-
uously deforming objects. In their method, error distribution
is used to detect loop closures, and a final nonrigid bundle
adjustment is applied to refine results of error distribution.



5974 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 12, DECEMBER 2017

Fig. 10. Comparison with Error Distribution of [9]. (a), (d), (g) some depth input; (b), (e), (h) the reconstructed 3D models by our method; (c), (f), (i) the
reconstructed 3D models by Error Distribution of [9].

Fig. 11. Comparison results on Saskia dataset. (a) Alignment error map of our method. The first model in each example is the ground truth, the second one
is our reconstructed model, and the third image shows the alignment error. (b) The alignment error of each frame using different methods.

In this experiment, we compare our method with loop-closure
detection of [9], error distribution (ED), to demonstrate our
method still can achieve a good reconstruction based on
a robust and accurate loop-closure detection without their
final computation exhaustive step. The test data used in this
experiment is a dynamic human body sequence. Comparison
results in reconstruction quality are shown in Fig. 10. The
results demonstrate better robustness and accuracy of our
method over error distribution of [9]. In [9], loop closures
are detected by registering two scans. The method inevitably
misses some true loop closures and detects false ones even
with careful detection. In comparison, our method adopts
the framework of traditional SfM in which global points
fuse more complete depth information and closely bundle
all frames together. In addition, by employing the local-to-
global hierarchical optimization framework, drift problem is
eliminated successfully.

C. Synthetic Data

Saskia dataset [33] is a public 3D model sequence
which contains dramatic deformations. We synthesize a depth
sequence from each 3D model rotating around the subject

Fig. 12. Comparison with [9] on Saskia dataset. (a) and (d) the ground
truth; (b) and (e) the reconstructed 3D models by our method; (c) and (f) the
reconstructed 3D models from [9]. Our method can obtain visually comparable
results with [9].

as [9]. We test our method with and without local seg-
mentation on the synthesized depth data, and compare to
error redistribution of both [7] and [9]. We further compare
our method to final result reported in [9]. We deform the
reconstructed models to each frame data using the estimated
motions of different methods. The alignment error is then
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Fig. 13. Comparison with template-based method [4] on “Puppet” data. (a) and (d) two depth scans; (b) and (e) the reconstructed 3D models by our method;
(c) and (f) the reconstructed 3D models by [4]. In [4], a pre-scanned template model is deformed to track the object motion. Our method can reconstruct the
3D model and track the motion simultaneously without a template model.

Fig. 14. Comparison with template-based method [4] on “SideKick” data.
(a) two depth scans; (b) the reconstructed 3D models by our method; (c) the
reconstructed 3D models by our method with surface refinement; (d) the
reconstructed 3D models by [4]. Without a template model, our method can
track the motion with similar or even better accuracy than [4] (e.g. foot shown
in the marked area).

measured between deformed models and synthesized depth
data as [9]. Fig. 11(a) shows two examples of the error maps
between our results and the ground truth. Please refer to our
supplementary video to watch more results. We also draw
alignment error of each frame using different methods in
Fig. 11(b). The alignment error of [9] reported in Fig. 11(b) is
after the loop-closure detection step (error distribution) in [9].
We compare our method with error distribution in [9] to
demonstrate that our method can detect loop closures with
much higher accuracy. Alignment error of our method is much
lower than other methods which demonstrates that our method
achieves nonrigid error redistribution with higher accuracy
than state of the art. Merit of local segmentation in our
approach is testified from the comparison results.

A final bundle adjustment (BA) is employed in [9] to
simultaneously optimize deformations of all scans, recovered
shape, and point correspondences after error distribution (ED),
while our proposed method optimizes deformations and sur-
face geometry with fixed correspondences. Our approach is

Fig. 15. Comparison with skeleton-driven deformation [1] and data-
driven method [34]. (a) some input depth scans; (b) the reconstructed 3D
models by our method; (c) the reconstructed 3D models using skeleton-driven
deformation [1]; (d) the reconstructed models using data-driven method [34].
Compared with the above two template-based methods, our results are
more consistent with input depth scans in both reconstruction accuracy and
personalized details. Note that our method does not need to create a template
model with embedded skeleton or build a model database of the modeling
targets.

a compromise between computational effort and geometry
quality compared to [9]. Without optimizing correspondences,
our method can obtain an average error (about 1.6mm) that
is rather close to the final error reported in [9] (about 1mm).
The visual results are comparable with [9] as shown in Fig. 12
(results of [9] are from their paper). Although the accuracy
of [9] is a bit higher than our method, our method is much
faster and requires less memory. Since the data of [9] is not
released publicly, we capture a sequence of a human body
with the same number of frames and similar motions as [9]
to compare computational efficiency. For a sequence with
400 frames, our method takes about 12 minutes to register all
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Fig. 16. Results of our method. For each result, we show the input depth scan and the reconstructed model. From top to bottom: “Grasping” data, “Dancing”
data, “Hand” data, and “Kungfu” data.

depth scans, while in [9] partial scan preprocessing stage takes
around 30 seconds per frame, ED takes about 1 hour and BA
up to 5 hours (nearly 10 hours in total). Also, BA of [9] needs
a machine with 64G memory, but 20G is completely enough
for our method. The comparison with [7] demonstrates that
our method significantly outperforms [7] in both accuracy and
robustness. In addition, both [7] and [9] focus on recovering
a reference model not the whole model sequence.

D. Comparison With Template-Based Approaches

We first compare against the template-based method [4].
We use “Puppet” data from [4] as test data. In [4], a template
model of the dynamic target is scanned beforehand and then
used to track motion through L0 regularization. The compar-
ison results on “Puppet” data are shown in Fig. 13. Without
template models, our method still can reconstruct similar
quality as [4]. In addition, we test our method on a more
challenging “SideKick” data from [4] that contain strong non-
rigid deformations and fast motions. The comparison results
on “SideKick” data are shown in Fig. 14. The reconstruction
results of [4] have more details because surface details are
transferred from raw depth scans to the tracked template
models directly using a final surface refinement. Surface

refinement is not the focus of our method, but we also can
refine the details using a postprocessing step as [4] (shown in
Fig. 14(c)). Without a template model, our method can obtain
similar or even better tracking results (e.g. foot) than [4].

We further compare our method to skeleton-driven deforma-
tion [1] and data-driven method [34] on the “Kicking” data.
In the BlendSCAPE model proposed in [34], rotation of each
template triangle is a linear blend of the rotations of body
parts, which introduces less artifacts near joints compared with
SCAPE model [16]. We adopt the BlendSCAPE model and
define the linear blend weights manually as [34]. In [34],
a BlendSCAPE model is trained from multiple people in
multiple poses using a coregistration method. Instead, we train
the BlendSCAPE model on the dataset of SCAPE using the
training method of [16]. The comparison with data-driven
method [34] aims to demonstrate the advantage of our method
in recovering personalized details even without a 3D model
dataset. The comparison results are shown in Fig. 15. Please
refer to the supplementary video for the complete frames.
Skeleton-driven deformation [1] requires the embedding of a
predefined skeleton into a template model and can track articu-
lated motions. But, the tracking is easy to fail under occlusion
with a single depth camera. There are also some distortions in
the reconstruction results because deformations of some parts
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Fig. 17. Reconstruction results of our method on general motion and deformation. For each result, we show the input depth scan and the reconstructed
model. From top to bottom: “Crouching” data, “Pillow” data, “Cloth” data, and “Umbrella” data.

(e.g. waist) cannot be accurately modeled even with a carefully
embedded skeleton. In data-driven method [34], a parametric
model is learned from a 3D model dataset of undressed human
bodies, so the method cannot recover personalized details of
modeling targets. In contrast, our method can robustly and
accurately reconstruct a deforming 3D model sequence of the
dynamic objects.

E. Real Data

We test our system using various real data. The boy
“Dancing” data is from [4], the “Hand” data is scanned using
a Artec Scanner, and other data are captured by a Kinect. Our
reconstruction results are shown in Fig. 16. In “Grasping”
data, it is very inconvenient to build template priors for both
the human body and the clothes. So using template-based
methods is unpractical. Without templates, our method still
can recover expressive results. More results on general non-
rigid examples shown in Fig. 17 support that our method can
handle a variety of motion and deformation. Please refer to the
supplementary video for the complete results. The reference
models are generated by merging all depth data. We run our
experiments on a desktop PC with 8-core 4.0 GHz Intel i7
CPU and 20GB RAM, and a NVIDIA GeForce GTX Titan X
display card. The running time relates to the size of modeling
targets. For human body data, data preprocessing stage takes
around 0.1s per frame, local nonrigid bundle adjustment takes
about 1.2s per frame, global optimization takes about 3m
in total, and generation of model sequence takes about 0.3s
per frame. Multi-thread acceleration is applied on data
preprocessing stage and model sequence generation, and GPU

acceleration is used in deformation graph generation and
correspondence finding. Local nonrigid bundle adjustment
are performed in parallel for all segments. Note that these
results are obtained with our unoptimized code and there is
much room for acceleration. We can speed up optimization
process of our energy function through GPU [35]. Since
some steps such as local nonrigid bundle adjustment can be
easily parallelized, we believe the computation time can be
significantly reduced with GPU acceleration.

F. Application: Reconstruction From Multiple Sequences

Our method can reconstruct a non-rigid object in a fast
manner from a single monocular depth camera and is suitable
for handling multiple depth sequences. In practice, multiple
sequences of a target may be captured when scanning process
interrupts or complete data is collected from various sides of
the object. An intermediate reconstruction of partial data is
beneficial to continue the scanning. In this experiment, we
test our method on three depth sequences of a human body.
The human rotates by himself in front of a Kinect. During
the process, the scanning is broken and one sequence with
101 frames is captured. Our method can immediately recover
a surface from this sequence in about 2 minutes. Under the
guidance of generated surface, we start another data scanning
on the same human body. In total, three sequences are captured
to cover the whole human body. The second sequence has
85 frames, and the third sequence 53 frames. Fig. 18 shows
reconstructed results on three sequences and each sequence
only captures a part of the human body. By combining global
points of three sequences, we reconstruct a complete 3D model
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Fig. 18. Reconstruction from multiple depth sequences using our method.
(a) reconstruction result of the first sequence; (b) reconstruction result of the
second sequence; (c) reconstruction result of the third sequence; (d) and (e) the
reconstructed complete model shown from two different views by integrating
three sequences. Our method is convenient to handle multiple sequences in a
fast manner.

Fig. 19. Reconstruction from multiple depth sequences using our method
on “Bag” data (top row) and “Bear” data (bottom row). (a) reconstruction
result of the first sequence; (b) reconstruction result of the second sequence;
(c) reconstruction result of the third sequence; (d) reconstruction result of the
fourth sequence; (e) and (f) the reconstructed complete model shown from
two different views by integrating four sequences.

of the human body (totally about 6 minutes). In comparison, it
is unpractical to merge multiple sequences using method [9] by
waiting several hours to obtain an intermediate reconstruction.
We test our method on another two examples (i.e. “Bag” data
and “Bear” data) of multiple sequences. In these examples,
we need capture multiple depth sequences to recover the full
models of the targets. The reconstruction results are shown
in Fig. 19. Please refer to the accompanying video for the
complete frames.

IX. CONCLUSION

In this paper, we present a novel templateless nonrigid
reconstruction and tracking system for deforming objects
with an RGB-D camera. We propose an effective local-
to-global hierarchical optimization framework motivated by
traditional structure-from-motion. Our framework combines an
efficient local nonrigid bundle adjustment and a robust global
optimization to register all partial depth scans together and
eliminate drift successfully under dynamic motion. Compared
to the state of the art, our templateless method not only can
effectively handle considerable motions in a robust way, but
also can recover a 3D object model and track the object’s

motion simultaneously with much less computational cost and
memory space.

Our approach is ineffective to handle complex and occluded
motions which is still an open problem. These motions may
pose challenge for nonrigid registration due to large discrep-
ancy of shapes and loss of data. Multiple depth cameras can
effectively mitigate the occlusion challenge. There is also
a lack of details on the recovered models. This is because
details differ dramatically on different depth scans under large
deformations (e.g. crouching), and merging them smooths
out high-frequency geometry details. We can refine geometry
details from raw depth scans. Our method cannot handle
strong topological changes because currently used deformation
model does not allow for topological variance on the same
modeling target. There are also some motions that cannot be
recovered accurately by the deformation model such as twist
deformation (e.g. the hand rotating a bag in “Bag” data). For
very fast motions, it is challenging to build correspondences
between consecutive frames. The most recent works [24], [36]
present correspondence finding methods for very fast motions
based on machine learning or deep learning. We think these
methods are promising and can provide us accurate corre-
spondences even under large frame-to-frame motions. In the
near future, we will extend our method to deal with very fast
motions and topological changes. Also, we will accelerate our
system through GPU to achieve near real-time performance.
We believe our templateless method will pave the way for
many new and interesting applications in augmented and
virtual reality, where interaction with non-rigidly deforming
objects is of fundamental importance.
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