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Abstract— This paper presentsan automatic and robust ap-
proach to synthesizestereoscopicvideos fr om ordinary monoc-
ular videos acquired by commodity video cameras. Instead of
recovering the depth map, the proposed method synthesizes
the binocular parallax in stereoscopicvideo dir ectly fr om the
motion parallax in monocular video. The synthesisis formulated
as an optimization problem via intr oducing a cost function
of the stereoscopiceffects, the similarity , and the smoothness
constraints. The optimization selects the most suitable frames
in the input video for generating the stereoscopicvideo frames.
With the optimized selection,convincing and smoothstereoscopic
video can be synthesizedeven by simple constant-depthwarping.
No user interaction is required. We demonstrate the visually
plausible results obtained given the input clips acquired by
ordinary hand-held video camera.

Index Terms— Stereoscopicvideo synthesis,parallax, optimiza-
tion.

I . INTRODUCTION

STEREO visualizationprovides usersthe importantdepth
cue experiencedin our daily life. Since the introduction

of the parallax principle of stereo[1], various stereoscopic
systemsfor displaying stereoscopicimagesand videos have
been developed. Examples include the recently developed
3DTV system[2].

However, stereoscopicvideosarenormally inaccessibleby
generalpublic dueto the dif�culty in generatingstereoscopic
videos. Acquiring stereoscopicvideos from real world usu-
ally requiresspecializeddevices. In addition, processingthe
capturedvideos requires specializedsoftware or hardware
and specializedskills. On the other hand, low-cost ordinary
monocularvideo camerasare widely available. In this paper,
we proposean automaticand ef�cient video-basedrendering
methodto synthesizestereoscopicvideosfrom the monocular
videos. Although not all kinds of monocularvideos can be
usedto synthesizestereoscopicvideos,many arefeasible,e.g.
aerophotographicvideo.

A monocularvideo can be regardedas a set of plenoptic
samplesof thescene[3]. Thesynthesisof stereoscopicvideos
is basicallya processof determiningthe propersamplesand
compositingthemto give the left- andright- view sequences.
Our methodassumesthecameramotioncontainstranslational
movementand the sceneis �x ed.

To synthesizestereoscopicvideos, one may recover the
depth valuesof samples,and reproject the samplesto syn-
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thesizeboth views for each frame. This approachstrongly
relies on the accuracy of recovered depth values which in
turn strongly dependson the availability of textures in the
scene.Moreover, whenthe sceneexhibits mirror re�ection or
highlight, theaccuracy of depthrecovery is even lowered.Our
major contribution is to make useof the motion parallax in
the monocularvideo and convert it to binocular parallax in
a robust way, insteadof explicitly recovering the densedepth
maps.Thewholeprocessis doneautomatically. To synthesize
realisticstereoscopicvideo,we formulateit asanoptimization
problemwith an objective function that measuresthe loss of
stereoscopiceffects, similarity, and smoothnessconstraints.
With the optimally selectedframes,convincing stereoscopic
video canbe synthesizedby simpleview warping(Figure1).

There are 3 major stepsin our method.Firstly, we track
the camera motion in the monocular video by a robust
camera-trackingalgorithm.Secondly, an iterative optimization
algorithmis performedto determinethe mostsuitablemono-
frames for stereoscopicvideo synthesis.It selectstwo se-
quencesof framesfrom the monocularvideo.The i-th frames
in the two sequencesarethenwarpedinto thebinocularviews
correspondingto the i-th desiredeyes (left and right) in the
�nal step.Our major contribution is the optimization in the
secondstep.It minimizesa cost function with the following
objectives:

² Theselectedframesexhibit themostrealisticstereoscopic
effectsafter warping.

² The warpedviews aresimilar to the original ones.
² The synthesizedstereoframesaresmoothtemporally.

I I . RELATED WORKS

Earlywork in stereoscopicvideogenerationemploys3D ge-
ometry[4]. However, 3D modelsareusuallydif�cult to obtain
for real-world scene.Generatingstereoviews from monocular
video sequencescanbe achieved by �rst recovering the depth
map[5], [6]. Therehave beenmany work in recoveringdepth
in theareaof computervision. Stereoreconstruction[7], two-
view or multi-view reconstruction[8], [9] have beenproposed.
However, fully automatic,context-independent,and accurate
dense3D reconstructionis still an openproblem.

Image-basedrendering[10], [11] aimsat synthesizingnovel
views from images.Methods like light �eld [12], [13] and
lumigraph[14] denselysamplethescenein orderto synthesize
reasonablenovel views even no geometry information is
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given. Other methods try to reduce the sampling rate by
incorporatingdepth information or coarse3D models.They
include 3D warping [15], view interpolation[16], view mor-
phing [17], imagetours [18], and layered-depthimages[19].
Sawhney et al. [20] synthesizedhigh-resolutionstereoscopic
videogivenonehigh-resolutionandonelow-resolutionviews.
Recentwork in video-basedrendering[21] utilizes multiple
synchronizedvideo camerasto generatethe 3D video [22],
or free viewpoint video [23]. Their goals are to synthesize
arbitrary novel views. However, specializedhardware and/or
reconstructionof 3D modelsareusuallyrequired.Techniques
for stereopanoramicimages[24], [25] have beenproposed.
They stitch imagesobtainedfrom a single rotating camera
mountedonaspecialrig or equippedwith aspecializedoptical
lens.

Homography canbeusedfor rectifyinga pair of still images
to a stereopair in stereovision [26]. However, it maynot suit
for the video sequencesince the changeof orientationsof
recti�ed stereopairs may not be smooth,which causesthe
resultantvideo looksshaky. Moreover, thebaselines(the lines
joining the stereoimage pairs) of recti�ed stereopairs may
also not be the samethroughoutthe video. This violatesthe
propertyof thestereoscopicvideo.Rotemetal. [27] calculated
a planartransformationbetweenimagesin the sequenceand
alignedone input frame to anotherin order to synthesizethe
stereoscopicvideo sequence.This relies on the humancapa-
bility to sensetheresidualparallax.Sinceit only usesa simple
homograhy without the accuratecameramotion recovery, the
baselineof a stereopair may not be calculatedaccurately,
resulting in the length of baselinechangesvigorously in the
generatedstereoscopicvideosequence.In addition,thereis no
attemptto control the parallaxerrorsalongvertical direction.
Hencetherewill beshaky motionin thegeneratedstereoscopic
video asevidencedby their results.

The proposedwork synthesizesstereoscopicvideo from a
monocularvideo sequenceby utilizing the motion parallax
alone. No depth map recovery is required.We make an in-
depthanalysisbasedon precisecameramotion recovery, and
formulate it as an optimization problem of the stereoscopic
effects, the similarity, and the smoothnessconstraints.

I I I . OVERVIEW

Before presentingour algorithm,we �rst de�ne the termi-
nologies.We call theinput monocularvideosequencethebase
frame sequence, in which eachframe is a baseframe. The
cameracorrespondingto abaseframeis abasecamera, andits
viewpoint andviewing directionarecalledby baseviewpoint
andbaseviewing directionrespectively. Theorderedsequence
of baseviewpoints form a basetrajectory. A stereo-camera
consistsof two monocularcameras,left camera andright cam-
era. Bothof themarein thesameorientationandorthogonalto
theline joining them.Thecenterof projectionsof left andright
camerasare called the left and right viewpoints respectively.
The centerof the stereo-camera lies at the midpoint of two
cameras.Thesenotationsare listed in Table I.

We assumethe interoculardistance,the distancebetween
the left andright viewpoints,is constantanddenotedby deye.

frame 27 frame 30frame 1 frame 9

Camera Tracking

View Warping

the recovered base trajectory

base frame sequence

Optimization for Stereo

left camera right camera left camera right cameracenter center

Fig. 1. Synthesizingstereoscopicvideo from monocularframes.At the
bottom of this example,PL = 27;30 and PR = 1;9. The �rst frame in the
stereoscopicvideo is warped from the baseframe pair (f27; f1), while the
secondone is warpedfrom baseframepair (f30; f9). The actualbaseframes
for warpingareselectedby optimizing the cost function.

PL, PR the index subsequencesin which the i-th elements
PL[i] and PR[i] are the indicesof the baseframes
to bewarpedto the i-th left-eye andright-eye frame
in stereoscopicvideo sequence.

s a stereo-camera.
S the orderedset (sequence)of stereo-camera.S[i] is

the i-th stereo-camera,equivalent to si .
b a basecamera.
B the orderedset (sequence)of basecamera.B[i] is

the i-th basecamera,equivalent to bi .
L(s);R(s) the left andright camerasof stereo-cameras.

v(b) the viewpoint of camerab.
v(L(s)) ;v(R(s)) the left andright viewpoint of stereo-cameras.

q(b);q(s) the orientationof basecamerab or stereo-cameras
respectively, expressedby Euler angles.

f(m) the framecorrespondingto cameram.
fk the k-th baseframe,equivalent to f(bk).

f(m1) ! f(m2) the warped view f from camera m1 to that of
cameram2.

TABLE I

NOTATIONS.

Thus, the extrinsic parametersof the stereo-cameracan also
be describedby its centerand the orientationof its viewing
coordinateframe.We alsoassumethattheintrinsic parameters
of both left and right camerasare the sameand unchanged
throughoutthe whole sequence.

Our methodexploits thetemporalcoherenceof themonocu-
lar videosequence.Thenovel binocularviews aresynthesized
by warping two properly selectedbaseframes.The warping
error betweenthe warpedand the true views is small when
the difference(in termsof viewing parameters)betweenthe
original andtarget views is small. Thus,we needto carefully
determinethe centerandthe orientationof the desiredstereo-
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Fig. 2. Absoluteparallaxandrelative parallax.(a) illustratesthe absoluteandrelative parallax.(b) Moving the scenenearer, the absoluteparallaxesbecome
larger. (c) Extruding the scenetoward the nearerdistance,the relative parallaxesbecomesmallerwhile the absoluteparallaxesbecomelarger.

camera,as well as the selectionof two baseframes,so that
the following threeobjectives are achieved: (a) the binocular
views obtainedby warping exhibit the stereoscopiceffects
as realistic as possible;(b) the binocular views are close to
the selectedbaseframes; and (c) the changein viewpoint
position and orientation of consecutive stereo-camerasare
minimized. Otherwise,the generatedstereoscopicvideo will
be shaky. We begin the descriptionwith the input baseframe
sequenceF = f fkjk = 1; :::;Kg. Herearethe threemajor steps
to perform:

Step1For each base frame fk, we recover the extrinsic
parametersof the correspondingbasecamerabk in
the setB = f bkjk = 1; :::;Kg.

Step2Determinethe stereo-camerasequenceS = f si ji =
1; :::;Ng and the two index subsequences,PL and
PR, satisfyingcriteria (a), (b) and (c) (explainedin
SectionIV).

Step3For i = 1; : : : ;N, performing view warping opera-
tions:

f(bl ) ! f(L(si)) ; l = PL[i]
f(br ) ! f(R(si)) ; r = PR[i].

(1)

The output framesf f(L(si)) ; f(R(si)) ji = 1; :::;Ng form the
resultantstereoscopicvideo sequence.This procedureis illus-
tratedin Figure1.

Step1 involvesthe structureandmotion recovery which is
a classicalproblemin computervision. Several methods[28],
[8], [29], [30] have been proposedto recover the camera
extrinsic parametersgivena videosequence.In our implemen-
tation,we adoptthemethodproposedin [30] to automatically
extract the cameramotion parametersandthe 3D positionsof
sparsefeaturepoints for eachframe.

Step2 is themostchallenginganddif�cult part.Weadoptan
optimizationprocessto determine(S;PL;PR) by minimizing
the cost function E(S;PL;PR). This cost function consistsof
the stereocost, the similarity cost, and the continuity cost,
correspondingto the3 objectivesmentionedabove.SectionIV
describesthemin details.

Finally, in Step 3, we can warp the pair of chosenbase
frames(from Step2) to obtainthe left andright frames.There
are several possibleways to achieve this view warping. A
classicalway for view warping is to produce3D meshesby

triangulating the sparsepoint cloud, and render each mesh
with texture map to synthesizethe desiredview. However,
the 3D points recovered in the �rst step are too sparseand
unevenly distributed. Missing geometryand outlying points
can sometimescausedistractingartifacts.Another approach
is planar-homography that restricts the warping on a plane
(planar impostor). It computesa planar transformation(or
homography) by minimizing the average warping/disparity
error of the recovered sparse3D feature points. However,
in our applicationto generatestereoframes,apparentvisual
artifact will be resultedif the warping plane is allowed to
be arbitrarily oriented.Figure 9(a) shows one suchexample.
The building andstreetlampsarenot parallel to eachother in
the syntheticleft and right views, as the warping planesfor
generatingthe left and right views arenot parallel.Note that
humanvision is moresensitive to suchmisalignmentthanthe
disparityerrors.To avoid the artifact, we restrict the warping
planesto beperpendicularto theviewing directionandaligned
to the up vector of the stereo-camera.In other words, all
pixels in thewarpedframehave thesamedepthzc. Due to the
uneven distribution of the recoveredsparse3D points,we use
zc = 2(z¡ 1

min+ z¡ 1
max)

¡ 1 insteadof a meanvalue.Here,[zmin;zmax]
is the depthrangeof the scenewith respectto viewpoint of
the associatedbasecamera,which canbe estimatedautomat-
ically with the recovered sparse3D points. This restriction
is alsoadoptedin the plentopicsamplinganalysis[13]. Even
with suchcrudeconstant-depthassumption,convincing stereo
framescanbe synthesized(Figure9(b)).

IV. THE COST FUNCTION

The cost function E(S;PL;PR) consistsof threeterms,the
stereocostES, thesimilarity costEQ, andthecontinuitycosts
of cameraorientationECQ and locationECV . Mathematically,
E(S;PL;PR) is de�ned as:

E(S;PL;PR) = wSES+ wQEQ + (wCQECQ + wCVECV ), (2)

wherewS;wQ;wCQ andwCV areweightsof the cost terms.

A. Stereo Cost

1) Relative Parallax: The senseof stereo is due to the
fact that our left and right eyes see differently. The same
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Fig. 3. The relationshipbetweentwo basecamerasand stereo-cameras.
v(L(s)) and v(R(s)) are the left and right viewpoints of stereo-cameras
respectively. v(s) is the centerof stereo-cameras. bl andbr arethe two base
cameras,and their correspondingbaseframeswill be warpedto generatea
pair of stereoscopicframes.v(bl ) andv(br ) aretheir viewpointsrespectively.

scene/objectis spatially shifted in our left and right views.
Suchapparentpositiondifferenceis calledbinocularparallax.
In the 2D illustration of Figure 2(a), the viewing rays corre-
spondingto thepointsi and j in theleft view areoverlaidonto
the right view as indicatedby the dottedred and blue lines.
The displacementsDi and D j are the parallaxes (binocular
parallaxes).They arerelatedto the interoculardistance(deye),
focal length( f ), anddepth(zi). Obviously closerobjectresults
in larger parallax.

In this article, we argue that the senseof stereorelies not
on theabsoluteparallax, but on therelativeparallax. Relative
parallax is the difference in parallax of two objects. The
notion of relative parallaxhaslong beenusedin the areaof
astronomy[31]. In this paper, the relative parallaxis formally
de�ned as follow. ConsiderFigure 2, a pixel pL

i in the left
view and its correspondingpixel pR

i in the right view. The
parallaxof this pixel pi is Di = pL

i ¡ pR
i . The relative parallax

with referenceto anotherpixel pL
j is de�ned asmi j = Di ¡ D j .

The parallax dependson their depths,focal length, and the
interoculardistance,mi j = deyef (z¡ 1

i ¡ z¡ 1
j ). Thus, for a pair

of binocularimages,we cande�ne therelativeparallax matrix
M in which its elementmi j beingtherelative parallaxof every
pair of pixels pi andp j .

Figure2 explainswhy the relative parallaxis moresensible
thantheabsoluteparallaxin expressingthestereoscopiceffect.
The object in Figure 2(b) is moved closer to the viewer.
The valuesof both the relative (mi j ) and absolute(Di , D j )
parallaxesare increased.In Figure2(c), the object is not just
movedcloserbut also�attened.Althoughtheabsoluteparallax
is increased,its relative parallaxdecreases.

To accountfor the relative parallax,we estimatethe error
in relative parallaxbetweenthe synthetic(view-warped)and
ideal stereo image pairs. Given the stereo-camerain the
current iteration (it may changein the next iteration), the
syntheticstereoframe is the one warpedwith the constant-
depth assumption.It is the one that we can compute.The
ideal stereoframe is the one that we can obtain if the true
depth map is known. Obviously, the true depth map is not
available. But we can still estimatethe upper bound of this
relative parallaxerror.

Each stereoscopicframe pair is synthesizedby warping

two chosenbaseframes.Let's denotethe two baseframes
being consideredfor view warping in the current round of
optimization as f l (left candidate)and fr (right candidate).
If we have the true depthmaps,we can correctly synthesize
stereopair f0

l and f0
r by a per-pixel warping.Let's denotethe

relative parallaxmatrix of this idealstereopair (f0
l ; f

0
r ) by MG.

It is the ideal relative parallax matrix. Since the true depth
map is not available, we can only warp the imageswith the
constant-depthassumption.Therelative parallaxmatrix of this
syntheticstereopair is denotedasMW. Thematrix MW ¡ MG
measuresthe error in relative parallax.Although we do not
know MG, we canestimatea upperbounde for the norm of
the elementsin MW ¡ MG (seeAppendix for the derivation).

e(s; f l ; fr ) = f hd

s

(dx +
w
2f

¢dz)2 + m(dy +
h

2f
¢dz)2, (3)

where f is the focal length;hd = z¡ 1
min ¡ z¡ 1

max; w andh arethe
width and height of the baseframes;m is a constantgreater
than1; and

dx = j tL
x ¡ tR

x j; dy = j tL
y ¡ tR

y j; dz = j tL
z j + j tR

z j . (4)

wheretL = v(bl ) ¡ v(L(s)) and tR = v(br ) ¡ v(R(s)) are the
displacementvectorsas illustratedin Figure 3. The intuition
is that the deviation of the two displacementvectors, tL

(displacementbetweenthecandidateandidealleft viewpoints)
and tR (displacementbetweenthe candidateand ideal right
viewpoints)shouldbe close,especiallyin y axis.

Constantm is the weight on y component.In our formula-
tion, thex-axis is alignedwith the line connectingthe left and
right viewpointsof thestereo-camera,thepositive directionof
z-axis is the viewing direction, and the positive direction of
y-axis is theupwardvectorof thecamera.They componentof
relative parallaxshouldbe zero accordingto the stereovision
theory, and any nonzerovalue will damagethe stereoscopic
effect. Therefore,we usem(> 1) to penalizeany changein y
directioncausedby our view warping.

2) Warping Error: Besidesthe relative parallaxerror, the
error due to warping should also be controlled to minimize
visualartifact.We estimatethewarpingerrorasthemaximum
deviation betweenthe pixel positionswarpedwith constant-
depth assumptionand the ideal pixel positions if the true
depthsareknown. If thedeviation is too large,it will beeasily
awareby audiences.Notethatminimizing therelative parallax
errornot necessarilyminimizesthewarpingerror. It is easyto
demonstratethat the error dueto warpingthe baseframepair
(f l , fr ) is boundedby d (seeAppendix for the derivation),

d(s; f l ; fr ) =

p
2

2
f hd max(1;

p
w2 + h2

2f
)
q

ktLk2 + ktRk2, (5)

The goal of Equation 5 is to minimize the pixel position
deviation via minimizing the displacementof viewpoints (tL

and tR). One assumptionof Equation5 is that the target and
originalviewshavethesameviewing orientation.If thecamera
orientationof the target and original views are different, we
canrectify the original views. The error dueto the difference
of camera orientation is accountedby the similarity cost
(explainedin SectionIV-B).
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Fig. 4. Determinationof the initial valueof (S[i];P L[i];PR[i]). q(si ), q(bi )
andq(bk) arethe orientationsof camerasi , bi , andbk respectively. The blue
arrows indicatethe viewing directionof thesecameras.

Finally, we useboth e andd to estimatethe overall lossof
stereoscopiceffectsdueto theview warping.As themaximum
relative parallax is f hddeye, we use this maximum value to
normalize e and d. Hence, the stereo cost of the entire
stereoscopicsequenceis de�ned as:

ES(S;PL;PR) = 1
( f hddeye)2

N
å

i= 1
(e2(S[i];PL[i];PR[i])

+ d2(S[i];PL[i];PR[i])) .

(6)

B. Similarity Cost

The orientationof the two chosenbasecamerasbl and br
shouldbe as closeto that of the stereo-cameras as possible.
This guaranteesthat thebinocularviews generatedby viewing
warping look similar to the original onesand they sharethe
largecommonsceneregion.Therefore,wede�ne thesimilarity
cost for onestereoframeby:

g(s; f l ; fr ) = kq(s) ¡ q(bl )k
2 + kq(s) ¡ q(br )k2, (7)

where,q(s), q(bl ) andq(br ) aretheorientationsof thestereo-
cameras, theleft andright basecamerasbl andbr respectively.
Eachis representedby a triplet of Eulerangles.Thesimilarity
costof the entirevideo sequenceis de�ned by:

EQ(S;PL;PR) =
N

å
i= 1

g(S[i];PL[i];PR[i]). (8)

C. ContinuityCost

The discontinuityof a video sequenceis mainly causedby
the unsteadyrotationalandtranslationalspeedof the camera.
Therefore,to ensurethe visual smoothnessof the synthesized
stereoscopicvideo,therotationalandtranslationalacceleration
should be minimized. Besides,since our stereoscopicvideo
sequenceis obtainedby view warping,the changeof the loss
of stereoscopiceffect should also be minimized to achieve
visual smoothness.From Equations5 and3, the stereoscopic
effect loss is dependenton the viewpoints of stereo-camera
and the two candidatecameras.Thus, to ensurethe stereo-
cameramoves steadily, the correspondingcandidatecameras
also have to move steadily. Hence,we de�ne the continuity

costsof the cameraorientations,ECQ and the location, ECV
as:

ECQ(S;PL;PR) =
N¡ 1
å

i= 2
k2q(si) ¡ q(si+ 1) ¡ q(si¡ 1)k2

ECV (S;PL;PR) = 1
d2

eye
(
N¡ 1
å

i= 2
k2v(si) ¡ v(si+ 1) ¡ v(si¡ 1)k2

+
N¡ 1
å

i= 2
k2v(bPL[i]) ¡ v(bPL[i+ 1]) ¡ v(bPL[i¡ 1])k

2

+
N¡ 1
å

i= 2
k2v(bPR[i]) ¡ v(bPR[i+ 1]) ¡ v(bPR[i¡ 1])k

2).

(9)
Here, we minimize the secondderivative of the cameraori-
entationsand locations in order to reducethe discontinuity.
It has beenpointed out [32] that humanare more sensitive
to rotationalvibrations,thereforeECQ shouldbe given larger
weight. Generally, the weights of ES and ECV should be
close to ensurethe tradeoff betweenthe warping errors and
translationalsmoothness.

V. OPTIMIZATION

Computingtheoptimalsolutionis challenging,asit involves
both the combinatorial and continuous optimizations. We
designan iterative algorithmto accomplishthis task.TableII
shows the pseudocode.

1) Find an initial solutionof S, PL, andPR.
2) Fix PL;PR, and �nd the optimal viewpoints of the stereo-

camerasV = f v(si )jsi = S[i]; i = 1; ...;Ng, and viewing orien-
tationsQ = f q(si )jsi = S[i]; i = 1; ...;Ng by minimizing E.

3) If E is small enoughor doesn't improve from last iteration,
terminatethe iteration;otherwise,continue.

4) for (i = 1; ...;N)
�x v(si ) and q(si ), and �nd the optimal PL[i];PR[i] to
minimize wSES+ wQEQ.

5) Fix Q, PL & PR, andre�ne V to minimize E.
6) Fix Q andV, andre�ne PL andPR locally to minimize E.
7) Goto step2.

TABLE II

ALGORITHM OF OPTIMIZATION.

Solving PL andPR involvesa combinatorialoptimization,
which is too complicatedto searchglobally for the bestsolu-
tion. However, if PL andPR are�x ed, it becomesa nonlinear
continuousoptimizationandcanbe optimizedby Levenberg-
Marquardtmethod(LM) ef�ciently . Therefore,we employ an
optimizationstrategy which alternatesbetweenthecontinuous
optimizationandthediscretesearch.That is, insteadof letting
all parametersto changesimultaneously, we temporarily �x
discreteparametersto allow continuousoptimization.Thenwe
temporarily�x certaincontinuousparametersto allow discrete
search.Suchalternationcontinuesin the next iteration.

We �rst initialize S (i.e. V andQ), PL andPR (SectionV-
A). The initial V;PL and PR are usually already close to
optimalones.Thenin step2, we �x PL andPR, andoptimize
the V and Q using standardcontinuousoptimizationmethod
like Levenberg-Marquardt.If E is not suf�ciently small, it
meansthat PL and PR are not good enoughand needto be
adjustedin the following steps.
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Steps4-6 are mainly designedfor adjusting the discrete
parametersPL and PR. However, adjusting PL and PR is
computationallyexpensive. In order to ef�ciently adjust P L

andPR, we temporarilyfreezeECQ andECV (containcomplex
combinatorialoptimizationif PL andPR arenot �x ed)to their
currentvalues(step4). Insteadof optimizing thewholeE, we
only minimize for wSES+ wQEQ. This is an implementation
trick. Then in the following steps 5 and 6, we patch on
this partial optimization. In step 5, we allow V to adjust
in order to re�ect the effect due to the previous changeof
PL and PR. This time we minimize for the whole E, (not
just wSES + wQEQ). Once V adjusts,it affects PL and PR

immediately. Finally in step6, we locally adjustPL and PR

to minimizefor thewholeE. With thepartialoptimizationand
the local adjustment,the adjustmenton PL and PR becomes
ef�cient.

A. Initialization

Firstly, we constructthe initial selection.Let PL[i] = i for
i = 1; ...;N, i.e., thebaseframef i will be thecurrentcandidate
to be warpedinto the left view correspondingto the i-th left
camera.Then,the remainingtaskis to searchthe properbase
frame as the current candidatefor the correspondingright
view. Considerthe i-th left camera,basecamerabk is the
desiredone if the distancebetweenbk and bi is the closest
one to the interocular distancedeye. Its index is assigned
to PR[i], or PR[i] = k such that k > i. It is natural to let
the center and orientation of the i-th stereo-camerabe the
averageof thoseof bi and bk, i.e., v(si) = (v(bi) + v(bk))=2
and q(si) = (q(bi) + q(bk))=2. Next, accordingto the local
coordinatesystemof thestereo-camera,if bk is noton theright
handside of bi when looking at the positive direction of the
z-axis,thevaluesin PL[i] andPR[i] areswapped.v(R(si)) and
v(L(si)) aretheleft andright viewpointsof si andareequalto
v(si) § 0:5deyeex respectively, whereex is the x-axis direction
vector. Figure4 illustratesthe initialization graphically.

B. Speed-up

During theadjustmentof PL[i] andPR[i], thetermsECQ and
ECV involve thecomplex combinatorialoptimizationin which
its complexity grows exponentiallywith thenumberof frames.
Therefore,we employ a practical trick. It �rstly ignoresthe
continuity cost in step4. Thenthe continuity considerationis
broughtbackin steps5 and6 for improving visualsmoothness.
In step 4, for each stereo frame i, its best candidatepair
(PL[i], PR[i]) is determinedby �xing the stereo-camerasi
(both viewpoint and orientation)and minimizing the part of
objectivefunctionwSES+ wQEQ, i.e. s i = wS(d2 + e2) + wQg.
Energy termsECQ andECV aretemporarily�x edandignored.
As (PL[i], PR[i]) affectsthecenterof stereo-cameravi , we then
optimize vi accordingto the selectedpair using LM method
in step5.

The key is to ef�ciently select the best candidatepair in
step 4. For stereo-camerasi , s i = wS(d2 + e2) + wQg. From
Equation5, we know d2 = A(ktLk2 + ktRk2), whereA is an
invariant if w, h, hd, and f are �x ed. So, for either ktLk >p

s =(AwS) or ktRk >
p

s =(AwS), wSd2 > s is true. Hence,

Lt
Rt

s
k

i Aw/]1[ -s

))(( sRv))(( sLv )(sv

s
k

i Aw/]1[ -s

Fig. 5. The illustration of the determinationof the appropriatebaseframes
inside the spheres.

in the k-th iteration of the entire algorithm, we only select
basecamerapair candidatesfrom those inside the spheres
centeredat left and right viewpoints with the radiusequaltoq

s [k¡ 1]
i =(AwS), wheres [k¡ 1]

i is the cost evaluatedby using
thevaluesof PL[i] andPR[i] determinedfrom thelast iteration
(or the(k¡ 1)-th iteration),asshown in Figure5. This scheme
discardstheinappropriatepairs,whoserelevantcosts [k]

i have:

s [k]
i ¸ wS(d[k])2 ¸ s [k¡ 1]

i , (10)

wheres [k]
i is the currentcost. Therefore,for eachcandidate

pair insidethespheres,its costs [k]
i is calculated.Thecandidate

pair, whosecost is the minimum and lessthan s [k¡ 1]
i , is the

desiredone. Their indices are assignedto PL[i] and PR[i]
accordingly. If there is no pair satisfying Equation 10, the
currentPL[i] andPR[i] are retained.

C. Optimizationfor Visual Smoothness

To maintainthe visual smoothness,we control the acceler-
ationsof both left andright eyes.The accelerationsarecom-
putedby thesecond-orderdifferenceof theeye positions.This
smoothnessis determinedby ECQ andECV . While ECQ canbe
optimizedeasilyby LM methodin step2, the optimizationof
ES andECV arehighly dependenton V, PL andPR, andhas
a high combinatorialcomplexity. In step6 of the pseudocode,
whenthe viewpointsof stereo-camerasare �x ed, ECV merely
relies on the sum of the norm of the accelerationof the left
andright eyes.Due to the symmetry, we only explain the left
eye in the following discussion.

The shaky candidatecamerasare those whose accelera-
tions exceed a toleranceamax. Whenever shaky candidate
exists, we should modify our choice of candidateframes.
In general,such changeof choice should involve the whole
candidateindex sequence.In practice, we only perform a
local adjustmentby modifying a candidateindex subsequence
centeredat the detectedshaky candidate.To simplify the
discussion,we only describe the adjustmenton the left-
view frame index sequencePL. The right-view frame PR

is adjusted similarly. Consider the n-element subsequence
f PL[ko];PL[ko + 1]; :::;PL[ko + n¡ 1]g whereko+ dn=2e is the
detectedshaky element,for every elementPL[ko + i] = l i , its
new value after adjustmentcan be any value in the rangeof
[l i ¡ m; l i + m]. In most of our experiments,m is 3 and n is
10. For eachpossiblereplacement,wSES+ wQEQ+ wCVECV is
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warping

warping

left candidate right candidate
stereo center

left camera

right camera

frame 211 frame 215

left right

(a) (b) (c)

Fig. 6. An exampleof stereoscopicvideo generation.The input monocularvideo sequenceis taken in the air. (a) shows the recoveredbasetrajectoryand
a few framesfrom the basesequence.(b) illustratesthe generationof a stereoscopicview pair. The blue dot coupledwith 2 greendots indicatethe virtual
stereo-camera,wherethe greendotsare the left andright cameras.(c) shows the composedstereoframe.
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Fig. 7. Plotsof Euler anglesof the computedorientation.(a) is the recoveredcameraorientationof the basesequence(monocularvideo). (b) and(c) show
the cameraorientationsof the correspondingstereo-cameracomputedwith differentwCQ settings.In (b) wS = 1;wQ = 100;wCQ = 100;wCV = 1 while in (c)
wS = 1;wQ = 100;wCQ = 10000;wCV = 1.

recomputedand the one with the minimal wSES+ wQEQ +
wCVECV is selectedfor replacementin order to improve
smoothness.Then we return to step 2, the viewpoints and
orientationsof stereo-cameraare further optimizedaccording
to the updatedPL andPR by meansof the LM method.

Sincein eachiterationtheoverall costE is guaranteedto be
decreased,theiterationconvergesataminimalpoint.Although
it may not be a global optimal solution,convincing solutions
areobtainedin all of our experiments.

VI . RESULTS AND DISCUSSIONS

We have testedour methodwith several monocularvideo
sequencesfrom either movies or home-madevideo clips
acquiredvia a hand-heldvideo camera.All experimentsare
carried out on a PC with Intel Pentium IV 2.4 GHz CPU
and 1 GB memory. Appealing results are obtained in our
experiments.Figures6 and 8 show two synthesizedstereo-
scopicvideo sequences.The input monocularvideo sequence
in Figure 6 is taken in the air. Video in Figure 8 is taken
indoor. In Figure8, we show the disparityof 5 samplepixels.
Note that how our methodcorrectlyre�ects the relative depth
of sceneobjects.

The statistics of the four video sequencesare listed in
Table III. In the table, deye is interoculardistance,and m is
the penaltyfactorfor parallaxin y direction(seeEquation3).

Sequencein Fig. 1 Fig. 6 Fig. 8 Fig. 10
Numberof frame 431 861 441 370

Time for cameratracking 26 min. 80 min. 30 min. 22 min.
Iterationnumber 2 1 2 3
of optimization

Time for optimization 27 sec. 20 sec. 35 sec. 21 sec.
Time for view warping 10 min. 20 min. 10 min. 8 min.

andvideo output
deye 10 4 12 10

m penaltyfactor for y dir. 4 4 4 4
wS 1 1 1 1
wQ 100 100 100 100

wCQ 10,000 100 100 10,000
wCV 1 1 1 1

TABLE III

THE PERFORMANCE STATISTICS.

Fromthetable,theoptimizationtime is small.Cameratracking
consumesmostof thetime.Fromour experiments,thenumber
of iterationsfor the optimizationis around1 to 3. Suchsmall
numberof iterationsmeansthat the initial solutionis closeto
the optimal ones.

Theweightsin thecostfunctionareuser-speci�ed.TableIII
lists their values.In our experiments,we set wS = wCV = 1,
andwQ = 100.The choiceof wCQ is highly dependenton the
smoothnessof the input video sequence.For the sequences
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(b)

(c)

(d)

(a)

Fig. 8. Another example of stereoscopicvideo generation.(a) shows the
recoveredbasetrajectory. The two imagesin the (c) and(d) are the warping
result of the baseframes,and form a stereoscopicview pair in the result.
Thearrows in the imagesshow thedegreeof binocularparallaxof � ve points
in the scene.It canbe found that the remotepointshave the small parallax,
whereasthe nearpointshave the large ones.(b) is the compositionimageof
(c) and(d).

extracted from professionalmovies (normally with smooth
motion),wCQ canbe set to about100.For the video captured
by hand-heldcamera(like Figure 1), wCQ shouldbe greater
than 100. Figure 7 shows the cameraorientations(in Euler
angles)of thebasesequenceandthoseof stereosequencewith
differentwCQ settings.It shows that larger valueof wCQ leads
to a smootherchangeof computedorientation,hencetheresult
is lessshaky. As thesearchwindow m of local adjustmentfor
shaky camera(SectionV-C) increases,thesmoothnessof result
also increases,but with the trade-off of highercomputational
cost.In our experiments,we found m= 3 is a goodchoiceto
balancethe trade-off betweenthe performanceandquality. In
general,adjustingthe weights tradesamongthe smoothness,
stereoscopiceffect and/orvisual similarity.

Recall that in SectionIII, we have justi�ed why the simple
but restrictive constant-depthview warping, instead of the
more general planar-homography, is adopted. Figure 9(a)
shows a stereo-framefrom view warping with the planar-
homography. Note that thebuilding andstreetlampsin the left
andright syntheticviews arenot parallel.This artifact canbe
easilyrecognizedby humanvision. Even worse,somefarther
objectshave muchlarger disparitiesthanthosecloserobjects.
In contrast,the result from the constant-depthview warping
(Figure9(b)) doesnot causesimilar objectionableartifacts.

Sinceno depthmapis used,our approachhassomelimita-
tions.

1) Thesceneshouldbestatic,otherwisethemoving objects
will be warped incorrectly. Becausethe left-eye and
right-eye views are the warping results of the input
framesat different time instances,warpingthemresults
in inconsistentobject motion. Nevertheless,humanvi-
sion may acceptsmall inconsistentmovements.

2) As our methodrelieson the motion parallaxto synthe-

(b) view warping with constant-depth(a) view warping with planar-homography

Fig. 9. Comparisonof planar-homography andconstant-depthview warping.
In (a), the building and the streetlampsin the left and right views are not
parallel. Moreover, somefarther objectseven have much larger disparities
than thosenearerones.Not similar objectionableartifact are found in the
result from constant-depthwarping(b).

(a) (b)

Fig. 10. A poor example of stereoscopicvideo generation.The input
monocularsequenceis taken by a hand-heldcameramoving in the direction
of the cameraviewing direction. (a) shows the recovered basetrajectory.
Since the angle betweenthe moving direction and the viewing direction is
very small, the binocularparallax is hard to be converted from the motion
parallax.As theresult,all binocularparallaxof thesamplepointsin thescene
are almostidentical,and the generatedstereoscopicvideo doesnot properly
show the depthcue.

sizethestereoparallax,it fails whenthereis no horizon-
tal parallaxin theinputvideo.Examplesincludethecase
when the video is capturedfrom a �x ed viewpoint, the
casewhen the viewing and motion directionscoincide
(Figure 10), and when the input video containsonly
vertical motion.

3) Our methodtries to minimize the relative parallaxerror
andwarpingerror, andkeepthemconsistent.However,
sinceit is basedon a crudeconstant-depthassumption,
a large relative parallax/warping error may still occur
andnot be quite consistentin somecases.For example,
whena originally panningcamerasuddenlychangesits
trajectoryandmovesforward, it is very dif�cult to keep
all the parallaxes consistent.In this case,the objects
whosedepthsare closeto the optimal depthvalue (i.e.
zc = 2(z¡ 1

min + z¡ 1
max)

¡ 1) have more consistentparallaxes.
On the other hand,the parallaxes of the objectswhose
depthsare far away from the optimal depthvalue may
be jittered. In practice, the regions with inconsistent
parallaxes are usually not the visual focus and human
vision have a higher tolerance.

4) If the focal length of input video varies, the output
video may contain error. The simplest way to work
around the problem is to preprocessthe input video.
A more sophisticatedapproachis to incorporatefocal-
lengthvariation in the cost function. This is oneof our
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future directions.

VI I . CONCLUSIONS

In this paper, we presenta novel automaticsynthesisof
stereoscopicvideo sequencefrom the monocularone.Instead
of recovering the depthmap,we exploit the motion parallax.
This allows us to avoid the objectionablevisual artifact due
to the inaccuratelyrecovered 3D information. We formulate
the video synthesisproblemasan optimizationproblem.The
introducedcostfunctionconsidersthestereoscopiceffects,the
similarity, andthesmoothnessobjectives.Userscanadjustthe
weights to trade among these three objectives. Convincing
results evidence the robustnessand the ef�ciency of our
approach.Despiteof limitations,theproposedmethodis useful
in many scenariosin which the video containsthe panning
motion.
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APPENDIX

Assumethe coordinatesystemis set to align with the left
camera(right camera),and the cameraviews along z-axis.
Refer to Table IV for the meaningof the notationsusedin
this appendix.Then the position of the candidatecamerais
t = (tx; ty; tz). For simplicity, we assumethe candidatecamera
and left (right) camerahave the sameorientation. If their
orientationsare different, we can rectify them beforehand.
Without lossof generality, we choosea pixel p which 3D ho-
mogeneouscoordinateis (x;y;1;1=z) in thecoordinatesystem
of thecandidatecamera.Fromthecandidatecamerato theleft
(right) camera,its coordinatebecomes( xz+ tx

z+ tz
; yz+ ty

z+ tz
;1;1=(z+

tz)) . Then the offset in the imageis d =
³

f tx¡ xtz
z+ tz

; f ty¡ ytz
z+ tz

´ >
.

For convenience,we replacez+ tz with z by simply offset

the coordinate,henced =
³

f tx¡ xtz
z ; f ty¡ ytz

z

´ >
. We assumethe

depthsof sceneare in the range of [zmin;zmax]. During the
view warping,we assumethe depthis constantand equalto
zc = 2(z¡ 1

min + z¡ 1
max)

¡ 1 over the whole image. This results in

dW =
³

f tx¡ xtz
zc

; f ty¡ ytz
zc

´ >
. Here, we de�ne Dd as the offset

error due to the uncertaintyof depth.

Dd =
³

f (tx ¡ xtz)( 1
zc

¡ 1
z); f (ty ¡ ytz)( 1

zc
¡ 1

z)
´ >

· f hd
2 (jtx ¡ xtzj; jty ¡ ytzj)>

pi (xi ;yi ;1;1=zi ) the homogeneous3D coordinateof pixel i.
zi the depthof pixel i.

w, h the width andheightof the image.
f the focal length.

tL(tR) the relative translationbetweenleft (right) and the
candidatecameras.

Di the parallaxof pixel i.
DW

i the parallaxof pixel i warping with constantdepth
zc.

dL
i (dR

i ) the imageoffset of pixel i betweenleft (right) and
candidatecameras.

dLW
i (dRW

i ) the imageoffset of pixel i betweenleft (right) and
candidatecameraswarpingwith constantdepthzc.

ei j the relative parallaxerror betweenpixels i and j.

TABLE IV

NOTATIONS USED IN THE APPENDIX .

Sincejxi j · w
2f ; jyi j · h

2f , we have

jjDdjj · 1
2 f hd

p
(tx ¡ xtz)2 + (ty ¡ ytz)2

· 1
2 f hd

q
(jtxj + w

2f jtzj)2 + (jtyj + h
2f jtzj)2

·
p

2
2 f hd max

µ
1;

p
w2+ h2

2f

¶
jj tjj

Therefore,consideringthe parallaxerrorsof both left and
right cameras,we obtainEquation5.

Next, we derive Equation3. For any pixel pi(xi ;yi ;1;1=zi)
in the coordinatesystemof the candidatecamera,having the
following:

dL
i =

0

@
tLx ¡ xL

i tLz
zi

f
tLy ¡ yL

i tLz
zi

f

1

A ;dLW
i =

0

@
tLx ¡ xL

i tLz
zc

f
tLy ¡ yL

i tLz
zc

f

1

A

dR
i =

0

@
tRx ¡ xR

i tRz
zi

f
tRy ¡ yR

i tRz
zi

f

1

A ;dRW
i =

0

@
tRx ¡ xR

i tRz
zc

f
tRy ¡ yR

i tRz
zc

f

1

A

DW
i = Di + (dLW

i ¡ dRW
i ) ¡ (dL

i ¡ dR
i )

Thenthe relative parallaxerror betweenpixels i and j:

ei j = (DW
i ¡ DW

j ) ¡ (Di ¡ D j )
= (dLW

i ¡ dRW
i ) ¡ (dL

i ¡ dR
i ) ¡ ((dLW

j ¡ dRW
j ) ¡ (dL

j ¡ dR
j ))

= f

Ã
¡ (tL

x ¡ tR
x )( 1

zi
¡ 1

zj
) + PL

x tL
z ¡ PR

x tR
z

¡ (tL
y ¡ tR

y )( 1
zi

¡ 1
zj

) + PL
y tL

z ¡ PR
y tR

z

!

· f hd

Ã
jtL

x ¡ tR
x j + (jtL

z j + jtR
z j) w

2f
jtL

y ¡ tR
y j + (jtL

z j + jtR
z j) h

2f

!

Here,

PL
x = xL

i ( 1
zi

¡ 1
zc

) ¡ xL
j (

1
zj

¡ 1
zc

);PR
x = xR

i ( 1
zi

¡ 1
zc

) ¡ xR
j (

1
zj

¡ 1
zc

)

PL
y = yL

i ( 1
zi

¡ 1
zc

) ¡ yL
j (

1
zj

¡ 1
zc

);PR
y = yR

i ( 1
zi

¡ 1
zc

) ¡ yR
j (

1
zj

¡ 1
zc

)

Hence,we obtainEquation3.

REFERENCES

[1] T. Okoshi, Three-DimensionalImaging Techniques. AcademicPress.,
1976.

[2] W. Matusik and H. P�ster, “3D TV: a scalable system for real-
time acquisition,transmission,andautostereoscopicdisplayof dynamic
scenes,” ACM Trans.Graph., vol. 23, no. 3, pp. 814–824,2004.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTERGRAPHICS,VOL. 13, NO. 4, JULY/AUGUST 2007 10

[3] E. H. Adelson and J. R. Bergen, “The plenoptic function and the
elementsof earlyvision,” in ComputationalModelsof VisualProcessing,
M. S. Landy and J. A. Movshon,Eds. MIT Press,1991, ch. 1, pp.
3–20.

[4] D. V. Morland, “Computer-generatedstereograms:a new dimensionfor
the graphic arts,” in SIGGRAPH'76: Proceedingsof the 3rd annual
conferenceon Computergraphics and interactive techniques. New
York, NY, USA: ACM Press,1976,pp. 19–24.

[5] Y. Matsumoto,H. Terasaki,K. Sugimoto,andT. Arakawa, “Conversion
systemof monocularimagesequenceto stereousingmotion parallax,”
in Proc. of SPIE Stereo. Disp. and VR Sys, vol. 3012, May 1997, pp.
108–115.

[6] P. Harman,“Home based3D entertainment- anoverview.” in IEEE Intl.
Conf. on Image Processing, 2000,pp. 1–4.

[7] D. Scharsteinand R. Szeliski, “A taxonomyand evaluation of dence
two-framestereocorrespondencealgorithms,” International Journal of
ComputerVision, vol. 47, no. 1/2/3, pp. 7–42,April – June2002.

[8] R. Hartley and A. Zisserman,Multiple View Geometryin Computer
Vision. CambridgeUniversity Press,2000.

[9] Y. Lu, J. Z. Zhang,Q. M. J. Wu, and Z.-N. Li, “A survey of motion-
parallax-based3D reconstructionalgorithms,” IEEE Transaction on
SMC-C, vol. 34, no. 4, pp. 532–548,December2004.

[10] H.-Y. Shum and S. B. Kang, “A review of image-basedrendering
techniques,” in Proc. of IEEE/SPIEVisual Communicationsand Image
Processing(VCIP), 2000,pp. 2–13.

[11] C. Bregler, M. F. Cohen, P. Debevec, L. McMillan, F. X. Sillion,
and R. Szeliski, “Image-basedmodeling, rendering,and lighting,” in
SIGGRAPH1999Course#39, 1999.

[12] M. Levoy andP. Hanrahan,“Light �eld rendering,” in SIGGRAPH'96:
Proceedingsof the 23rd annual conferenceon Computergraphicsand
interactive techniques. New York, NY, USA: ACM Press,1996, pp.
31–42.

[13] J.-X. Chai,X. Tong,S.-C.Chan,andH.-Y. Shum,“Plenopticsampling,”
in SIGGRAPH'00: Proceedingsof the 27th annual conference on
Computergraphicsand interactive techniques. New York, NY, USA:
ACM Press/Addison-Wesley PublishingCo., 2000,pp. 307–318.

[14] S. J. Gortler, R. Grzeszczuk,R. Szeliski,andM. F. Cohen,“The lumi-
graph,” in SIGGRAPH'96: Proceedingsof the 23rd annualconference
on Computergraphics and interactive techniques. New York, NY,
USA: ACM Press,1996,pp. 43–54.

[15] W. R. Mark, L. McMillan, andG. Bishop,“Post-rendering3D warping,”
in SI3D '97: Proceedingsof the 1997 symposiumon Interactive 3D
graphics. New York, NY, USA: ACM Press,1997,pp. 7–ff.

[16] S. E. Chenand L. Williams, “View interpolationfor imagesynthesis,”
in SIGGRAPH'93: Proceedingsof the 20th annual conference on
Computergraphicsand interactive techniques. New York, NY, USA:
ACM Press,1993,pp. 279–288.

[17] S. M. Seitz and C. R. Dyer, “View morphing,” in SIGGRAPH'96:
Proceedingsof the 23rd annual conferenceon Computergraphicsand
interactive techniques. New York, NY, USA: ACM Press,1996, pp.
21–30.

[18] Y. Horry, K. Anjyo, andK. Arai, “Tour into thepicture:Usinga spidery
meshinterfaceto make animationfrom a singleimage,” in SIGGRAPH
'97: Proceedingsof the 24th annualconferenceon Computergraphics
and interactive techniques, Los Angeles,1997,pp. 225–232.

[19] J.Shade,S.Gortler, L. wei He,andR. Szeliski,“Layereddepthimages,”
in SIGGRAPH'98: Proceedingsof the 25th annual conference on
Computergraphicsand interactive techniques. New York, NY, USA:
ACM Press,1998,pp. 231–242.

[20] H. S. Sawhney, Y. Guo, K. Hanna,R. Kumar, S. Adkins, andS. Zhou,
“Hybrid stereocamera:an IBR approachfor synthesisof very high res-
olution stereoscopicimagesequences,” in SIGGRAPH'01: Proceedings
of the 28th annual conferenceon Computergraphics and interactive
techniques. New York, NY, USA: ACM Press,2001,pp. 451–460.

[21] M. Magnor, M. Pollefeys, G. Cheung,W. Matusik, and C. Theobalt,
“Video-basedrendering,” in SIGGRAPH2005Course#16, 2005.

[22] C. L. Zitnick, S. B. Kang, M. Uyttendaele,S. Winder, andR. Szeliski,
“High-quality video view interpolationusing a layeredrepresentation,”
ACM Trans.Graph., vol. 23, no. 3, pp. 600–608,2004.

[23] J. Carranza,C. Theobalt, M. A. Magnor, and H.-P. Seidel, “Free-
viewpoint video of humanactors,” ACM Trans.Graph., vol. 22, no. 3,
pp. 569–577,2003.

[24] H. Huangand Y. Hung, “Panoramicstereoimaging systemwith auto-
matic disparity warping and seaming,” in Proceedingsof International
Conferenceon Image Processingand Character Recognition (ICS'96),
December1996,pp. 48–55.

[25] S. Peleg, M. Ben-Ezra,and Y. Pritch, “Omnistereo:Panoramicstereo
imaging,” IEEE Transactionon Pattern Ananlysisand Machine Intelle-
gence, vol. 23, no. 3, pp. 279–290,2001.

[26] C. T. Loop and Z. Zhang, “Computing rectifying homographiesfor
stereovision.” in CVPR, 1999,pp. 1125–1131.

[27] E. Rotem, K. Wolowelsky, and D. Pelz, “Automatic video to
stereoscopicvideoconversion,” A. J. Woods,M. T. Bolas,J. O. Merritt,
andI. E. McDowall, Eds.,vol. 5664,no. 1. SPIE,2005,pp. 198–206.
[Online]. Available:http://link.aip.org/link/?PSI/5664/198/1

[28] A. FitzgibbonandA. Zisserman,“Automaticcameratracking,” in Video
Registration, M. Shahand R. Kumar, Eds. Kluwer, 2003, ch. 2, pp.
18–35.

[29] M. Pollefeys, L. J. V. Gool, M. Vergauwen,F. Verbiest,K. Cornelis,
J. Tops, and R. Koch, “Visual modeling with a hand-heldcamera.”
InternationalJournal of ComputerVision, vol. 59, no. 3, pp. 207–232,
2004.

[30] G. Zhang, X. Qin, X. An, W. Chen, and H. Bao, “As-consistent-as-
possiblecompositingof virtual objectsandvideosequences.” Computer
Animationand Virtual Worlds, vol. 17, no. 3-4, pp. 305–314,2006.

[31] T. W. Backhouse,“Absolute and relative parallax,” The Observatory,
vol. 11, pp. 343–343,Sept.1888.

[32] Z. Duric andA. Rosenfeld,“Stabilizationof imagesequences,” Univer-
sity of Maryland,Tech.Rep.CAR-TR-778,July 1995.

Guofeng Zhang received his BS degree in Com-
puter Sciencefrom ZhejiangUniversity, P.R.China,
in 2003. Currently, he is a PhD candidatein com-
puterscienceat StateKey Laboratoryof CAD&CG,
Zhejiang University. His main researchinterests
include camera tracking, 3D reconstruction,aug-
mentedreality andvideo enhancement.

Wei Hua received the BS degreein biomedicalen-
gineeringfrom ZhejiangUniversity in 1996,andthe
PhD degree in appliedmathematicsfrom Zhejiang
University in 2002. Currently, he is an associate
professorof the StateKey Laboratoryof CAD&CG
of ZhejiangUniversity. His researchinterestsinclude
real-time simulation and rendering,virtual reality
andsoftwareengineering.

Xueying Qin received her PhD from Hiroshima
University of Japanin 2001,and MS and BS from
ZhejiangUniversity and PekingUniversity in 1991
and1988,respectively. Currently, sheis anassociate
professorof ZhejiangUniversity. Her main research
interestsareaugmentedreality, video-basedrender-
ing, andphoto-realisticrendering.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTERGRAPHICS,VOL. 13, NO. 4, JULY/AUGUST 2007 11

Tien-Tsin Wong received the B.Sci., M.Phil., and
PhD.degreesin computersciencefrom the Chinese
University of Hong Kong in 1992,1994,and1998,
respectively. Currently, he is a Professorin the De-
partmentof ComputerScience& Engineering,Chi-
neseUniversity of Hong Kong. His main research
interestis computergraphics,includingimage-based
rendering,naturalphenomenamodeling,andmulti-
mediadatacompression.He received IEEE Trans-
actionson MultimediaPrize Paper Award 2005and
YoungResearcher Award 2004.

Hujun Bao received his Bachelorand PhD in ap-
plied mathematicsfrom ZhejiangUniversity in 1987
and1993.He is currently the directorof StateKey
Laboratory of CAD&CG of Zhejiang University.
He is also the principal investigator of the virtual
reality project sponsoredby Ministry of Science
and Technology of China. His researchinterests
includerealistic imagesynthesis,realtimerendering
technique,digital geometryprocessing,�eld-based
surfacemodeling,virtual reality andvideo process-
ing.


