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Abstract

We present an efficient approach that merges the virtual objects into video se-

quences taken by a freely moving camera in a realistic manner. The composition is

visually and geometrically consistent through three main steps. First, a robust camera

tracking algorithm based on key frames is proposed, which precisely recovers the focal

length with a novel multi-frame strategy. Next, the concerned 3D models of the real

scenes are reconstructed by means of an extended multi-baseline algorithm. Finally,

the virtual objects in the form of 3D models are integrated into the real scenes, with

special cares on the interaction consistency including shadow casting, occlusions and

object animation. A variety of experiments have been implemented, which demonstrate

the robustness and efficiency of our approach.
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Introduction

Over the past decade, Augmented Reality (AR), which aims to merge virtual objects into the

real scenes, has become an invaluable technique for a wide variety of applications [2, 15].

Augmented Video is an off-line AR technique for highly demanding applications such as

film-making, television and environmental assessments, in which seamless composition is

of essential importance.

Most previous solutions of AR system concentrate on the geometry consistency of vir-

tual and real scenes and thus require precise motion estimation of video camera and 3D

models [4, 8]. The structure and motion recovery is a traditional problem in computer

vision [17, 9, 7]. Some commercial software packages have been available, such as 2d3

Boujou [1] and REALVIZ MatchMover [19]. To the best of our knowledge, the detailed

techniques used by these packages have not been published yet. Pollefeys et al. [17] pro-

posed to begin with an initialization of projective structure and motion, followed by an

upgrade to metric framework with self-calibration. They also employed a flexible multi-

view stereo matching scheme [10] to obtain a dense estimation of the surface geometry.

However, the self-calibration technique is not always stable, especially when the initially

recovered projective matrices are not adequately accurate.
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The goal of dense reconstruction is to extract 3D models after structure and motion

recovery. Lu et al. presented a survey of 3D reconstruction algorithms [13]. Scharstein and

Szeliski [21] introduced a two-frame stereo framework to categorize and evaluate two-frame

stereo correspondences. One of its disadvantages is that using short baselines makes the

matching easier at the cost of poor evaluation of depth, while using long baselines results

in highly precise depth evaluation but more difficult matching. Then, multiple baseline

approaches proposed in [14, 20] are popular techniques to reconstruct 3D models. However,

most of them have proven to be time-consuming because the calculation is difficult to be

processed on rectified scanlines.

Due to the difficulties of obtaining 3D models from the real scenes, few work has been

focused on the interaction of virtual and real scenes, such as occlusions, shadows and inter-

reflections. The virtual objects are usually pasted onto real scenes directly [4]. The occlusion

effects can be obtained by means of several methods, such as blue screen techniques [22],

and boundary registration method [11]. The 3D models of the real scenes are generally

required to handle the shadows [18] and inter-reflection [5]. Alternatively, Chuang et al. [3]

proposed to draw out the shadow displacement map from a fixed view and transfer the

shadows from one image to another.

Based on our previous work [24], we propose a novel approach to merge the virtual

objects into video sequences taken by a freely moving video camera. The contributions of

this paper lie in several aspects. First, precise structure and motion are recovered based

on precise estimation of the focal length by means of a new multi-frame strategy. Second,
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we extend the two-frame scheme to multiple frames of a video sequence by a scanline-

accelerated multiple baseline stereo method; the structures in multiple views are then used

to construct the final 3D models. Third, built upon the reconstructed 3D models, realistic

interaction effects are achieved, including occlusions, shadow casting and object animation.

The rest of this paper is organized as follows. In Section 2, our scheme on precise

estimation of the camera motion is elaborated. Section 3 presents our extended multiple

baseline method for the dense 3D reconstruction. The composition of the virtual objects

and the real scenes is described in Section 4. Experimental results are given in Section 5.

Finally, we conclude the whole paper.

Camera Motion Estimation of Video Sequences

Highly accurate estimation of camera motion is essential to match the geometry of the virtual

objects and the real scenes. Here, we propose a robust camera tracking algorithm based on

automatically extracted key frames, in which the focal length is firstly recovered by a robust

multi-frame strategy.

Feature Matching

We adopt SIFT algorithm [12] to extract the features from each frame of the input video

sequence and match the features frame by frame. Corresponding features are constrained

according to the epipolar geometry theory [25]. We use RANSAC algorithm [6] to find a
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set of inliers that have consistent epipolar geometry. Then the matched feature points in

frames are chained. Each chain is called a matching set, which corresponds to a 3D point.

Generally, the longer the length of a matching set is, the higher the reliability is, and more

advantageous for structure and motion estimation.

The Camera Model

We parameterize each camera motion using seven parameters, i.e., the rotation expressed

by three Euler angles Θ = (θx, θy, θz), the translation expressed by a triple vector t =

(tx, ty, tz), and the focal length f . The intrinsic matrix K can be written as:

K =
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where (cx, cy) denotes the image center. Each matching set represents a 3D point X =

(X,Y, Z)>, and its re-projection in each frame is:

x = K(RX+ t) (2)

where R denotes the rotation matrix represented by the rotational Euler angles and x is the

the homogeneous image positions of X in a frame.

Typically, camera motion estimation aims to compute K, R, and t of each frame in a

video sequence. If camera zooming in or out is excluded, the unknown camera intrinsic
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parameter f remains constant, and can be calculated before the estimation of the extrinsic

camera parameters.

According to the epipolar geometry theory, two corresponding points x
′ and x in two

images take [25]:

x
′>Fx = 0 (3)

where the fundamental matrix F has F = K−>[t] × RK−1. This indicates that a point in

one image matches a line Fx on another image. Thus, any corresponding point x
′ lies on

the line Fx. The sum of symmetric epipolar distances of all corresponding points is used to

measure the errors:

D =
∑

j
(x′>j Fxj)

2( 1
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+ 1
(F>

x
′

j
)2
1
+(F>

x
′
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)2
2

) (4)

Selecting Key Frames

As Fitzgibbon and Zisserman indicated in [7], the number and the length of the interest

point tracks have a significant effect on the stableness and accuracy of structure and motion

estimation. Now that we have obtained matching sets of feature points as described before,

we choose only those matching sets whose track lengths are no less than N to participate in

estimation. We call those matching sets golden tracks. In our experiments, the value of N

is usually chosen in the range of 15-35.

Generally, the larger the interval of key frames, the longer the baseline, and the more

beneficial to estimation. However, it may cause the shortness of matching sets if the interval
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is too large. We set the interval to be (N − 1)/2 to ensure that any golden track appears in

at least two key frames, or say, it must be able to participate in estimation.

Nevertheless, if there is not adequate golden tracks between two successive key frames,

we have to supplement some other matching sets appearing in these two key frames into the

golden tracks. If this is insufficient, we insert a key frame between them, and select golden

tracks in the same manner.

Practically, we select two key frames that are suitable for initializing the sequential struc-

ture and motion computation. It should be satisfied that the baseline between two frames is

long enough with sufficient common golden tracks. Pollefeys et al. [17] proposed to use the

image-based distance to size the length of a baseline:

b = median(d(Hx,x′)) (5)

where H is the planar-homography and can be solved by minimizing b. By denoting nij

as the number of common golden tracks between the i-th and j-th frames, we define the

following formula to evaluate the suitability for two frames:

dij = nαijbij (6)

Here we choose α = 0.5 in our experience because highly common correspondences are

unnecessary.
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Estimation of The Focal Length Based on Multi-frames

The focal length plays a very important role in camera motion estimation. The robustness

of its evaluation influences the accuracy of estimation of camera motion. However, it is

very difficult to recover precise focal length from only two frames under the influences of

matching noises. This has been examined by our experiments. As shown in Figure 1(a),

even for any two key frames with a large camera motion, the curve of the re-projection

errors is flat, which means that f is very unstable. On the contrast, the curve of re-projection

errors has an obvious minimum if multiple frames are employed as shown in Figure 1(b).

Therefore, the recovery of the focal length tends to be more precise with multiple frames.

Based on these investigation, we propose a multi-frame strategy to precisely recover

the focal length f by the 1D searching process. In the first step, given a value of f , we

compute R and t of the two key frames by minimizing the cost function D in Eq. 4 with

Levenberg-Marquardt algorithm. Then the 3D position Xj of each common feature point

can then be reconstructed from its two projections xj and x
′
j by computing the intersection

of the two corresponding space rays. This process is called a triangulation. In the second

step, we select several frames between these two key frames and solve their camera motion

parameters. We define the cost function e(f) for all re-projection errors in the selected

frames as:

e(f) =
∑

i∈ψ

∑

j∈χ(i)

‖rij‖2 (7)

where ψ is the set of all selected frames, χ(i) is the superscript of a golden track on the i-th
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frame, and rij is the residual of the j-th 3D point Xj in the i-th frame image:

λijx̂ij = K(Ri|ti)X̂j, rij = x̂ij − xij (8)

Here, Ri and ti are the rotation matrix and translation vector from the first key frame to the

i-th frame, respectively.

We calculate e(f) iteratively by repeating the first and second steps and compute f that

minimizes e(f). The fibonacci searching method is suitable for this process. The initial

values of Ri, ti of each iteration can be set to the estimated values in the previous iteration.

It is apparent that the first step is more time-consuming than the second step because 3D

points X̂j are unknown and the cost function D is much more complex than e. Since 3D

point X̂j have been estimated from the first step, the cost function e is easy to be obtained

even when there are more frames involved. In our experiments, it costs less than half a

minute to find an appropriate enough value for f .

Incremental Motion Estimation

Based on the recovered structure and motion of the first two key frames, other key frames

are incrementally handled along with the refinement of the existing key frames.

For each successive new key frame, its camera motion represented by R and t is ini-

tialized as its previous one and then estimated by employing the recovered structure of the

golden tracks to minimize the following re-projection errors:

∑

j

d(xj, K(RXj + t))2 (9)
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Then, new golden tracks are reconstructed by the newly estimated motion. Therefore, both

new motion and structure are obtained. Then we adopt the modified local bundle adjust-

ment [26] to refine the existing structure and motion.

After all of the key frames are processed, camera motions of the whole sequence are

recovered easily from the precise structure by Equation 9. Finally, if necessary, all of the

structure and motion for the whole sequence are refined through a bundle adjustment [23, 9].

3D Reconstruction of The Real Scenes

The best way to achieve the most consistency between the virtual objects and real scenes is

to recover the geometry of the real scenes, especially wherein the virtual objects and the real

scenes interact. Although it is impractical to reconstruct all objects in scenes, all AR-based

applications normally only concern only partial scenes, which can be indicated interactively.

Computations of The Dense Depth Maps

As shown in Figure 3(a), for two frames viewed fromCl andCr, there are two homographies

H
l and H

r (3 × 3 matrix) which map them to the left image I l and the right image Ir on

the common image plane Π. The common image plane is parallel to the baseline ClCr with

the length B. As a result, the epipolar lines [25] in two frames become the same scanline.

Thus, the dense matching is accelerated by handling it along scanlines. We employ the

SAD (sum-of-absolute-differences) algorithm with a window W centered at (x0, y0) as the

10



matching function, to find the best disparity d at (x0, y0):

SAD(x0, y0, d) =
∑

x,y∈W

|Il(x, y)− Ir(x− d, y)| (10)

After the dense matching is accomplished, the dense depth is calculated according to Equa-

tion 11:

Z = Bf/d (11)

where Z is the depth, B is the length of the baseline, and d is the disparity of a point. In this

way, a dense depth map is obtained.

Multi-Baseline Stereo of Video Sequences

The dense matching of image pairs usually does not produce accurate dense depth map due

to noises. Our scheme is to exploit multi-baseline stereo of a video sequence to recover

the dense depth map. If the camera moves along a line, multi-baseline stereo can be easily

dealt with (see [14] for details). However, since the baselines are seldom parallel, the cor-

respondences of a 3D point in different stereo image pairs are difficult to be mapped on the

same scanline. A common measurement for all stereo image pairs in the video sequence is

required to extend multi-baseline stereo to all frames in a video sequence.

Without loss of generality, we take any three frames F1, F2 and F3 as an example

(see Figure 3(b)). We use the subscripts to index the image pairs, and (x, y, 1) to de-

note the uniform homogeneous coordinates in the image plane. We assume that the im-

age pairs (F1, F2), and (F1, F3) are rectified as described in Section 3.1, and the projec-
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tions of a 3D point P on the rectified images I l1,2 and I l1,3 are x12 = (x12, y12, 1)
> and

x13 = (x13, y13, 1)
>, respectively. According to Equation (11), the 3D position of P can be

calculated by re-projecting x12 and x13 back to 3D space from I l1,2 and I l1,3, and expressed as

P12(x12B12f/d12, y12B12f/d12, B12f/d12), P13(x13B13f/d13, y13B13f/d13, B12f/d13), re-

spectively. P12 and P13 are different expressions of the same 3D point in different coordinate

system. Therefore, we have ‖P12‖ = ‖P13‖, yielding:

d12

B12

√

x2
12 + y2

12 + 1
=

d13

B13

√

x2
13 + y2

13 + 1
(12)

Equation 12 builds up the common measurement for all frames relating to F1. It implies that

if we plot the matching curves as a function of d′ = d/(B
√
x2 + y2 + 1), i.e., SAD(d′),

instead of SAD(d), all curves should have the same minimum at d′. Therefore, rather

than using matching curves SAD12(d
′), SAD13(d

′) separately, we employ SAD(d′) =

∑

i
SAD1i(d

′) as the matching curve for the first frame F1 of multiple frame stereo as shown

in Figure 3(c). In this way, the dense depth map of a frame is obtained by multi-baseline

stereo. The outliers influence the accuracy of the depth matching due to noises, mismatching

and/or occlusions of feature points. We adopt the method proposed by Koch et al. [10] to

remove these outliers in this process, which decreases the noises efficiently.

With the known dense depth maps of key frames, the triangulation of the surfaces in

scenes can be processed conveniently. We apply a Gaussian filter or bilateral filter on the

depth map to remove noises further. Finally, several 3D models relating to the selected key

frames are obtained by the process described above.
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Merging 3D Models

To merge all 3D models relating to different key frames, a global coordinate system is

desired. This coordinate system can be a plane, a cylinder, or a sphere. Due to the occlusions

and invisibility, it is almost impossible to map all scenes onto this global coordinate system.

In this sense, it remains a challenging problem in general.

Note that, the recovered surfaces may have a little difference with each other due to the

existence of the reconstruction errors and noises. The surfaces which are parallel to the

image plane have higher quality compared with those vertical to the image plane. We select

a plane that is visible by all surfaces, and set its resolution as that of the image plane. We

then perform image editing on all the depth maps to remove the regions with low quality.

For a sequence of 3D models, we project the 3D model of the first key frame onto the

common plane. When the 3D model of the successive key frame is projected onto the plane,

the projection is dropped if some pixel has been written. In this way, we get the connections

of these two models. Usually, this connection region has different depth, and the errors

are visible for shadow casting. We blend this connection region around the edge region to

smooth the models. Accordingly, we merge the one of the successive key frame, till all

selected key frames are integrated. Finally, a 3D model from all key frames are obtained.

In addition, due to the introduced noises and shortage of features, the reconstructed 3D

model is typically coarse and not hole-free, especially when the object is relatively far away

from the viewpoint. Since the model is merged on a plane, it can be treated as an image

13



whose elements record the depth information. Our scheme is to interactively specify the

regions with holes and perform Poisson image editing [16] to repair them.

Integrating the Virtual Objects into The Real Scenes

With the obtained precise camera motions and 3D models, it is convenient to incorporate

virtual objects into the video sequences. For seamless composition, the virtual and real

scenes should be in the same illumination environments. Another main challenge to achieve

this goal is the consistency of geometry and illumination interactions among the virtual

and real objects, such as occlusions, action design of characters, shadow casting, inter-

reflections, etc.

For inter-reflection of the virtual and real objects, the direction of dominated light has

to be decided beforehand. In outdoor scenes, the direction of sunlight can be computed

conveniently with the recovered 3D models. We can find the locations of an occluder and

its shadow receiver extracted from certain key frame. We then set the vector between them

as the lighting direction.

An amazing effect facilitated by the reconstructed 3D models is the shadows. Typically,

there are two kinds of shadows. One is the shadows from the real scenes onto the virtual

objects whose masks can be rendered with the 3D models of real scenes. The other one is

casted from the virtual objects onto the real scenes. Difficulty happens with the later. If

there have already partial shadows in the region of the real scenes, this region is desired to
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be known. However, the recovered 3D models can hardly be used to generate the exactly

identical shadow maps with those in the real scenes. In this case, the shadow regions with

and without the virtual objects can be first obtained based on the reconstructed 3D models.

The edges of the virtual shadows and real shadows are then detected and refined by common

image processing techniques. Subsequently, the differences between both types of shadows

can be removed by appropriate smoothing operators.

It remains a challenge for arbitrarily complex scenes because the 3D geometry, the il-

lumination environment and the material of the real scenes, are difficult to be completely

recovered.

Experimental Results

We implemented our approach on a PC with an Intel P4 2.4G HZ CPU and 1024MB mem-

ory. For a video sequence of 126 frames, it costs about 6 minutes to track the feature points,

and 2 minutes for the computation of the camera parameters. The time spent on the recon-

struction of each 3D model in one key frame depends on the number of the multi-baselines.

For typical case, e.g. 10, it costs about 4 minutes. Typically, key frames are selected with

the interval of 15-30 frames. The images of the virtual objects, occlusion masks and shadow

masks are generated with 3DSMAX by integrating the 3D models of the virtual objects and

real scenes. The final composition takes about 5 minutes in our experiments. As a result,

the total time for one video sequence of 126 frames is about 40 minutes without including

15



the time of the rendering and user interactions.

Four examples with 126,121,121,279 frames are demonstrated, of which several selected

frames are illustrated in Figure 5 from top to bottom. The video camera of the first video

sequence moves upwards to view the far temple, till the square in front of the temple appears.

The 3D model shown in Figure 2(e) of the stairs are reconstructed from four key frames as

shown in Figure 2(a-d).

One frame of each original video sequence is shown in Figure 4(a). The virtual objects

with reconstructed 3D models are illustrated in Figure 4(b). Their corresponding compos-

ited frames are demonstrated in Figure 4(c). In order to view the shadows and occluding

effects clearly, Figure 4(c) is magnified, yielding Figure 4(d). It is worthy mentioning that,

in the first example, three characters and one balloon are animated and composed in the

reconstructed model. The shadows of the animated objects are cast onto the reconstructed

stairs. The red character which stands on the top of the stairs is partially occluded at the

beginning and becomes totally visible with the moving of the video camera. For the second

example, a virtual helicopter flies over the sculpture, and a character jumps into shadows.

The ground is not recovered because there are not enough features. We simply define a

plane to mimic the ground. In this way, correct shadow casted from the jumping character

is achieved.

In the third example, its video camera focuses on the towers and moves in a nearly

horizontal way. Note that, we insert a big virtual tower in the yard, whose foot part is

occluded by the wall. For the forth one, the video sequence is taken by a hand-held camera
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which makes the views are shaky. To our surprise, a virtual moving car on the road matches

the background video sequence quite consistently, which demonstrates the robustness of

our camera tracking system. The specular reflection effects of the car are processed by

environment mapping. For more detailed information, please view our video submission.

Conclusions

We have proposed a novel method to integrate virtual objects into video sequences taken by

a freely moving video camera. The virtual objects are coincided with the real scenes in the

sense of geometrical, illumination and interaction consistencies by means of precise camera

motion estimation and 3D reconstruction. Specifically, based on the recovered 3D models of

the real scenes, interaction effects of the virtual objects and the real scenes are successfully

achieved. The shadows cast from the virtual objects onto the real scenes and the real scenes

onto the virtual objects are both obtained naturally. Moreover, the occlusion relationship of

the real scenes and the virtual objects are also handled.
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Figure 1: Illustrations of the estimation of the focal length f . The true value of f is 772.5.

(a) The cost function based on two frames. The energy curve approximates a flat line. (b)

The cost function based on multiple frames. The energy curve takes the form of a parabola

and has an obvious minimum.
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(a) (b)

(c) (d)

(e)

Figure 2: The reconstructed 3D models from the video sequence based on four key frames

and the final model.
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Figure 3: Illustrations of the multi-baseline technique. (a) Two-view geometry; (b) Three-

view geometry; (c) The accuracy comparison for different baselines with two stereo pairs.
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(a) (b) (c) (d)

Figure 4: (a) One selected frame image; (b) Animated objects are composed with the 3D

models scenes taking account of shadows and occlusions; (c) Animated objects are com-

posed in the video sequence taking account of shadows and occlusions; (d) The magnified

snapshots of (c).
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Figure 5: Selected key frames from four composite video sequences.
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