
1

Vox-Surf: Voxel-based Implicit Surface
Representation

Hai Li∗, Xingrui Yang∗, Hongjia Zhai, Yuqian Liu, Hujun Bao, Guofeng Zhang†

Fig. 1. Demonstration of progressive surface reconstruction using Vox-Surf. We apply voxel pruning and splitting periodically during
training until only voxels near the surface remains (left three images) and get finer bounding voxels, geometry surface, and rendered
texture image (right three images).

Abstract—Virtual content creation and interaction play an important role in modern 3D applications. Recovering detailed 3D models from
real scenes can significantly expand the scope of its applications and has been studied for decades in the computer vision and computer
graphics community. In this work, we propose Vox-Surf, a voxel-based implicit surface representation. Our Vox-Surf divides the space into
finite sparse voxels, where each voxel is a basic geometry unit that stores geometry and appearance information on its corner vertices.
Due to the sparsity inherited from the voxel representation, Vox-Surf is suitable for almost any scene and can be easily trained end-to-end
from multiple view images. We utilize a progressive training process to gradually cull out empty voxels and keep only valid voxels for
further optimization, which greatly reduces the number of sample points and improves inference speed. Experiments show that our
Vox-Surf representation can learn fine surface details and accurate colors with less memory and faster rendering than previous methods.
The resulting fine voxels can also be considered as the bounding volumes for collision detection, which is useful in 3D interactions. We
also show the potential application of Vox-Surf in scene editing and augmented reality. The source code is publicly available at
https://github.com/zju3dv/Vox-Surf.

Index Terms—Surface reconstruction, Implicit representation, Scene editing.

✦

1 INTRODUCTION

V irtual content creation and interaction are important parts
of 3D applications. Usually, virtual content needs to be

created by professional designers, which is complicated and time-
consuming. Therefore, reconstructing accurate surfaces from real
scenes is a critical technique for virtual content generation, which
is also an essential research topic in computer vision and computer
graphics.

Before the age of deep learning, surface reconstruction from
images was dominated by the multi-view stereo pipeline [1], [2],

• Hai Li, Hongjia Zhai, Hujun Bao, Guofeng Zhang are with the State Key
Lab of CAD&CG, Zhejiang University, Hangzhou, China.
E-mails: {garyli, zhj1999, baohujun, zhangguofeng}@zju.edu.cn

• Xingrui Yang was with Visual Information Laboratory, University of Bristol,
Bristol, United Kingdom.
E-mail: x.yang@bristol.ac.uk

• Yuqian Liu was with Autonomous Driving Group, SenseTime, China.
E-mail: liuyuqian@senseauto.com

*. Equal contribution
†. Corresponding author

which highly depends on feature detection and matching. Although
these methods are relatively mature in academia and industry, the
indirect reconstruction process creates a gap between the input
images and the final reconstruction. This gap will lead to a loss
of information and pose a challenge in reconstructing complex
scenes. For example, in the presence of weak textures, repetitive
features, or brightness inconsistency, it would be difficult to match
the exact features, leading to the triangulation of wrong 3D points
and, eventually, reconstruction errors. Additionally, the final mesh
and corresponding texture are generated separately. The discrete
triangular meshes and texture patches often fail to render realistic
images.

Most recently, there has been a trend of using neural networks as
scene representations. Works like [3], [4] have shown that implicit
surface representations such as signed distance fields (SDF) or
occupancy fields can be directly learned and stored inside a multi-
layer perceptron (MLP). These networks can learn a continuous
scene representation from discrete 3D point samples. Based on
this discovery, DVR [5] and IDR [6] extend this representation to

2

image-based surface reconstruction tasks. However, these methods
only define the appearance on the surface, so it takes extra time to
calculate the exact position of the surface.

With the advent of NeRF-based [7], [8] methods, there has
been a considerable improvement in the novel view synthesis
task. NeRF and its following methods leverage volume rendering
to learn a radiance field to represent a dense space. However,
this representation does not explicitly reconstruct the surface.
Thus, methods like NeuS [9], UNISURF [10] and VolSDF [11]
propose to combine the implicit surface representation and radiance
field to achieve surface reconstruction through volume rendering
without the need to calculate the exact surface. These methods
can directly use posed images for end-to-end training without
additional representations, which minimizes information loss and
reach a higher accuracy than traditional methods.

However, these methods aim to represent the entire space within
a single network, making large-scale reconstructions infeasible due
to the limited capacity of the network. Apart from that, excessive
amount of parameters make the rendering speed difficult to meet
the requirements of practical applications. Besides, without post-
processing such as explicit surface extraction and texture mapping,
these methods cannot further perform scene segmentation, editing
or some virtual interactions (like grabbing, collision detection, etc.).

To circumvent this limitation, inspired by [8], [12], we adopt a
hybrid architecture that consists of an explicit voxel representation
with the neural implicit surface representation.

Fig. 2. Demonstration of difference between traditional voxel-based
implicit surface, neural implicit surface and voxel-based neural implicit
surface representations.

In this work, we propose Vox-Surf, a neural implicit surface
representation and reconstruction framework that combines voxel-
based representation with image-based surface reconstruction for
efficient surface reconstruction and realistic rendering. As shown in
Figure 2, compared to the traditional voxel-based implicit surface
[13], which stores explicit SDF, weight and color in tiny voxels, our
method only stores trainable embeddings vector in voxels’ vertices,
which contain knowledge of the local geometry and appearance.
Compared to dense neural implicit surface methods, we divide
the target scene into multiple bounded voxels, thereby reducing
sampling and learning process of empty areas. All in all, our method
can represent finer surfaces with larger voxels and a lightweight
network.

To further increase the reconstruction accuracy and maintain the
memory consumption, we leverage the progressive voxel pruning
and splitting strategy (Figure 1) together with a surface-aware
sampling strategy to decrease the voxel size and sample only the
valid points during training.

The resulting fine voxel blocks are sufficient to represent the
outline of the scene. Therefore, by directly manipulating voxels, we
can achieve scene editing and directly get the corresponding texture

rendering effect. We can also consider voxels as the bounding
volumes. Since voxel-based collision detection is more efficient
than other forms, we can use them to complete physical effects such
as grabbing, collision, etc., which is useful in virtual interactions.
Experiments show that our method is much faster than previous
methods and can approach real-time at low resolution. This paves
the way for better integration with 3D interactive visualization
applications including AR/VR.

To summarize, our main contributions are as follows:

• We propose Vox-Surf, a voxel-based neural implicit surface
representation that can be learned end-to-end from multi-
view posed images.

• We propose to use a surface-aware progressive training
and sampling strategy to maintain memory efficiency and
improve the reconstruction quality. Our proposed method
performs well in three different datasets with various scales
through extensive experiments.

• We show useful examples for potential 3D interactive
visualization applications via explicit voxel representation
based on Vox-Surf.

2 RELATED WORK

2.1 Surface reconstruction methods

Surface reconstruction from posed images can be achieved with
traditional multi-view stereo methods [2]. A dense depth map is
estimated for each input image by exploiting the photo-consistency
property across nearby frames [14]. Different scene representations
are used depending on the actual applications. Some of the popular
choices are point clouds [15], [16], voxels [17], [18], level-sets [19],
and triangular meshes [20], [21], [22]. Voxels and level-sets (e.g.,
signed distance functions) are suitable methods for representing
fine details, whereas meshes are more compact and simple for
rendering and other 3D tasks such as intersection tests.

2.2 Implicit scene representation

Recent works on implicit neural representations paved the way
for learning-based scene representations [3], [4], [23]. Compared
to traditional methods, they can represent a continuous scene
with significantly smaller memory footprints and can be used to
generate consistent novel views. They leverage the capacity of
multi-layer perceptron (MLP) to learn a mapping function that can
be used to encode an entire scene. However, the representational
power of a single MLP is limited and does not scale well to large
scenes. Therefore many works rely on scaling the input data to
a smaller area, usually a unit sphere or unit cube. A much more
efficient choice is to encode the scene into local blocks. Inspired
by [8], we adopted a sparse voxel structure that saves computational
resources by only reconstructing occupied spaces. The voxels can
also be further subdivided to reconstruct finer details. However,
[8] focuses on the rendering quality in novel view synthesis and
cannot guarantee to generate the accurate surface while our method
mainly focuses on the quality of the surface.

2.3 Volume rendering methods

Volume rendering based on neural scene representations is made
popular by NeRF [7], [8], [24], which renders images by α-
composing density and colors along with the camera rays. However,

3

Fig. 3. Proposed Pipeline. We first divide the scene into multiple voxels and assign embeddings to voxel vertices. Then we calculate the voxel-ray
intersections and sampling points along the ray. Based on the position of sampling points, we trilinear interpolate the nearest voxel embeddings to get
the embedding for each point and feed it into the geometry extractor to get SDF values and feature vectors. Then we concatenate the feature vector
with ray direction and embedding and feed it into the appearance extractor to get the color for each sampling point.

NeRF and many other similar works assume the surface to be ren-
dered from a density field, which is suitable for handling transparent
scenes but unnecessary if one only cares about representing explicit
surfaces. Recent surface rendering methods follow the idea that
rendered colors should be directly generated from surface points,
UNISURF [10] proposes to learn an implicit surface by iteratively
performing root-finding along with each viewing ray. The color is
then determined from features extracted from the surface. A similar
idea appears in [9], [11], [25], [26]. They propose an unbiased
weighting function directly conditioned on the estimated SDF
values along with the camera ray. These methods are most related
to our work in that we also aim to reconstruct an explicit surface
representation. As we demonstrate in our experiments, adding
explicit voxel representations allows the above network to scale
to large scenes, both indoor and outside. Some latest works try to
extract materials, lights, etc. from the trained scene [27], or make
custom editing with the help of meshes [28].

3 METHOD

Given a set of posed images I = {I1, ..., In} of a scene with 6-DoF
transformation Ti ∈ SE(3), our goal is to reconstruct the colored
surface with finite sparse voxels implicitly. We first divide the
bounded scene with a set of coarse voxels and use neural networks
to model the geometry and appearance information of the scene.
By minimizing the difference between the rendered images and the
input images, we can optimize the weights of the neural networks.
In order to improve the rendering efficiency and model fine-
grained geometry information, we prune those voxels that do not
contain surface structure and continuously subdivide the voxels that
contain surface structure for learning better geometry information.
Additionally, we propose a surface-aware sampling strategy to
maximize the possibility of valid sampling while maintaining the
memory footprint. The whole pipeline is shown in Figure 3, and we
will describe the details of surface representation in the following
sections.

3.1 Geometry and appearance representations
The scene is divided by a set of coarse voxels V = {V1, ...,Vk}
and each voxel has eight corner vertices which contain the
encoded geometry and appearance information. This information is
represented by a fixed-length optimizable embedding e ∈ RLe . So,
for any 3D point p ∈R3 within one of the voxels Vi, we can obtain
its embedding via retrieval function Γ :R3 →RD, which maps point
p to a Le-length embedding vector e. This function is implemented

by trilinear interpolation, which interpolates embeddings from eight
voxel corners based on their coordinates.

In Vox-Surf, we leverage the Multi-layer Perceptrons (MLP)
network to represent the two extractors: geometry extractor Fσ and
appearance extractor Fc. The geometry extractor Fσ (e) : RLe →
R1+L f maps an embedding vector e of a spatial position p ∈ R3

to its signed distance value, σ ∈ R, which is the shortest distance
from a point p to a surface and a geometry feature vector f ∈ RL f .
The signed distance σ also indicates whether p is inside or outside
of the surface S . Thus, the surface S of the scene can be easily
extracted by Equation 1.

S = { p ∈ R3 | Fσ (Γ(p))[0] = 0 }, (1)

where operation [0] means taking the first value from Fσ , which in
our case is signed distance σ of position p.

After obtaining the surface of the scene, we can calculate the
normal vector n ∈ R3 by Equation 2, which is computed using
double backpropagation trick [5] and implemented by automatic
differentiation provided in Pytorch.

n =
dS

dp
=

dFσ (Γ(p))[0]
dp

. (2)

The geometry feature vector f = Fσ (e)[1 :]∈RL f contains both
the structure and appearance information. We then concatenate the
geometry feature vector f , ray direction d and point embedding
vector e as the input of appearance extractor Fc to obtain the color
c at position p.

In practice, we adopt the positional encoding trick proposed in
NeRF [7] on both embedding vector e and view direction d before
feeding into the network.

3.2 Voxel initialization
Like all other neural implicit based methods [7], [9], [10], we
require multiple-view images with poses as input and also know the
approximate extent of the scene. These prerequisites can be easily
obtained from some existing SLAM [29], [30] or SfM [1] methods.
Unlike methods that use an implicit function to reconstruct the
entire space, the proposed Vox-Surf is much more flexible by only
reconstructing occupied space and updating each voxel individually.

We first divide the bounding area into a set of uniformly
spaced voxels V . The initial voxel size is chosen to contain the
potential surface reconstruction. Since we use the embedding as
network input instead of 3D coordinates (x,y,z), our representation
is coordinate agnostic. Therefore our method does not require the

4

Fig. 4. Demonstration of Surface-Aware Sampling. We first uniform
sample points and calculate the SDF value for each sampling point.
Then we find the cross surface region and mark them as important
voxels. Next, we recompute the sampling probability and re-sample the
points. According to the number of important voxels, we further divide
this strategy into full surface-aware sampling and first surface-aware
sampling.

scene to be re-scaled or re-centerd as many works do [7], [9]. Based
on the initial voxels, we then build a sparse hierarchical octree
[31] and take all voxels as leaf nodes. This structure accelerates
the ray intersection test, which we will describe later. Each vertex
is assigned a Le-dimensional trainable embedding with a random
initial value. For two adjacent voxels, they share 4 vertices and
corresponding embeddings.

3.3 Voxel-based Point Sampling
Point sampling is an essential step for implicit scene optimization.
To fully leverage the advantage of voxels, we propose the voxel-
based sampling strategy, which is faster and more memory efficient.
We will describe the process of ray generation and the proposed
points sampling strategy below.

3.3.1 Ray generation
For each image, we generate a cluster of 3D rays, and each ray
can be denoted in the form of r = (o,d), where o is the camera
center and d is the direction vector from o to each image pixel
inside world space. To avoid redundant sampling, we apply the axis-
aligned bounding box intersection (AABB) test for each ray with
the octree of voxels. This procedure gives us the intersect voxel set
for each ray r and the distance of ray inside each voxel mVi . We
cull out rays that do not intersect any voxels. For the remaining
rays, we first define the number of sampling points concerning the
total distance inside all intersected voxels ∑i mVi with a pre-defined
step size. The sampling probability for each voxel alongside the

ray is
mVi

∑i mVi
. We then apply the inverse Cumulative Distribution

Function (CDF) sampling strategy to sample the points for all rays
in parallel and define the interval range [tl , tr] for each sample point
p = o+ t ·d, where t is the midpoint of the interval. This step is
similar to that used in [8].

3.3.2 Surface aware sampling
In order to optimize the extractor network Fσ , Fc and voxel vertices
embeddings e from scratch, we need to sample sufficiently dense
points for training, which could cost a lot of memory. However, in
most surface reconstruction cases, the surface is usually assumed
to be opaque, which means the point on the ray that intersects
the surface contributes most to the appearance of the ray. Based
on this assumption, existing dense space methods either require
to find the exact intersection point by iteratively applying a root-
finding algorithm along the ray to choose the sample region [10],
or leverage the importance sampling strategy to insert extra points
in certain areas based on uniform samples [9]. In our Vox-Surf
representation, we can take advantage of the above two methods
simultaneously, but it is more efficient and does not add extra
points.

Since only voxels adjacent to the surface are preserved (See
subsection 3.5), we only need to focus on the voxel, which
contains the surface intersecting with visible rays. Therefore we
propose the surface-aware sampling strategy shown in Figure 4.
The procedure can be roughly divided into three steps: (1) Uniform
Voxel Sampling: We uniformly sample points p on the rays
inside voxels. (2) Cross-Surface Voxel Searching: We leverage
the geometry extractor Fσ (Γ(p)) to compute the signed distance
value for each sampled point. The surface intersection is found by
looking for two points pi and pi+1 where the SDF value changes
from positive(outside) to negative(inside) along the viewing ray.
We then mark voxels that contain these points as important voxels.
(3) Surface-Aware Voxel Resampling: We increase the sampling
probability inside important voxels, then normalize the sampling
probability along the ray following [7]. Given the selected important
voxels, we resample the rays based on re-computed probability but
keep the total point number fixed. In practice, we further divide this
strategy into full surface-aware resampling and first surface-aware
resampling (Figure 4 last two steps) according to whether only the
first important voxel is used. We use the former to optimize all
possible surfaces when the shape is unstable and use the latter to
reconstruct fine details on stable shapes.

3.4 Volume rendering
NeRF-based methods [7] render the color via volume rendering
[32] which accumulate the point color along the ray r(t) = o+ t ·d
according to the volume density α with following equation.

C(o,d) =
∫ +∞

0
T (t)α(r(t))c(r(t),d)dt, (3)

where T (t) = exp(−
∫ t

0 α(u)du) is accumulated density along the
ray r(t) from 0 to t. The essential problem here is how to transform
the SDF values into density weights T (t)α(t) so that we can
weigh the contribution of different points along the ray based on
their distance to the actual surface. We adopt the weight function
proposed in NeuS [9] for rendering, which transforms the SDF
to density using the S-density. The S-density function φs(σ) is a
unimodal function of signed distance σ of point p, where

φs(σ) =
se−s·σ

(1+ e−s·σ)2 (4)

5

Fig. 5. Qualitative results on DTU dataset. We show the surface reconstruction results with six objects from different view directions. From left to right:
reference image, mesh model from the front view with voxels after third time splitting for better visualization, mesh model from left view, mesh model
from right view.

is the derivative of the Sigmoid function Φs(σ) = (1+ e−s·σ)−1, s
is a scale parameter which controls the shape of the distribution.
The value of the point closer to the surface S is bigger than the
weight of far points.

Thus, the discrete version of volume density function is shown
below,

α(ti) = ReLU(
Φs(Fσ (Γ(r(ti)))[0])−Φs(Fσ (Γ(r(ti+1)))[0])

Φs(Fσ (Γ(r(ti)))[0])
),

(5)
where ReLU(·) is the Rectified Linear Unit [33].

The discrete accumulated transmittance is shown as the follow-
ing:

T (ti) =
i−1

∏
j=1

(1−α(t j)). (6)

So, with the Np sampled points in subsection 3.3 {pi =
o+ ti · d|i = 1, ...,Np, ti < ti+1} along the ray, we can obtain the
approximate color by

C(r) =
Np

∑
i=1

T (ti)αi(ti)ci. (7)

In our proposed voxel representation, the voxels are indepen-
dent of each other due to the interpolation mechanism, which
means that the sampling spacing in each voxel cannot exceed the
boundary. Thus, to prevent cross-voxel accumulation situation, i.e.
ti and t j are cross the voxel boundary. Based on the new interval,
we cut off the interval near voxel boundaries and recalculate the ti
and t j.

3.5 Progressive training

In order to reduce memory pressure and improve surface accuracy,
we only need to preserve and optimize the voxels that contain the
surface. Thus we adopt the pruning and splitting strategy similar
to other voxel-based methods [8] but more suitable for surface
representation.

3.5.1 Voxel pruning
Since each voxel contains a continuous signed distance field, we
can process all voxels in parallel. We first uniformly sample enough
3D points inside each voxel. Then we compute the SDF values
using the geometry extractor Fσ . To decide whether to retain or
prune the voxel, we defined a distance threshold τ , formally in
Equation 8.

Ki = |Fσ (Γ(p))[0] |< τ if ∃p inside Vi,Vi ∈ V . (8)

Here K ∈ {0,1} is a flag, which means whether the voxel is
reserved. We then prune the corresponding leaf node voxels from
the octree according to the K.

3.5.2 Voxel splitting
Representing a scene inside a set of coarse voxels is not sufficient.
The coarse-level voxel can not recover fine structure for a large
space. In order to represent more details, we periodically split
the existing voxels into eight sub-voxels and insert them into the
existing octree.The initial embeddings of newly generated voxel
vertices are computed using embedding retrieval function Γ, and
then these embeddings are optimized independently of their parent
nodes.

6

Pruning and splitting allow us to obtain sparse and important
voxels for finer optimization and boost the representation power of
each voxel.

3.6 Losses
We leverage the following loss functions to optimize the embed-
dings, geometry and appearance extractor networks. For each ray,
we first compute the weighted sum color C(r) from Equation 7,
and take the L1 loss between then ground truth color Ĉ(r) and the
rendered color C(r).

Lcolor = ∑
r
∥Ĉ(r)−C(r)∥1. (9)

To constrain the regulate field, we also add the eikonal loss
term [34] on sampled points. This term effectively prevents the
surface from falling into local optima at early stage and plays an
important role in the initialization of shapes.

Leikonal = ∑
i
(∥∇Fσ (Γ(pi))[0]∥2 −1)2. (10)

Moreover, we uniformly sample additional points inside every
observed voxel to further regulate the signed distance field
throughout the voxel. This strategy works especially well for under-
observed voxels, often in large-scale scenes like street view.

Depth loss Depth sensors are also becoming common in
everyday life, such as ToF and lidars. These sensors can provide
coarse depth information in a certain range. This information
of depth is particularly useful in surface reconstruction. Recent
density-based methods [24], [35] leverage depth as strong geometry
supervision and obtain better results. However, the different
formulations cannot directly apply the same loss function in our
SDF-based representation. The main difficulty of relating rendered
depth to SDF is that the SDF values are uncertain without the
knowledge of the accurate surface. Therefore, we propose an
occupancy-based depth loss using Equation 11.

occ(t) = Sigmoid(−scale ·Fσ (Γ(r(t)))[0]). (11)

This continuous occupancy function acts like a scaled truncated
signed distance function whose gradient only peaks near the surface.
Thus, we split the ray r(t) with depth supervision into three
intervals with different corresponding losses:

Loutside = ∑
t
∥1−occ(t)∥2. (12)

For points in front of the given depth t < t̂ −δ t, δ t is a small noise
tolerate depth range. we always assume these points are outside
the surface.

Linside = ∑
t
∥occ(t)∥2. (13)

For points behind the given depth t > t̂ + δ t, we always assume
these points are inside the surface. In experiments, we found that
even when the ray intersects with multiple surfaces, this loss still
works well given enough observation.

Lnear = ∑
t
∥Fσ (Γ(r(t)))[0]∥2. (14)

For points between the near range t̂ −δ t ≤ t ≤ t̂ +δ t, we directly
constrain the SDF value to 0. The value δ t highly depends on the
confidence of the given depth.

Finally, the total depth loss is the combination of the above
three losses:

Ldepth = Loutside +Lnear +Linside. (15)

Fig. 6. Detail comparison with Vox-Surf (left) and NeuS [9](right). The
results show that our method keeps more details and less noise.

Fig. 7. Surface accuracy at different iterations of Scene 24. The red circle
indicates the surface splitting.

4 EXPERIMENTS

We conduct our experiments on three types of datasets: DTU [36]
(small objects), ScanNet [37] (indoor scenes) and KITTI-360 [38]
(outdoor scenes). In this section, we will describe the detailed
training settings and evaluation results.

Fig. 8. Surface missing caused by voxel pruning in early stage (left two
images). This can be alleviated by increasing the sampling density in the
early stage (right image).

7

TABLE 1
Reconstruction results on DTU. The best and the second best results are shown in bold and underline respectively.

Scene ID COLMAP DVR IDR NeuS Ours
PSNR Chamfer PSNR Chamfer PSNR Chamfer PSNR* Chamfer PSNR Chamfer Voxels

24 20.28 0.81 16.23 4.10 23.29 1.63 26.70 0.83 24.98 0.72 33271
37 15.5 2.05 13.93 4.54 21.36 1.87 23.72 0.98 23.17 1.15 22172
40 20.71 0.73 18.15 4.24 24.39 0.63 26.54 0.56 25.32 0.51 22232
55 20.76 1.22 17.14 2.61 22.96 0.48 25.62 0.37 22.89 0.35 8755
63 20.57 1.79 17.84 4.34 23.22 1.04 31.22 1.13 30.12 1.09 35678
65 14.54 1.58 17.23 2.81 23.94 0.79 32.83 0.59 31.62 0.58 30958
69 21.89 1.02 16.33 2.53 20.34 0.77 29.20 0.60 27.88 0.59 12737
83 23.20 3.05 18.10 2.93 21.87 1.33 32.83 1.45 31.62 1.35 17185
97 18.48 1.40 16.61 3.03 22.95 1.16 27.12 0.95 26.67 0.91 23754
105 21.30 2.05 18.39 3.24 22.71 0.76 32.41 0.78 30.58 0.77 10422
106 22.33 1.00 17.39 2.51 22.81 0.67 32.18 0.52 30.58 0.46 20483
110 18.25 1.32 14.43 4.80 21.26 0.90 28.83 1.43 27.69 1.09 20249
114 20.28 0.49 17.08 3.09 25.35 0.42 28.38 0.36 27.17 0.35 28364
118 25.39 0.78 19.08 1.63 23.54 0.51 35.00 0.45 33.01 0.42 13726
122 25.29 1.17 21.03 1.58 27.98 0.53 34.97 0.45 33.68 0.43 16789

Mean 20.58 1.36 17.26 3.20 23.30 1.54 29.94 0.77 28.87 0.72

(a) ground truth (b) COLMAP (c) TSDF fusion (d) Ours
Fig. 9. Qualitative results on ScanNet. From left to right: ground truth mesh rendered in normal maps, reconstructed surface from COLMAP, TSDF
fusion and Vox-Surf.

(a) ground truth image (b) rendered image (c) ground truth depth (d) rendered depth
Fig. 10. Novel view renderings of Vox-Surf on ScanNet. From left to right: ground truth image, rendered image, the ground truth depth map, and
rendered depth.

8

4.1 Results on DTU dataset

The DTU dataset contains multi-view images with fixed camera
parameters at 1200 × 1600. This data set consists of 124 different
scenes with different shapes and appearances, We use 15 scenes
from the DTU dataset for training and evaluation, same as those
used in IDR [6] and NeuS [9] for a fair comparison.

4.1.1 Implementation details
We use the data provided in IDR [6] where the object is constrained
in the unit sphere. We first generate the initial voxels and
corresponding octree inside a unit cube with a voxel size of
0.8. We set the initial max voxel hit number to 20 since the
scene is small and the uniform ray sampling step size to 0.03.
We apply the voxel pruning every 50,000 epochs and splitting at
20,000, 50,000, 100,000, 20,000, 300,000 iterations, respectively,
the pruning threshold τ = 0.01. Before the second splitting, we
use only uniform voxel sampling to find the rough shape. Then
we use the full surface-aware voxel resampling strategy until the
fourth splitting. After the fourth splitting, the shape is stable, so
we change the strategy to first surface-aware voxel resampling to
continually refine the fine details. The voxel embedding length
Le is 16, and the geometry extractor Fσ is a 4-layer MLP with
128 hidden units of each layer, whereas the appearance extractor
Fc is a 4-layer MLP with 128 hidden units each. Before feeding
into the extractors, we apply the same positional encoding trick
proposed in NeRF [7] with 4 frequencies on voxel embeddings e
and 8 frequencies on ray directions d. The learning rate is 0.001
for all objects.

4.1.2 Evaluation results
We show the qualitative reconstruction results of the DTU dataset
in Figure 5 from three different views. The results show that our
proposed method can reconstruct an accurate surface of the complex
scene with different geometry information. Then we compare the
surface detail with Neus [9] in Figure 6. From the highlighted
area, we can see that our surface preserves more details with less
noise. The overall quantitative results are shown in Table 1. We
show the image error (PSNR) and reconstruction error (Chamfer)
with COLMAP [1], [2], DVR [5], IDR [6] and NeuS [9]. The
results show that our method outperforms the SOTA methods in
reconstruction quality but is slightly lower in image quality. We
summarize two reasons, one is that we use a lightweight network to
increase the rendering speed, while NeuS uses a larger network to
fit the color information in each view direction. The second is that
NeuS sacrifices part of the surface accuracy to fit the inconsistency
between viewing angles.

We further compare the memory footprint and rendering speed.
As shown in Table 2. We use a single NVIDIA 3090 GPU
to compute the speed for rendering a 200×150 image. Due to
memory limitation, we cannot render all pixels of the image at
once. Therefore, we divide the pixels of the image into batches
and render one batch at a time. Where “Render Time (batch)”
represents the rendering time per batch, and “Render Time (image)”
represents the total rendering time of the image. Since our final
voxels are only in a small range near the actual surface, we can
approximate the normal with the direction of the incident ray and
avoid the calculation of the normal. Although this will cause a
decrease in rendering quality, the speed is increased by three times
as shown in “(optim)”. For a fair comparison, we use 2048 rays
as the bacth size, which is consistent with NeuS. As can be seen,

our method is about 5 times faster than NeuS with the same batch
size. However, due to the lower memory overhead of our approach,
we can speed up rendering with larger batch size. As indicated
by the times with parentheses in the “(optim)”, we can achieve a
rendering speed of about 0.05 seconds per image, which has the
potential for real-time applications.

Additionally, we show the Chamfer distance at different
iterations in Figure 7. As the number of voxel splitting increases,
the gain to surface accuracy gets smaller, while the voxel block
will increase rapidly. Therefore, we need to make some trade-offs
according to the actual needs.

Failure case and solution: We found that if the scene contains
delicate structure, some surfaces may be may be lost during training.
This problem is uaually caused by the voxel pruning in the early
stage when delicate structures are not well learned, as shown in
Figure 8. To alleviate this problem, an efficient solution is to
increase the sampling density at an early stage to improve the
probability of sampling in the delicate part.

TABLE 2
Performance results on DTU.

IDR NeuS Ours Ours(optim)

Network Parameters 2.91M 1.41M 0.36M 0.36M
Render Time (batch) - 0.14s 0.03s 0.01s (0.02s)
Render Time (image) 1.08s 1.65s 0.35s 0.12s (0.05s)

4.2 Results on ScanNet dataset
ScanNet [37] is a large indoor RGB-D dataset containing more than
1600 room-scale sequences. ScanNet is a challenging dataset with
many images contaminated with severe artefacts such as motion
blur, etc. Also, their poses were estimated from BundleFusion [39]
instead of by accurate motion capture devices, which also poses a
challenge to scene reconstruction methods.

4.2.1 Implementation details
Besides posed RGB images, ScanNet also provides depth maps
which can be exploited to build initial voxel maps and further
supervise the network’s training, as described in subsection 3.6. We
first back-project all depth observations into 3D points to generate
initial voxels. We then voxelized these points using an initial voxel
size of 0.4. We set the max hit voxel to 10 and the ray sampling
step size to 0.01. Since RGB-D sensors are only accurate within
a certain distance, we limit the maximum depth range to 5.0 to
reduce noisy samples. We also progressively split and prune the
voxels twice throughout training, making the smallest voxel size
0.1. Please note that we do not explicitly scale the scene before
training as other works do [9], [10].

We also observe that many frames in ScanNet have wrong poses.
Inspired by [40], we implement a per-frame pose compensation
module to solve this issue. Each frame has an initial pose which
ScanNet provides. They also have a corrective pose initialized as
the identity matrix and optimizable during training.

4.2.2 Evaluation results
We mainly compared our method with COLMAP and a traditional
TSDF fusion method [13] on the subject of surface reconstruction
of RGB-D sequences.

For a fair comparison, all methods use the same set of images.
The qualitative results are shown in Figure 9. As can be seen,

9

(a) Scan points (b) COLMAP (c) TSDF fusion (d) Ours

Fig. 11. Qualitative results on KITTI-360. From left to right: (a) coarse point cloud from depth sensors, (b) reconstructed surface from COLMAP, (c)
reconstructed surface from TSDF fusion, (d) reconstructed surface from Vox-Surf. The blue wireframe in Vox-Surf is the used voxels.

(a) ground truth image (b) rendered image

Fig. 12. Novel view renderings of Vox-Surf on KITTI-360.

COLMAP fails to reconstruct surfaces with poor geometric features.
While TSDF fusion shows sharper edges in the close range, our
method can reconstruct more complete surfaces and fill in holes that
can not be observed by depth sensors, such as reflective materials.
We also show better denoising properties than TSDF fusion, as
displayed by smoother surfaces at the far range, such as the walls,
etc. We also show some rendering examples in Figure 10.

We also evaluate our system quantitatively on the ScanNet
dataset. We compare against other reconstruction techniques
based on neural implicit rendering and a traditional TSDF fusion
method [13]. We are mainly interested in two metrics: the Chamfer
distance and F-Score [41]. We sample 20k points from both the
reconstructed and ground truth mesh for all metrics. The F-Score is
calculated based on a distance threshold of 0.05m. This threshold
is chosen to align with other works.

As can be seen from Table 3, we compare favourably with
traditional TSDF fusion on mesh reconstruction in terms of mesh
completion (reflected as the F-Score) and accuracy (as shown by
the Chamfer distance).

4.3 Results on KITTI-360 dataset

KITTI-360 is a large-scale dataset with rich sensory information
and full annotations, containing several long driving distance

TABLE 3
Reconstruction results on ScanNet

Scan ID TSDF fusion Ours
Chamfer↓ F-Score↑ Chamfer↓ F-Score↑

0002 0.055 0.946 0.056 0.950
0005 0.291 0.758 0.080 0.884
0707 0.046 0.894 0.061 0.976
0782 0.453 0.504 0.378 0.623

sequences. It also provides dense semantic and instance annotations
for 3D point clouds and 2D images.

4.3.1 Implementation details
Since KITTI-360 only contains large unbounded street scenarios,
directly voxelize the whole scene is infeasible. Instead, we take
two strategies to reduce the memory overhead: firstly, we split
the sequence into small segments and learn these sequences
individually. Secondly, we initialize the voxels based on the coarse
points provided in the dataset. We then voxelize the points inside
each segment with an initial size of 1.0. We set the max hit voxel to
30 and the uniform ray sampling step size to 0.002. We do not apply
pruning and splitting during training to save GPU memory. We also
downscale the image to 94×352. Additionally, we mask out the
sky in each image using the semantic information provided by the
dataset. We also apply depth loss on the projected coarse points.
The voxel embedding length is 16, and the geometry extractor is
composed of 4-layers MLP network with 256 hidden units, whereas
the appearance extractor is a 4-layer MLP with 256 hidden units.
We apply the positional encoding with 4 frequencies on voxel
embeddings and 6 frequencies on view directions.

4.3.2 Evaluation results
We compare the qualitative surface reconstruction result with
COLMAP [1], [2] and TSDF fusion [13] (Figure 11). The
qualitative results show that our Vox-Surf can recover a clean
and complete surface and preserve the details. We also show
that our representation can learn the precise color on the surface
in Figure 12. The problems with COLMAP and TSDF fusion are
mainly caused by the changes of light in outdoor scenes and the

10

Fig. 13. Example of object editing application. The leftmost column is the original voxels and their rendering result. We apply local scaling, detaching
and duplication on selected voxels, and the real texture image is displayed on the bottom row, respectively.

Fig. 14. Physical simulation with Vox-Surf. The collision process is simulated by voxels (top row), and then the texture image is rendered by the
proposed method (bottom row).

(a) An RGB image (b) Reconstructed 3D structure (c) AR effect on multiple images

Fig. 15. An example of AR application. We first reconstruct the scene from multi-view posed images with coarse depth using our Vox-Surf as shown in
(b). With the pose of each view, we can achieve the effect of virtual and real fusion with occlusion handling and rigid body constraint, as shown in (c).

11

Fig. 16. Example of multiple object composition.

inaccuracy of pose. The expression of Vox-Surf can effectively
alleviate these problems through implicit constraints.

5 APPLICATIONS

The proposed Vox-Surf representation is more conducive to editing
and combining objects and scenes. Since each voxel contains the
part of the surface and its appearance, we can edit the surface by
manipulating the explicit voxels. As shown in Figure 13, the first
column is the original voxels and their rendering result, based on
these voxels. We apply scaling, translation and duplication to the
selected voxels, and the real texture image are displayed on the
bottom line respectively. This is especially useful for interactive
3D editing. Similarly, we can render the occlusion effect between
objects by combining the voxels of multiple objects as shown in
Figure 16. Our method can also support the simultaneous training
of multiple objects by placing multiple objects in one scene. With
the gradual refinement of the voxels, we can separate the voxels
corresponding to each object, thereby obtaining multiple individual
objects that share the common extraction network.

We also demonstrate the use of Vox-Surf in physics simulations
in Figure 14. We can treat the voxels as bounding volumes for
3D objects, which is more effective than other collision detection
methods. By simulating the external and internal collisions of the
generated voxels, we can also obtain a realistic image sequence of
objects colliding, which have various uses for visual effects.

This procedure can also be applied to the interaction of
virtual objects in AR environment (Figure 15). With the pre-build
scenes and objects in Vox-Surf representation, we can realize the
combination of scenes and objects with rigid body constraints
through their voxels. Similarly, it can also be used for grasping or
other interactions of virtual objects.

6 LIMITATIONS AND FUTURE WORKS

Our Vox-Surf representation still has some limitations. Firstly, our
method cannot disentangle intrinsic and extrinsic properties of
scenes, such as materials, lighting, etc., which is a practical but
challenging problem that can support more applications such as
relighting and texture editing. Secondly, our method currently relies
on prior knowledge of the scene, such as camera poses, bounding
space, etc. Thirdly, the trained network is scene-specific and cannot
be generalized to other scenes without re-training. Although works
like [42], [43] tried to train a generalized decoder network, it is

still a long way from being practical. We will conduct in-depth
research on these problems in our future work and explore how to
integrate them with practical applications better.

7 CONCLUSIONS

We propose a novel voxel-based implicit surface representation
named, Vox-Surf, and a progressive training strategy with an
effective surface-aware sampling strategy to let our representation
learn articulate surface from multiple view images. Our method
takes voxel as an individual rendering unit, which is suitable for
3D editing and interaction visualization applications.

ACKNOWLEDGMENTS

This work was partially supported by NSF of China (No.
61932003).

REFERENCES

[1] J. L. Schönberger and J. Frahm, “Structure-from-motion revisited,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
4104–4113.

[2] J. L. Schönberger, E. Zheng, J. Frahm, and M. Pollefeys, “Pixelwise view
selection for unstructured multi-view stereo,” in European Conference on
Computer Vision, vol. 9907, 2016, pp. 501–518.

[3] L. M. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy networks: Learning 3D reconstruction in function space,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.
4460–4470.

[4] J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and S. Lovegrove,
“DeepSDF: Learning continuous signed distance functions for shape
representation,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 165–174.

[5] M. Niemeyer, L. M. Mescheder, M. Oechsle, and A. Geiger, “Differen-
tiable volumetric rendering: Learning implicit 3D representations without
3D supervision,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2020, pp. 3501–3512.

[6] L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, R. Basri, and
Y. Lipman, “Multiview neural surface reconstruction by disentangling
geometry and appearance,” in Advances in Neural Information Processing
Systems, 2020, pp. 2492–2502.

[7] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields for
view synthesis,” in European Conference on Computer Vision, vol. 12346,
2020, pp. 405–421.

[8] L. Liu, J. Gu, K. Z. Lin, T. Chua, and C. Theobalt, “Neural sparse voxel
fields,” in Advances in Neural Information Processing Systems, 2020, pp.
15 651–15 663.

[9] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “NeuS:
Learning neural implicit surfaces by volume rendering for multi-view
reconstruction,” in Advances in Neural Information Processing Systems,
2021, pp. 27 171–27 183.

[10] M. Oechsle, S. Peng, and A. Geiger, “UNISURF: Unifying neural implicit
surfaces and radiance fields for multi-view reconstruction,” in IEEE/CVF
International Conference on Computer Vision, 2021, pp. 5569–5579.

[11] L. Yariv, J. Gu, Y. Kasten, and Y. Lipman, “Volume rendering of neural
implicit surfaces,” in Advances in Neural Information Processing Systems,
2021, pp. 4805–4815.

[12] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. T. Loop, D. Nowrouzezahrai,
A. Jacobson, M. McGuire, and S. Fidler, “Neural geometric level of detail:
Real-Time rendering with implicit 3D shapes,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2021, pp. 11 358–11 367.

[13] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time 3D
reconstruction at scale using voxel hashing,” ACM Trans. Graph., vol. 32,
no. 6, pp. 169:1–169:11, 2013.

[14] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A
comparison and evaluation of multi-view stereo reconstruction algorithms,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2006,
pp. 519–528.

[15] H. Fan, H. Su, and L. J. Guibas, “A point set generation network for
3D object reconstruction from a single image,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 2463–2471.

12

[16] C. Lin, C. Kong, and S. Lucey, “Learning efficient point cloud gener-
ation for dense 3D object reconstruction,” in Conference on Artificial
Intelligence, 2018, pp. 7114–7121.

[17] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3D-R2N2: A
unified approach for single and multi-view 3D object reconstruction,” in
European Conference on Computer Vision, vol. 9912, 2016, pp. 628–644.

[18] H. Xie, H. Yao, X. Sun, S. Zhou, and S. Zhang, “Pix2Vox: Context-aware
3D reconstruction from single and multi-view images,” in IEEE/CVF
International Conference on Computer Vision, 2019, pp. 2690–2698.

[19] M. M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-
tion,” in Eurographics Symposium on Geometry Processing, vol. 256,
2006, pp. 61–70.

[20] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y. Jiang, “Pixel2mesh:
Generating 3D mesh models from single RGB images,” in European
Conference on Computer Vision, vol. 11215, 2018, pp. 55–71.

[21] H. Kato, Y. Ushiku, and T. Harada, “Neural 3D mesh renderer,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 3907–
3916.

[22] H. Li, W. Ye, G. Zhang, S. Zhang, and H. Bao, “Saliency guided subdivi-
sion for single-view mesh reconstruction,” in International Conference on
3D Vision, 2020, pp. 1098–1107.

[23] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene representation
networks: Continuous 3D-structure-aware neural scene representations,”
in Advances in Neural Information Processing Systems, 2019, pp. 1119–
1130.

[24] K. Deng, A. Liu, J. Zhu, and D. Ramanan, “Depth-supervised NeRF:
Fewer views and faster training for free,” CoRR, vol. abs/2107.02791,
2021.

[25] F. Darmon, B. Bascle, J.-C. Devaux, P. Monasse, and M. Aubry,
“Improving neural implicit surfaces geometry with patch warping,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp.
6260–6269.

[26] J. Sun, X. Chen, Q. Wang, Z. Li, H. Averbuch-Elor, X. Zhou, and
N. Snavely, “Neural 3d reconstruction in the wild,” in Special Interest
Group on Computer Graphics and Interactive Techniques Conference,
2022, pp. 26:1–26:9.

[27] J. Munkberg, J. Hasselgren, T. Shen, J. Gao, W. Chen, A. Evans, T. Müller,
and S. Fidler, “Extracting triangular 3D models, materials, and lighting
from images,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2022, pp. 8280–8290.

[28] B. Yang, C. Bao, J. Zeng, H. Bao, Y. Zhang, Z. Cui, and G. Zhang,
“NeuMesh: Learning disentangled neural mesh-based implicit field for
geometry and texture editing,” in European Conference on Computer
Vision, 2022, pp. 597–614.

[29] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A
versatile and accurate monocular SLAM system,” IEEE Trans. Robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[30] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3, pp. 611–625, 2018.

[31] S. Laine and T. Karras, “Efficient sparse voxel octrees,” IEEE Trans. Vis.
Comput. Graph., vol. 17, no. 8, pp. 1048–1059, 2011.

[32] N. L. Max, “Optical models for direct volume rendering,” IEEE Trans.
Vis. Comput. Graph., vol. 1, no. 2, pp. 99–108, 1995.

[33] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in International Conference on Machine Learning,
2010, pp. 807–814.

[34] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit
geometric regularization for learning shapes,” in International Conference
on Machine Learning, vol. 119, 2020, pp. 3789–3799.

[35] K. Rematas, A. Liu, P. P. Srinivasan, J. T. Barron, A. Tagliasacchi,
T. A. Funkhouser, and V. Ferrari, “Urban radiance fields,” CoRR, vol.
abs/2111.14643, 2021.

[36] R. R. Jensen, A. L. Dahl, G. Vogiatzis, E. Tola, and H. Aanæs, “Large
scale multi-view stereopsis evaluation,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 406–413.

[37] A. Dai, A. X. Chang, M. Savva, M. Halber, T. A. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3D reconstructions of indoor
scenes,” in IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 2432–2443.

[38] Y. Liao, J. Xie, and A. Geiger, “KITTI-360: A novel dataset and
benchmarks for urban scene understanding in 2D and 3D,” CoRR, vol.
abs/2109.13410, 2021.

[39] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt, “Bundle-
Fusion: Real-time globally consistent 3D reconstruction using on-the-fly
surface reintegration,” ACM Trans. Graph., vol. 36, no. 3, pp. 24:1–24:18,
2017.

[40] D. Azinovic, R. Martin-Brualla, D. B. Goldman, M. Nießner, and J. Thies,
“Neural RGB-D surface reconstruction,” CoRR, vol. abs/2104.04532, 2021.

[41] M. Tatarchenko, S. R. Richter, R. Ranftl, Z. Li, V. Koltun, and T. Brox,
“What do single-view 3D reconstruction networks learn?” in IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 3405–
3414.

[42] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “pixelNeRF: Neural radiance
fields from one or few images,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2021, pp. 4578–4587.

[43] Q. Wang, Z. Wang, K. Genova, P. P. Srinivasan, H. Zhou, J. T. Barron,
R. Martin-Brualla, N. Snavely, and T. A. Funkhouser, “IBRNet: Learning
multi-view image-based rendering,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2021, pp. 4690–4699.

Hai Li is currently a Ph.D. student at Zhejiang
University.He received the B.S. degree in Com-
puter Science and Technology from the Harbin
Engineering University in 2016. His research
interests include 3D reconstruction, SLAM and
Augmented Reality.

Xingrui Yang is a Ph.D. student at the Univer-
sity of Bristol, UK, and a visiting researcher at
Zhejiang University during this work. He received
the B.S. degree in Information Security from the
University of Electronic Science and Technology
of China, in 2011 and M.S. degree in Pattern
Recognition from National University of Defence
Technology in 2013. His research interests in-
clude SLAM, 3D vision and visual knowledge
learning.

Hongjia Zhai is currently a Ph.D. student at
Zhejiang University. He received the B.S. degree
in Electronics and Information Engineering from
Xi’an Jiaotong University in 2020. His research
interests include multimedia retrieval, 3D vision
and augmented reality.

Yuqian Liu is currently a R&D deputy director at
SenseTime Research and leads Localization and
Map group in Autonomous Driving department.
He received the B.S. degree in Information Man-
agement and Information System from Zhejiang
Gongshang University in 2008 and M.S. degree
in Computer Science from Zhejiang University
in 2012. His research interests include SLAM,
localization, sensor calibration and autonomous
driving.

Hujun Bao is currently a professor in the Com-
puter Science Department of Zhejiang University,
and the former director of the state key labora-
tory of Computer Aided Design and Computer
Graphics. His research interests include com-
puter graphics, computer vision and mixed reality.
He leads the mixed reality group in the lab to
make a wide range of research on 3D reconstruc-
tion and modeling, real-time rendering and virtual
reality, realtime 3D fusion and augmented reality.
Some of these algorithms have been successfully

integrated into the mixed reality system SenseMARS.

Guofeng Zhang is currently a professor at Zhe-
jiang University. He received the B.S. and Ph.D.
degrees in computer science and technology
from Zhejiang University in 2003 and 2009, re-
spectively. He received the National Excellent
Doctoral Dissertation Award, the Excellent Doc-
toral Dissertation Award of China Computer Fed-
eration and the ISMAR 2020 Best Paper Award.
His research interests include SLAM, 3D recon-
struction and augmented reality.

	Introduction
	Related Work
	Surface reconstruction methods
	Implicit scene representation
	Volume rendering methods

	Method
	Geometry and appearance representations
	Voxel initialization
	Voxel-based Point Sampling
	Ray generation
	Surface aware sampling

	Volume rendering
	Progressive training
	Voxel pruning
	Voxel splitting

	Losses

	Experiments
	Results on DTU dataset
	Implementation details
	Evaluation results

	Results on ScanNet dataset
	Implementation details
	Evaluation results

	Results on KITTI-360 dataset
	Implementation details
	Evaluation results

	Applications
	Limitations and Future Works
	Conclusions
	References
	Biographies
	Hai Li
	Xingrui Yang
	Hongjia Zhai
	Yuqian Liu
	Hujun Bao
	Guofeng Zhang

