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Fig. 1: The two flow diagrams on the left are system overviews of the loosely-coupled method (ARCore-based) and tightly-coupled
method (Ours). The figure on the right shows the effect in the actual scene test, including the trajectory and the view of the real-time
AR demo at a certain moment. We select two consecutive frames for localization and AR effect comparison. We can see jumpiness
of the loosely-coupled method both in trajectory and AR views, while not for our method.

Abstract— In this paper, we present a novel monocular visual-inertial odometry system with pre-built maps deployed on the remote
server, which can robustly run in real-time on a mobile device even in high latency situations. By tightly coupling VIO with geometric
priors from pre-built maps, our system can tolerate the high latency and low frequency of global localization service, which is especially
suitable for practical applications when the localization service is deployed on the remote server. Firstly, sparse point clouds are
obtained from the dense mesh by the ray casting method according to the localization results. The dense mesh can be reconstructed
from the point clouds generated by Structure-from-Motion. We directly use the sparse point clouds in feature tracking and state update
to suppress drift. In the process of feature tracking, the high local accuracy of VIO is fully utilized to effectively remove outliers and
make our system robust. The experiments on EurocMav datasets and simulation datasets show that compared with state-of-the-art
methods, our method can achieve better results in terms of both precision and robustness. The effectiveness of the proposed method
is further demonstrated through a real-time AR demo on a mobile phone with the aid of visual localization on the remote server.

Index Terms—Pre-built Map, VIO, Tightly-Coupled, High Latency

1 INTRODUCTION

High-precision localization is fundamental to the areas of robotics,
autonomous vehicles, augmented reality and virtual reality. GPS is
widely used to provide a global position on the earth. However, the
provided localization precision of ordinary GPS is insufficient for AR
application, and GPS cannot work in indoor scenes.

With the rise of the digital twin and high-precision maps, the demand
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for AR and VR of large scenes combined with high-precision maps
gradually becomes prosperous. In large-scale environments, it is a
challenging problem to effectively suppress the accumulation error of
long-distance tracking. Moreover, the memory size of high-precision
maps is very large, so map-based services, such as global localiza-
tion, often run only on remote servers, bringing network latency and
bandwidth limitations.

In recent years, visual inertial odometry (VIO) [5, 12, 20, 29, 31, 35]
have received a lot of attention. It can estimate the six-degrees-of-
freedom (6DoF) pose in real time, even in GPS-denied environments.
With the help of IMU, VIO is much more robust than pure visual
Simultaneous Localization and Mapping (SLAM) [22, 30, 50]. At
present, a series of excellent AR developer platforms in the industry
have adopted similar visual-inertial tracking solutions, such as ARKit1,
ARCore2, Hololens3. However, even with the excellent SLAM systems
like ARCore, ARKit, and Hololens, the accumulated drift in long-
distance tracking has not been thoroughly addressed.

Unlike VIO which focuses on local tracking, localization techniques

1https://developer.apple.com/documentation/arkit
2https://developers.google.com/ar
3https://www.microsoft.com/en-us/hololens



based on pre-built maps mainly focus on solving global poses. We
can categorize the localization methods into visual structure-based
methods and geometric structure-based methods based on the map
representation. The visual structure-based methods [41, 43, 44, 49]
are suitable for solving the global localization. Generally, the map is
composed of sparse point clouds and keyframes, which sparse point
clouds and keyframes can be built from Structure-from-Motion [45].
The localization based on geometric structure [6,13,15,53,54] considers
the visual localization problem as the registration problem between the
local visual structure and the dense global map, which usually requires
a relatively accurate initial guess.

Compared with VIO, the localization algorithm based on a pre-
built map has better global accuracy, requiring more computation,
especially in large-scale environments. In addition, as each frame is
localized independently, the smoothness of the localization trajectory
is worse than the trajectory of VIO. An affordable way to combine the
advantages of VIO and pre-built maps is to fuse the pre-built map into
the VIO tracking process. In recent years, some studies have begun to
focus on this direction [13, 16, 25, 32, 34, 52–54].

We categorized these coupled approaches into loosely-coupled and
tightly-coupled ones, depending on whether or not the localization
poses or map structures are added to the state update as additional
measurements to improve the VIO’s real-time trajectory accuracy. As
shown in Fig. 1, without additional measurements to VIO, the loosely-
coupled approaches do not affect VIO’s original state update. Therefore,
they can only correct accumulated drift by continuously optimizing
the 6-DoF transformation between localization coordinate and VIO
coordinate, leading to the jumpiness of the trajectory. In contrast, the
tightly-coupled structure-based approach can correct the accumulated
drift more smoothly than the loosely-coupled approaches. However,
in the previous structure-based tightly-coupled algorithms, only real-
time poses are considered to obtain structural information from the
map, limiting the tracking accuracy and not suitable for the application
scenarios of map services deploying on the remote server.

The main contributions of this paper are listed as follows:

• We propose a novel monocular visual-inertial odometry system
that utilizes low-frequency global localization combined with pre-
built maps to run robustly in real time on mobile devices even
with high-latency localization delays.

• We design a complete scheme to generate the association between
the pre-built map and local features in the sliding window of VIO,
including point cloud generation, feature tracking, and outlier
removal. Our method can work well under the localization service
with high delay and low frequency, which is highly suitable for
the application scenarios of deploying the localization module on
the remote server.

• We use both the real-time pose and global localization pose to ex-
tract point clouds from the pre-built map. For these two different
kinds of map points, we design two kinds of constraints and add
them to VIO’ status update to smoothly correct the accumulated
drift online.

• Although our tightly-coupled method can work well in most cases,
there may still be some extreme cases that lead to the failure of our
method, such as long-time localization fault, pedestrian occlusion,
etc. If the tightly-coupled algorithm fails, we adopt the loosely-
coupled method to help restore the system to the tightly-coupled
state.

Compared with previous works, our method can better tolerate the
time delay and error of localization. The experiments on EurocMav [3]
and simulation datasets demonstrate that our method has better ac-
curacy and robustness than state-of-the-art methods. We also have
implemented an AR Demo that can run in real-time on a consumer-
grade mobile phone to prove the effectiveness of the proposed method
in practical application scenarios.

2 RELATED WORK

2.1 VIO/SLAM
VIO systems can be categorized into filter-based [12, 29, 51] and
optimization-based [19, 35] approaches. One of the filter-based repre-
sentations is MSCKF [29], which combines geometric constraints and
IMU measurements in a multi-state constrained Extended Kalman filter
(EKF). This method designs a constant-size sliding window of IMU
poses in the state vector without maintaining features, and effectively
reduces the computational complexity. SR-ISWF [51] uses the square
root formula to obtain good numerical properties, which enables the
use of a single-precision format to perform the numerical operation,
resulting in considerable acceleration compared to the inverse filter
(INVF). VINS-Mono [35] is an excellent optimization-based visual-
inertial SLAM system with camera-IMU extrinsic calibration and IMU
bias estimation. The designing of robust initialization procedures and
lightweight backend management make the system have good robust-
ness and accuracy. With the development of deep learning, data-driven
methods have been used in inertial navigation. TLIO [23] designs a
ResNet network to estimate the 3D displacement, which was used to
fuse with the IMU raw data in an EKF framework. RNIN-VIO [7]
improves the network by learning the regularity of humans’ motion
in time series. Moreover, [7] proposes a multi-sensor fusion system,
which shows good robustness in extremely challenging environments,
coupling with the visual, IMU, and NIN(Neural Inertial Navigation)
measurements. However, for various reasons, with the tracking distance
increasing, drift accumulation of the VIO system is still inevitable. For
VIO, the correction of drift can only rely on the loop closure, which is
a very demanding condition.

2.2 Localization
Global localization is a classical problem in computer vision and
robotics, which concerns retrieving absolute poses within a known
scene. The classic method of solving this problem is to find the 2D-3D
correspondences between the 2D features of the query image and the
3D points of the pre-built map. Then, the camera pose can be calcu-
lated by applying a Perspective-n-Point (PnP) [11, 17] solver inside
a RANSAC loop [10]. In this framework, the pre-built map is usu-
ally generated by the Structure-from-Motion [40, 45], consisting of
keyframes and sparse point clouds. Traditionally, the candidate frames
most similar to the query image are retrieved [2, 46] from the pre-built
map, and then 2D-3D matches are generated through local feature
descriptor matching. In this framework, the core problem is to select
the most suitable interest point detector. Traditional interest points
include Brisk [18], Brief [4], ORB [38], SIFT [24], and so on. ORB
algorithm is often used in SLAM because of its fast extraction speed.
However, the ORB’s ability to match varying viewpoints and lighting
is not enough for the localization algorithm. In recent years, many
learning-based interest points detection [9] and matching methods [42]
have appeared and achieved good results. However, the computational
costs of these learning-based detection and matching methods are rather
high, so they are not suitable for deployment on mobile devices.

2.3 Coupled Approaches
Using the localization results to correct the drift accumulation of VIO
is the core problem to be solved in this work. The previous methods
can be divided into two categories, i.e. loosely-coupled methods and
tightly-coupled methods, as shown in Table 1.

2.3.1 Loosely-Coupled Approaches
In the loosely-coupled approaches, the VIO/VO module is an indi-
vidual module. VIO/VO’s optimization or state update will not add
localization poses or pre-built map information as new measurements
to improve the real-time accuracy of the VIO/VO. They can only cor-
rect accumulated drift at a low (location request) frequency by jump.
Platinsky et al. [32] request the pose by image-based localization and
optimize the local-to-global transform over the history windows. Mas-
caro et al. [27] and Qin et al. [33] use pose graph optimization to
optimize the transform between GPS coordinate and VIO coordinate.



Table 1: Comparations of different methods

Method Couple Type Camera IMU Real-time
On Mobile

Localization
Frequency Robustness

[32] Loosely-coupled with Global Pose Mono Y Yes High Weak
[27] Loosely-coupled with GPS Mono Y No High Weak
[33] Loosely-coupled with GPS Stereo Y No High Weak
[34] Loosely-coupled with Pre-built Map Mono Y No No Weak
[52] Loosely-coupled with Pre-built Map Mono N Yes No Weak
[21] Tightly-coupled with GPS Mono Y No High Weak
[8] Tightly-coupled with GPS Mono Y No High Weak
[54] Tightly-coupled with Localization Pose Stereo Y No No Weak
[26] Tightly-coupled with Structure Mono Y Yes No Medium
[14] Tightly-coupled with Structure Stereo N No No Medium
[13] Tightly-coupled with Structure Stereo Y No No Medium
[53] Tightly-coupled with Structure Mono N No No Medium
[25] Tightly-coupled with Structure Mono N No No Medium

Our Method Tightly-coupled with Global Pose and Structure Mono Y Yes Low Strong

Qin et al. [34] loads the pre-built map, and then the frame in the slid-
ing window will continuously do loop detection with the loaded map.
Once a loop is detected, the error is corrected through 4DoF pose map
optimization. Similar to [34], by localizing to the pre-built map, Ya-
maguchi et al. [52] use 7-DoF optimization to estimate the scale and
transformation of the VO map and the pre-built map.

2.3.2 Tightly-Coupled Approaches
The tightly-coupled approaches add global localization poses or
pre-built maps as additional measurements to either EKF-based or
optimization-based framework to improve the real-time accuracy of
VIO. Furthermore, we can categorize the tightly-coupled algorithms
into the tightly-coupled with poses [8, 21, 54] and the tightly-coupled
with structure [13, 14, 25, 53].

Li et al. [21] uses double-differenced GNSS to fuse with IMU and
camera in a EKF-based VIO framework to achieve accuracy navigation
performance. Cioffi et al. [8] add the global position measurements,
which is estimated by IMU preintegration, to an optimization-based
VIO system to improve the accuracy and global consistency. Zuo et
al. [54] use distribution transform (NDT)-based method to estimate the
rotation and translation between the semi-dense map, which is obtained
by stereo matching, and the prior LIDAR map. The results of the
NDT-based registration are used in the MSCKF’s state update along
with the conventional sparse visual feature measurements to correct
accumulated drift. It is difficult for the tightly-coupled methods based
on localization poses to model the localization error, especially with
the low localization frequency.

Another method of correcting drift is to use the structure of the pre-
built map. Lu et al. [25] exploit the planar structure obtained from both
vision and prior LIDAR data and use it as the anchoring information
to fuse the heterogeneous map. By adding co-planarity constraints
to global bundle adjustment, the error of visual SLAM is effectively
reduced. Lynen et al. [26] propose a system coupled with a loaded 3D
point cloud reconstructed by SfM. Despite the use of compression rep-
resentation with compact features, this method is still difficult to deal
with very large scenes and is sensitive to environment changes. Huang
et al. [13] proposed a complete visual-inertial localization system based
on hybrid map representation. They designed an efficient data associ-
ation module to associate map components with generating temporal
landmarks, which will improve feature tracking. However, [13] uses
real-time pose to extract point clouds and uses these points in following
visual tracking, which has hidden dangers even with outlier removal
strategies. Because the point clouds obtained from the pre-built map
and the real-time poses are interdependent and mutually affected. The
final accuracy will worsen if the real-time pose is inaccurate or point
clouds have noise. Ye et al. [53] proposed to use coplanar constraints to
deal with the inaccuracy of the real-time pose. Using the real-time pose
to render vertex and normal maps from the prior surfel map, they get
the global planar information for the sparse tracked points in the image.

The final optimization can accurately estimate the global 6DoF camera
pose with the absolute scale. However, this method does not take full
advantage of the pre-built map and is easy to fall into degeneration
states. Moreover, it is sensitive to map noise.

In this paper, we use both the real-time poses and global localization
poses to extract point clouds from the pre-built map. We propose a
map management module and efficient data association strategy to deal
with the localization latency and low-frequency localization. Then, we
use different constraints to integrate structural information into VIO’s
state update for different types of map points. In addition, we analyze
how to determine the degeneration state and how to recover from the
degeneration state.

3 OVERVIEW

3.1 System Overview

The framework of our system is illustrated in Fig. 2. Our system
consists of three modules: map management module, VIO module, and
localization module.

The localization module accepts the query image from the VIO mod-
ule and returns its global pose. In our system, the localization module
can run in a low frequency and adopt different localizing algorithms
according to the actual situation, as long as it can return the global
pose of the query image. We can even deploy it on a remote server and
request it over the network. We will describe how we implement the
localization module in supplemental materials. However, it is not the
focus of our work as it is configurable.

The map management module is responsible for managing the point
clouds from the pre-built map. The detail of map management module
will be introduced in Sect. 4.1. Once the map management module
obtains a successful localization result from the localization module or
a query frame from VIO, it will use the ray casting [37] algorithm to
obtain sparse 3D point clouds from the dense mesh. The pre-built maps
are typically deployed on the server. The first-time localization module
localizes success. It will return the global localization pose and the
simplified dense mesh of the corresponding region for local ray casting.
For the outdoor scene shown in the supplementary video, the whole
area is about 20,000 square meters, and the size of the whole simplified
dense mesh is 20M, which is acceptable for online transmission. We can
further compress the mesh and use block management and transmission,
but that is not the focus of this paper.

In the VIO module, we constantly re-attempt to associate the point
clouds with frames in sliding window (Sect. 4.2). After generating
map observation, we present how to add different constraints based on
different map point types into state update, as introduced in Sect. 5.
After each state update in VIO progress, we will check if the system
is in a degeneration state. We introduce how to detect degeneration
state and recover from degeneration state in Sect. 6. Besides sending
localization requests in a degeneration state, the VIO module sends a



Fig. 2: Detailed system overview.

query image at a predefined low frequency.
Our method uses ray casting to get structural information to align

with VIO, while [13] uses ray casting to supplement 3D points for real-
time tracking. Therefore, our map management module can manage
point clouds asynchronously, regardless of latency. We use ray casting
to obtain 3D points corresponding to all feature points on the image
to obtain enough point clouds even at a low request frequency. Once
the point clouds loaded are done and can still be observed in the latest
field of view, the VIO module will build the association of local feature
points and map points.

3.2 Notation
We now define notations and frame definitions that we use in the paper.
We consider (·)G as the global frame of VIO. (·)C is the camera frame,
and (·)I is the body frame or IMU frame. (·)M is the map frame, which
is defined in a pre-built map coordinate. We use both rotation matrix
RRR and Hamilton quaternion qqq to represent rotation.

⊗
represents the

multiplication operation between two quaternions. qqqA
B, pppA

B are rotation
and translation from the B coordinate to A coordinate. pppA

f j
is the position

of the point f j in A coordinate. Ik is the body frame while taking the
kth image. Ck is the camera frame while taking the kth image. Mk is
the map frame while taking the kth image. π(·) donates the normalized
projection operation, which can project [x,y,z] into the normalized
coordination:

π([x,y,z]>) = [
x
z
,

y
z
]>. (1)

4 VISUAL PROCESSING

4.1 Point Cloud Management
The first step of the tightly-coupled algorithm is to obtain high-quality
point clouds from the pre-built map. High-quality point clouds need to
meet the following conditions:

• The number of points has to be sufficient. If the initial number of
points is insufficient, it is difficult to set an appropriate threshold
to remove outliers.

• Feature descriptors of points obtained from the pre-built map can
match feature points of the current scene so that VIO’s visual
tracking can use these map points.

• The positions of the points should be accurate enough, otherwise
it will cause great difficulty in removing outliers.

Point Cloud Extraction: As we mention in Sect. 2.2, the localiza-
tion module will generate 2D-3D matches and estimate the camera
pose with PnP. A simple way to generate point clouds is to directly cre-
ate point clouds through 2D-3D matches generated by the localization
module. However, the sparse point clouds generated by 2D-3D matches
have significant weaknesses. One disadvantage is that the number of
2D-3D matches available may decrease with changing the scenarios,
viewpoint, and illumination. Another disadvantage for generating point

clouds from 2D-3D matches is that many 3D points may not be suffi-
ciently observed during the reconstruction of the pre-built map, so the
positions of these 3D points may be inaccurate.

In this work, we choose to obtain the sparse point clouds from the
pre-built dense mesh according to the localization poses. Inspired
by techniques widely used in volumetric dense mapping, we use ray
casting to obtain sparse point clouds from the dense mesh. The input of
this method is the query image, the pose estimated by the localization
module or VIO, and the pre-built dense mesh. If global localization
poses returned in time from the localization module, we preferentially
use global localization poses to obtain point clouds. Otherwise, we use
the VIO pose to obtain point clouds. For the convenience of explanation,
we call the points obtained by the real-time pose as local map points,
while the points obtained by the global localization poses as global map
points. The specific steps of extracting sparse point clouds from the
dense mesh are as follows:

• Feature points are extracted from the query image using a feature
detector algorithm that runs on VIO. In this work, we use an ORB
feature detector. For each frame, we extract 500 ORB points.

• We use the ray casting method for each 2D feature point to get its
position and normal from the dense mesh. In the end, we can get
the point clouds.

Fig. 3 shows the point cloud generated by 2D-3D matches and point
cloud generated by ray casting of the same sequence with the same
localization frequency, which proves that our method provides much
more clean and structured points.

Descriptor of Points: The descriptor of each 3D point of the point
clouds comes from its corresponding 2D feature point descriptor in the
query image. Since the descriptor of each 3D point in the point cloud
comes from the query image, it is independent of the viewpoints and
illumination of the data collected for the generation of the pre-built
map. So we do not need to collect plenty of data of different viewpoints
and illumination conditions like in [32], which dramatically reduces
the data collection effort.

Normal of Points: Inspired by [53], we try to use poses from VIO
to capture the points with normal from dense mesh in the absence of
global pose information. Assuming that the error between the real-time
pose and the ground truth pose is small, the points obtained by the
real-time pose are supposed to be coplanar with the points obtained
by the ground truth pose and have the same normal direction. The ray
casting method shoots a ray from the camera through the 2D pixel,
intersecting the dense mesh. The normal of the intersected point is
the average of the intersected triangle’s three vertices, which can be
computed during the generation of the dense mesh.

4.2 Generate Map Point Observation
In dynamic scenarios, noise is unavoidable, even if the point cloud
comes from an ideal pre-built map. If outliers are not strictly removed,
incorrect observations added to MSCKF’s status updates can have a
negative impact on the VIO system and even cause it to fail. Therefore,
the removal of outliers is the most critical step for a tightly-coupled
approach.

We design a rigorous outlier removal algorithm, as illustrated in
Fig. 4. The key idea for removing outliers is that both the VIO’s
trajectory and point clouds are accurate in short-range tracking. The
problem becomes how to align the point cloud structure of the sliding
window with the point cloud structure obtained from the pre-built map.
ICP algorithm [39] is a standard method of point clouds alignment, but
it is not suitable for a real-time system based on mobile devices due
to its high computational complexity. Therefore, we use the feature
tracking of the sliding window to achieve point cloud alignment, which
is more effective than ICP.

Map Point Association: For the kthimage, we project the map
points into this frame for projection-based matching. We can project a
map point to image coordinates as follows:

xxxCi
m j

= π

(
K
(

RRRCi
G

(
RRRG

M pppM
m j

+ pppG
M

)
+ pppCi

G

))
, (2)



(a) (b)

Fig. 3: (a) Point clouds generated by 2D-3D matches in real-world outdoor test. The feature type we used is SuperPoint [9]. (b) Point clouds
generated by ray casting in real-world outdoor test. The point cloud of (b) has a better structure and a more abundant number of points. The
number of points in the point clouds obtained by 2D-3D matching is about 25% of the number of point clouds obtained by ray casting.

Fig. 4: Outlier removal process.

Fig. 5: Generating an association between map points and features.

where pppM
m j

is the map point position obtain from the pre-built map, K
is the camera intrinsic matrix.

The process of projection-based matching is similar to [30].
Through projection matching, we can get several 2D-3D matches. Us-
ing the PnP solver inside a RANSAC loop, we can get the camera pose
of Ci and the inliers of these 2D-3D matches.

Despite projection-based matching, we also use FAST [36] detector
and KLT [48] sparse optical flow tracker to provide feature measure-
ments as [35]. To maintain a minimum number (100-120) of features
in each image, new fast corner features are detected for tracking. The
next step is to build the correspondences of the map points and the local
features. As shown in Fig. 5, if a map point and a local feature tracked
by optical flow match to the same 2D point in kth image, then we can
bind the map point to this local feature. If the 2D point has not been
tracked by any local feature, we will generate a seed local feature, and
try to track this seed local feature in the next image. In this way, each
map point will correspond to a local feature. For the convenience of
explanation, we define the correspondence of local features and map

points as Ftotal .
Multi-Frame Check: Each local feature records observations in

several frames, which can be used for multi-frame verification of map
points. We can use Equation 2 to project map point to each observation
of its corresponding local feature and calculate the reprojection error as
follows:

zzz j,i =
∥∥∥xxxCi

m j
−µ

Ci
f j

∥∥∥
2
, (3)

where µ
Ci
f j

is the observation of the jth feature in ith frame.
Then we can find the candidate correspondence of local feature and

map point by the following criteria:

• If zzz j,i > ap, s.t. ∃µ
Ci
f j

, where ap is a const reprojection threshold,
we will skip this correspondence this time.

• If the track length of local feature is not sufficient, we will skip
this correspondence this time.

• Otherwise, this correspondence will be added to Fcandidate.

Note that we will not delete the correspondence that is not added to
Fcandidate, which will be re-checked next time.

Struct Check: In [13], the map points obtained from the pre-built
map will directly be involved in pose estimate after multi-frame verifica-
tion. However, we believe that it is not reliable to separately verify the
accuracy of points. Only when there are enough matches in Fcandidate,
which means that alignment of local feature point cloud and pre-built
map point cloud is reliable, we can activate these map points and add
them to VIO’s status updates as constraints. Otherwise, none of the
map points in clusters will be added to the VIO’s status updates as
additional constraints.

5 VISUAL-INERTIAL STATE ESTIMATE

This section presents the proposed visual-inertial estimate that tightly
fuses visual and inertial measurements and prior map constraints to
bound tracking errors. Fig. 6 shows the factor graph of our sliding
window.

5.1 State Vector
We define the states of our system as follows:

XXXk = [XXX>Ik−m+1
, ...,XXX>Ik

,XXX>Ek
]>, (4)

where m is the length of the sliding window and set to 12 in this paper.
XIi (i = k−m+ 1, ...,k) denotes the state vector of the cloned IMU
poses at frame i. Each cloned state is defined as:

XXX Ii = [qqqG>
Ii

, pppG>
Ii

]>, (5)



Fig. 6: Factor graph representation for our VIO.

where qqqG
Ii

is the quaternion representation of the orientation of frame i
in the global frame {G}, pppG

i is the position of frame i in global frame
{G}. And the last part XXXEk is defined as follows:

XXXEk = [bbb>gk
,bbb>ak

,vvvG>
Ik

]>, (6)

where bbbgk and bbbak correspond to the bias of gyroscope and acclerater.
vvvG

k is the velocity of frame k in {G}.

5.2 Visual Measurement
1) Local Feature Cost: When local feature tracks have reached maxi-
mum track length or have lost track, they will be triangulated and further
refined by bundle adjustment (BA). Same with standard MSCKF meth-
ods, 3D points will be projected into nullspace, and only the camera
with IMU motion states remain in the state vector. The constraints of
local visual features are:

Cz(X̃XXk+1) = ||HHHxX̃XXk+1− r̃rrz||2σ III2
, (7)

where σ is the Gaussian noise of local feature measurement and III2 is
the 2×2 identity matrix. r̃rrz is the local feature measurement residual.

2) Global Map Point Cost: In Sect. 4.2, we introduced how to
establish the association between map points and tracks and activate the
constraints of map points. In particular, the global map point residual
is:

r̃rr j
gm = ∑

i
ω j r̃rr

j,i
gm = ∑

i
ω j

(
π(RRRCi

G pppG
m j

+ pppCi
G )−µ

Ci
j

)
, (8)

pppG
m j

= RRRG
M pppM

m j
+ pppG

M , (9)

where pppM
m j

is the map point position obtained from pre-built map, µ
Ci
j

is the observation of the jth feature that happpens in the ith frame, and
ω j is the weight of this map point, which can be calculated as follows:

ω j =


0 if l j < α

b(l j−α) if l j < β

b(β−α) other
(10)

where b, α , β are constant threshold, and l j is the track length of local
feature.

So, we can write the linearized cost term of global map point mea-
surements as:

Cz
(
X̃XXk+1

)
=
∥∥∥ω j

(
HHH j

xX̃XXk+1− r̃rr j
gm

)∥∥∥2

σ III2
, (11)

where σ is the Gaussian noise of global map point measurement and
III2 is the 2×2 identity matrix.

3) Local Map Point Cost: Since the point cloud obtained from
real-time pose is interdependent with the state of the sliding window,
even if the association between local map point and local feature is
inaccurate, it can still easily be activated through the verification in

Sect. 4.2. Therefore, we would like to add weaker constraints for the
local map points than global map points constraints. Inspired by [53],
we assume that the error between the real-time pose and the ground
truth pose is small. The activated local map point and its corresponding
local feature can still be associated with the same plane and share the
same normal value.

Consider the jth local map point’s corresponding feature is first
observed in Ik frame, the residual of jth local map point is defined as:

r̃rr j
n = ∑

i
r̃rr j,i

n = ∑
i

nnnG
m j

>(
pppG

m j
−
(

RRRG
Ci

pppCi
f j
+ pppG

Ci

))
, (12)

nnnG
m j

= RRRG
MnnnM

m j
, (13)

pppCi
f j
= RRRCi

G

(
RRRG

Ck

(
dkK−1

π
−1
(

µ
Ck
j

))
+ pppG

Ck

)
+ pppCi

G , (14)

where nnnM
m j

is the normal of the local map point obtained from the

pre-built map. dk is the depth of the feature in Ck, and µ
Ck
j is the

first observation of the local feature in the Ck frame. π−1 is the back
projection function that turns a pixel location into a unit vector. K is
the camera intrinsic matrix.

So, the local map point measurement contributes a linearized cost
term as:

Cn
(
X̃XXk+1

)
=
∥∥∥HHHxX̃XXk+1− r̃rr j

n

∥∥∥2

σ
, (15)

where σ is the Gaussian noise of local map point measurement.

5.3 State Update
All the local features constraints, map constraints, IMU integration
measurements, and prior measurements construct a linearized error
state equation. The estimate of IMU integration measurements cost and
prior measurements cost is the same with [51]. Then we use [28,51]’s
square root inverse filter to update all our states XXXk+1.

6 DEGENERATION ANALYSIS

6.1 System Recovery
Although our tightly-coupled method can work well in most cases,
there may still be some extreme cases that lead to the failure of our
method, such as long-time localization fault, pedestrian occlusion, etc.
According to Equation 2, if the error of qqqG

M and pppG
M is too large, the

projection-based matching will fail, which leads to the failure of activat-
ing the map constraints and thus unable to suppress drift accumulation.
In this case, we need to have a strategy to recover from this degenerate
situation. We constantly check the number of 2D-3D matches generated
by projection-based matches and the number of activating map point
constraints. If the number of map point tracking and the number of
map point constraints remain low, a global localization request must
be sent. To avoid the failure of global localization, we will select the
latest image with good visual features to make the localization request.
When we get a new localization result from the localization module,
we can estimate new q̂qqG

M and p̂ppG
m by optimizing the following problem:

min
q̂qqG

M ,p̂ppG
M

{
∑

∥∥∥qqqG
i ⊗qqqM

i
−1⊗ q̂qqM

G

∥∥∥
2
+∑

∥∥∥pppG
i − q̂qqG

M pppM
i − p̂ppG

M

∥∥∥
2

}
, (16)

where qqqG
i is the quaternion representation of the orientation of the query

frame i in {G}, pppG
i is the position of query frame i in {G}, qqqM

i is the
quaternion representation of the orientation of the query frame i in
pre-built map {M}, pppM

i is the position of query frame i in {M}. qqqM
i

and pppM
i is estimate by localization algorithm.

By optimizing the problem in Equation 16, we can get q̂qqG
M , p̂ppG

M and
its Hessian matrix HHHrel . Then, we can estimate its entropy [1] as
follows:

entropy = 0.5× log
(
(2πe)k det (HHHrel)

)
. (17)

To avoid the mistake of updating these matrices, we update the qqqG
M

and pppG
M only if the following criteria satisfied:



Table 2: Evaluation on general localization performance on EuRoC
MAV dataset with APE (m). The first column is the name of method
used, the bold number indicates the best performing one. The results of
ORB (offline) are listed for explanation and reference only.

Dataset V101 V102 V103 V201 V202 V203
BVIO 0.055 0.064 0.086 0.054 0.106 0.129
RTC-VIO 0.020 0.023 0.035 0.021 0.027 0.047
OpenVINS 0.050 0.084 0.078 0.068 0.064 0.081
VINS-Mono
(loop) 0.039 0.037 0.087 0.076 0.105 0.330

ORB (online) 0.427 1.176 0.985 0.417 0.864 2.308
GMM
W/ Map 0.023 0.057 0.058 0.047 0.040 0.392

DSL
(left cam) 0.035 0.034 0.045 0.026 0.023 0.103

MSCKF
(w/Map) 0.056 0.055 0.087 0.069 0.089 0.149

ORB (offline) 0.041 0.017 0.029 0.051 0.017 0.030

• norm
(

pppG
M− p̂ppG

M
)
> pthreshold

• entropy > λe

where pthreshold , λe are constant threshold.

6.2 Initialization
As outlier removal relies on the VIO module, the VIO module needs
to be initialized independently before using the constraints of the pre-
built map. Referring to [7], we use different initialization strategies
depending on different motion types. Actually, after the initialization
of the VIO, the system will directly fall into a degeneration state, which
can be recovered using the method introduced in Sect. 6.1.

7 EXPERIMENTS

In this section, we compare our method with several state-of-the-art
methods on both real and simulated datasets. We conduct these compar-
ative experiments on a desktop PC with an Intel i7-8700 CPU (3.2GHz
*12) and 24 GB RAM. In addition, we also test the effectiveness of
our approaches in different cases, such as map noise, localization time
delay, and localization frequency. Finally, we implement a demo that
can run in real-time on a mobile phone and compare it with ARCore.

For the convenience of explanation, in the experiments, we name our
basic VIO as BVIO, and the VIO coupled with the map as RTC-VIO.

7.1 Real-World Data
We first compare our method with several state-of-the-art methods, in-
cluding OpenVINS [12], VINS-Mono [35], ORB-SLAM3 [5], MSCKF
(w/map) [54], GMM-Loc [13], DSL [53] on the EurocMav datasets.
The EurocMav datasets provide 20 Hz stereo grayscale images and
200 Hz ADIS16448 IMU and ground-truth room scans (LIDAR Map).
There are 11 sequences in the Euroc datasets, but we only use the
ViconRoom sequences because only the ViconRoom sequences have
the prior LIDAR map. We use MeshLab4 to recover the dense mesh,
which our method depends on, from the sparse point cloud. The result
of GMM-Loc comes from its open-source project5, which is a stereo
prior map based system. Unlike previous work, our method requires
the input of global localization poses. To make a fair comparison, we
add the translation noise with a mean of 2cm and a variance of 0.25cm
to ground-truth poses. If there is no particular explanation in the fol-
lowing experiments, our method will take these poses with noise as the
localization poses.

To evaluate the accuracy of the compared localization algorithms, we
compute the absolute pose error (APE). For BVIO, OpenVINS, ORB-
SLAM3, and VINS-Mono, we use evo6 to estimate the transformation

4https://www.meshlab.net/
5https://github.com/hyhuang1995/gmmloc/
6https://github.com/MichaelGrupp/evo.git

Table 3: Evaluation on general localization performance on EuRoC
MAV dataset with APE (m). Compare the accuracy improvements
brought by different tightly coupled algorithms. With GT means use
ground-truth pose to obtain point clouds from the pre-built map.

Dataset V101 V102 V103 V201 V202 V203
GMM
w/ map 0.023 0.057 0.058 0.047 0.040 0.392

RTC-VIO 0.020 0.023 0.035 0.021 0.027 0.047
GMM
w/ GT 0.022 0.039 0.045 0.027 0.032 0.151

RTC-VIO
w/ GT 0.013 0.019 0.028 0.017 0.023 0.029

matrix from the estimated trajectory to the ground truth trajectory.
Meanwhile, it is unnecessary to estimate the transformation matrix for
tightly-coupled methods, which the methods already coupled with the
pre-built map. To exclude the interference of random factors, the data
in the Table 2 is the average value of 5 runs. ORB (offline) corresponds
to the finally outputted poses by ORB-SLAM3, while the ORB (online)
corresponds to the real-time poses estimated by ORB-SLAM3, both
generated by the monocular inertial system. We found that the online
estimated poses by ORB-SLAM3 are jittering, and APE is quite large.
The reason might be that ORB-SLAM3 uses a multi-map strategy
and will generate a new map if the tracking temporarily fails. So the
online estimated poses may jump “map-to-map”. In addition, the online
estimated poses may not converge well, and the optimization at the back
end may result in sudden changes in the online trajectory. The poses
and maps are continuously optimized at the back end, and multiple
maps may be fused finally. However, for real-time AR applications,
the refined poses in a post-processing stage are meaningless. So we
mainly compare the online estimated results of ORB-SLAM3. Table 2
shows that BVIO has compatible accuracy with OpenVINS and VINS-
Mono. By comparing RTC-VIO and BVIO, we can get that the method
proposed in this paper can significantly improve the accuracy of VIO.

We also compare with other visual (-inertial) localization algorithms
based on pre-built maps. The experiments show that the accuracy of
our method is the best on most datasets. Only V202 has a slightly lower
accuracy than DSL(left cam).

Although we also use the ray casting method to obtain 3D points
from the pre-built map as in [13], the coupled method is different. In
Table 3, we compare the effects of our methods and GMM(w/ map) on
accuracy improvement. As shown in Table 3, our coupled method can
improve the accuracy much more effectively than the GMM. In most
datasets, the results obtained by our method with the noise poses as the
localization results are even better than those obtained by the GMM
method with the ground truth poses as the localization results.

When verifying robustness, previous experiments were limited to
adding noise to the prior map. However, compared with noise, changes
in scene layout are more common in practical applications. Based on
this, we conduct an exciting experiment. The V1 sequences and V2
sequences in the EurocMav datasets are the two different scenarios in
the same room with different obstacle configurations. We set the map
of V2 as the pre-built map of the V1 sequence and set the map of V1 as
the pre-built map of V2, respectively, to re-evaluate the accuracy. The
results are shown in Table 4. We are surprised to find that our method
helps improve the accuracy of VIO even when the scene changed a
lot, while the GMM approach results in a significant drop in trajectory
accuracy.

The images in Fig. 7 are screenshots of our method and GMM
algorithm. The points in Fig. 7 are 3D points from the pre-built map
after outlier removal, which are actually used by the algorithm. It
can be seen that our method can well filter out the outliers introduced
by environmental changes, while the GMM’s algorithm cannot. This
experiment shows that our method can detect apparent changes in the
scene to avoid the impact of incorrect information on the accuracy of
VIO. It also shows that our method can find stable and unchangeable
structures from the scenes with significant changes to help improve the



(a) Our method with correct map (b) Point cloud with correct map of our
method

(c) Our method with incorrect map (d) Point cloud with incorrect map of our
method

(e) [13] with correct map (f) Point cloud with correct map of [13] (g) [13] with incorrect map (h) Point cloud with incorrect map of [13]

Fig. 7: The purple points are obtained by the real-time pose, while the green points are obtained by the localization pose. The images in the left
column show the projection result of these 3D points into the 2D image with the ground truth pose. The pictures in the right column are the
screenshots of these points in the 3D space. The correct projection positions of the points in the red box in Fig. 7(g) should be that of the blue box.
The points in the green box in Fig. 7(h) are all wrong and fall out of the image when projected back with the ground truth pose so that we cannot
see these points in Fig. 7(g).

Table 4: Evaluation on general localization performance on EuRoC
MAV dataset with APE (m). V101, V102, V103 use the pre-built map
of V2 sequences, while V201, V202, V203 use the pre-built map of V1
sequence. With GT means use ground-truth pose to obtain point clouds
from the pre-built map.

Dataset V101 V102 V103 V201 V202 V203
GMM w/
wrong map 0.469 0.366 0.413 0.851 0.831 1.987

RTC-VIO w/
wrong map 0.029 0.039 0.037 0.022 0.032 0.052

GMM w/
wrong map
& GT

0.422 0.399 0.309 0.758 0.803 0.596

RTC-VIO w/
wrong map
& GT

0.023 0.023 0.033 0.019 0.028 0.041

accuracy of VIO.

7.2 Evaluation on Synthetic Dataset
Synthetic Dataset: To further validate our system, we compared the
proposed method within the AirSim simulator [47]. The simulation
datasets provide 30 Hz synchronous RGB images and depth images and
200 Hz MPU-6000 IMU. The datasets contain three sequences, two of
which move indoors with different trajectories, and one moves outdoors
on a downtown road. The track length of the two indoor sequences is
124.0m and 75.4m, respectively, and the outdoor sequence is 505.3m.
We do not compare with [54] on the simulation datasets since it did
not provide the code. [13] uses binocular data to triangulate points by
stereo matching, while our simulation datasets only have the monocular
image. For fairness, we modify the source code of [13] and directly
use the ground truth depth instead of stereo matching. The result of the
DSL comes from the authors of DSL. In addition, the OpenVINS fails
to initialize on all of these sequences, so we do not record its results. As

Table 5: Evaluation on general localization performance on synthetic
dataset with APE (m). The first line is the name of method used, and
the bold number indicates the best performing one. All methods use
the pre-built map without noise.

Dataset BVIO RTC-
VIO

ORB
(online)

VINS-
Mono
(loop)

GMM DSL

indoor 0.230 0.023 0.826 0.159 - 0.050
indoor
patial 0.062 0.020 3.300 0.078 0.068 0.060

outdoor 2.253 0.19 14.702 2.963 25.463 0.383

shown in Table 5, our method achieves the best results on all simulation
data.

Robustness: Referring to [53], we add Gaussian noise with dif-
ferent noise levels σ to the origin point cloud and regenerate the mesh.
The APE w.r.t different noises are shown in Table 7. The experiments
show that even with a standard deviation σ = 1.0m, the accuracy of our
method is still better than the state-of-the-art VIO system. In addition,
[53] fails in all three synthetic datasets when we add standard deviation
σ = 0.1m to the pre-built map.

Ablation Experiments: To intuitively evaluate the role of each
module in the system, we performed some ablation experiments. In
the ablation experiments, we set the localization latency to 400ms
and the interval of sending localization requests to 1000ms. These
parameters come from our real-world test. Moreover, we add the noise
with σ = 0.1 to the pre-built map and add a zero-mean, white Gaussian
noise with covariance 5 cm and 3 degrees to the localization pose.

Ablation Analysis: Comparing ¬ in Table 6, we find that the
number of point clouds from the pre-built map will significantly affect
the coupled result. The reason is that if the number of points is not
sufficient, the outlier removal may be difficult. Therefore, compared
with generating point clouds using 2D-3D matches, the ray casting
method, which can get more points for each frame, has more significant



Table 6: Evaluation on experiement of ablation with APE (m). LP
stands for using real-time poses to obtain local map points. GP stands
for using localization poses to obtain global map points. M stands for
using the multi-frame check for each point. S stands for using struct
check. R stands for randomly selected 25% point clouds obtained by
ray casting. LR indicates that the local map points form reprojection
constraints. ¬ is the result of baseline.  is the ablation experiment
on the number of points. ®¯° are ablation experiments on outlier
removal. ±²³ are ablation experiments on map point constraints.

stages indoor indoor
partial outdoorLP GP M S R LR

¬ X X X X - - 0.089 0.060 0.226
 X X X X X - 0.307 0.135 0.456
® X X - X - - 0.096 0.085 0.227
¯ X X X - - - 0.098 0.078 0.239
° X X - - - - 0.102 0.082 0.253
± - X X X - - 0.102 0.051 0.270
² X - X X - - 0.162 0.094 1.680
³ X X X X - X 0.105 0.244 0.331

Table 7: Evaluation general localization performance on synthetic
datasets with APE (m) on different maps. We add gaussian noise σ (m)
to mesh vertices and reconstruct the faces of mesh with meshlab.

Dataset σ :0 σ : 0.1 σ : 0.3 σ : 0.5 σ : 1.0
indoor 0.023 0.049 0.076 0.084 0.148
indoor patial 0.020 0.026 0.036 0.047 0.054
outdoor 0.190 0.212 0.215 0.217 0.258

advantages. Comparing ¬±² in Table 6, we can find that both local
map points and global map points can improve the accuracy of the
coupled algorithm, among which global map points are more helpful
for improving the accuracy. By comparing ¬±³, we can draw another
important conclusion: using reprojection constraints for local map
points will take a negative effect. The reason is that the local map
points and real-time poses are interdependent and mutually affected.
Whether there is noise in local map points or error accumulation in
the real-time pose, the accuracy of the coupled methods will decrease
under the influence of each other, which also explains the poor accuracy
of [13] in Table 4. ¬®¯° in Table 6 show that our outlier removal
strategies are effective.

Latency and Interval Experiements: For our method, high net-
work latency and low localization frequency will make global map
constraints difficult to take effect, and local map constraints play a
significant role. We verify the effect of local map constraints under
different localization frequencies and different latency. Table 8 shows
that even when the time delay is 1200ms, our method can still get
better results than BVIO. Since indoor partial is a local-regional move
dataset, the accuracy of indoor partial cannot truly reflect the role of
each module. Ignoring indoor partial, we find that local map point
constraints can effectively suppress drift accumulation when the in-
terval and delay of localization requests gradually increase. For more
experiments on the synthetic dataset, please refer to supplementary

Table 8: Evaluation on general localization performanceon synthetic
dataset with APE (m) under different time delay. The interval of sending
localization request is set to 1000ms.

Delay
(ms)

indoor indoor
partial outdoor

w w/o w w/o w w/o
200 0.035 0.037 0.037 0.036 0.267 0.300
400 0.041 0.049 0.041 0.037 0.284 0.327
800 0.077 0.088 0.049 0.046 0.378 0.330

1200 0.121 0.146 0.047 0.054 0.458 0.567

Table 9: Evaluation on ablation of local map point constraints with APE
(m) under different localization frequencies. The latency of localization
pose is set to 400ms.

Interval
(ms)

indoor indoor partial outdoor
w w/o w w/o w w/o

1000 0.041 0.049 0.041 0.037 0.284 0.327
2000 0.060 0.065 0.043 0.042 0.319 0.368
4000 0.064 0.068 0.043 0.052 0.528 0.541
8000 0.076 0.105 0.052 0.055 0.528 0.541

12000 0.092 0.129 0.061 0.056 0.527 0.588

materials.

7.3 AR Demo on a Mobile Phone
To better reflect the advantages of our method in practical applications,
we have implemented an AR demo that can run in real-time on a mobile
phone with the aid of visual localization on the remote server.

The AR demo runs on a HUAWEI MATE20 PRO. We reconstructed
two open scenes, an indoor scene and an outdoor scene, and the data
used for scene reconstruction were panoramic images collected with a
camera five months before the actual test. Therefore, both the environ-
ment and the device have changed significantly, which is a big challenge
for the localization algorithm and our coupled method. In addition,
because the localization algorithm is deployed on the server, there is
a network latency between 300 and 500 milliseconds per localization
request. The localization interval is set to 1000ms. Due to the lack
of ground truth, we can only verify drift accumulation through loop
closure. For comparison, we also developed a loosely-coupled demo
based on ARCore, which is called as ARCore-LC. The implemented
details can be found in the supplementary document.

In our supplementary video, all demo sequences run in real-time.
We saved real-time poses and recorded the screen. Fig. 1 is a post-
processing composite of the saved poses. Fig. 1 shows that our method
can smoothly suppress drift accumulation in real-time. The trajectory of
the loosely-coupled algorithm shows several jumpiness, corresponding
to several significant AR jumpiness. Please refer to the supplementary
video for better viewing. Both RTC-VIO and ARCore-LC request the
same localization algorithm on the same server, so there is no difference
in localization accuracy.

In addition to comparing with ARCore-LC, we also compare with
Hololens 2. Please refer to our supplementary materials.

8 CONCLUSION

We have developed a monocular VIO system tightly-coupled with pre-
built maps in real-time on a mobile device. With the ray casting method,
we reproject the sparse feature points to the dense model to obtain their
3D positions, which will be directly added to the feature tracking and
state update of VIO to suppress the drift accumulation of the VIO sys-
tem in real-time. In the fusion stage, we use VIO’s local high precision
characteristics to effectively remove outliers, which makes our system
have good robustness to map noise. Our method can tolerate high loca-
tion delay and low location frequency well and is especially suitable for
deploying location service on the server. The experimental results show
that our method achieves the highest accuracy and robustness compared
with the state-of-the-art methods. Finally, a real-time AR demo on
a mobile phone is presented to further verify the effectiveness of our
method. In the future, we will investigate how to couple with more
information such as NIN [7, 23] and GNSS to reduce the frequency of
localization requests further.
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