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SplatLoc: 3D Gaussian Splatting-based Visual Localization for
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Fig. 1: We present SplatLoc, an efficient and novel visual localization approach designed for Augmented Reality (AR). As illustrated in
the figure, our system utilizes monocular RGB-D frames to reconstruct the scene using 3D Gaussian primitives. Additionally, with
our learned unbiased 3D descriptor fields, we achieve 6-DoF camera pose estimation through precise 2D-3D feature matching. We
demonstrate the potential AR applications of our system, such as virtual content insertion and physical collision simulation. We highlight
virtual objects with red boxes. For AR demos, please refer to our supplementary video.

Abstract— Visual localization plays an important role in the applications of Augmented Reality (AR), which enable AR devices to
obtain their 6-DoF pose in the pre-build map in order to render virtual content in real scenes. However, most existing approaches
can not perform novel view rendering and require large storage capacities for maps. To overcome these limitations, we propose an
efficient visual localization method capable of high-quality rendering with fewer parameters. Specifically, our approach leverages
3D Gaussian primitives as the scene representation. To ensure precise 2D-3D correspondences for pose estimation, we develop
an unbiased 3D scene-specific descriptor decoder for Gaussian primitives, distilled from a constructed feature volume. Additionally,
we introduce a salient 3D landmark selection algorithm that selects a suitable primitive subset based on the saliency score for
localization. We further regularize key Gaussian primitives to prevent anisotropic effects, which also improves localization performance.
Extensive experiments on two widely used datasets demonstrate that our method achieves superior or comparable rendering and
localization performance to state-of-the-art implicit-based visual localization approaches. Code and data are available at project page:
https://zju3dv.github.io/splatloc.

Index Terms—Visual localization, 3D Gaussian Splatting, Augmented Reality

1 INTRODUCTION

Visual localization is a critical technique that enables mobile devices or
head-mounted displays to estimate the camera’s 6-Degree-of-Freedom
(6-DoF) pose relative to a pre-built 3D map. It plays an essential part in
various Augmented Reality (AR) applications. For example, the visual
localization approach can provide global 6-DoF pose information of
the AR devices, which can be used to render virtual content in the real
environment and facilitate the interaction of users with the physical
space.

Generally, classical visual localization methods can be classified
into two categories: regression-based and feature-based approaches.
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Regression-based approaches [3,11,17,27,41] usually use convolutional
neural networks (CNN) to extract the high-level contextual feature of
the image and encode the geometry information (e.g., absolute pose,
and scene coordinate) of the reconstructed environment. PoseNet [17]
and SCRNet [27] are the representative works of directly regressing
the pose or 3D coordinates of the pixels from the extracted feature
of a single image. However, due to the lack of geometric constraints,
these methods often lag behind feature-based approaches in terms
of accuracy. Feature-based approaches [47, 61, 64] usually build a
structure-based scene map beforehand (e.g., 3D point cloud models)
and associate each map primitive with one or more 3D descriptors.
Those 3D consistent descriptors are usually obtained by performing
multi-view fusion on the hand-crafted feature [31] or learning-based
keypoint descriptors [9, 46] detected from 2D images. The detected
2D points in the query image can be matched against 3D descriptors to
obtain 2D-3D correspondences for robust pose estimation [13,22]. The
localization performance of feature-based approaches is also decided
by the repeatable and discriminative power of extracted descriptors.
However, limited by the way of scene representation, these classical
localization approaches can not perform photorealistic rendering, which
is an essential part of AR applications.
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In recent years, Neural Radiance Fileds (NeRF) [37] and 3D Gaus-
sian Splatting (3DGS) [18] have emerged as the new paradigm for
neural implicit scene representation. These paradigms use implicit
representation (e.g., multilayer perception [50], parametric encod-
ings [25, 40, 62]) or explicit primitives (e.g., points [56], 2D/3D Gaus-
sians [14, 18]) to represent the scene property and achieve satisfactory
performance of high-quality rendering and geometry reconstruction.
Benefiting from differentiable NeRF-style volumetric rendering [16]
and point-based alpha-blending [35], neural-based approaches can
perform parameter optimization in an end-to-end way without 3D
supervision. Inspired by [37, 56], some works [6, 29, 33, 60, 63, 64]
use neural implicit representation to reconstruct the scene and per-
form pose estimation. iNeRF [29] is the first work that refines the
6-DoF pose via photometric error minimization between the query
image and rendering results of the pre-trained NeRF model. NeRF-
SCR [6] and LENS [39] are the representative works that combine
regression-based visual localization with neural radiance field. They
train a scene-specific NeRF model to synthesize high-quality novel
views to cover the whole scene space, providing additional training
data for the optimization of their scene coordinate regress network.
Similarly, the localization performance of these NeRF-aided regression
approaches is also not competitive due to the lack of geometric con-
straints. To impose the geometric constraints, the feature-based method,
PNeRFLoc [64], represents the scene with explicit structure [56] and
associates each point in the map with learning-based descriptor [46].
Compared with [6, 39], PNeRFLoc [64] can achieve better localization
performance and generalizability. However, PNeRFLoc, like traditional
feature-based methods, requires explicit storage of point-wise features,
which results in significant memory usage, making it impractical for
mobile devices with limited storage.

To overcome the aforementioned limitations, we propose an effi-
cient and novel visual localization method that achieves better perfor-
mance with fewer model parameters, suitable for both localization and
high-quality novel view rendering. Specifically, to reduce the model
parameters, we do not store point-wise descriptors explicitly. Instead,
we construct the feature volume from multi-view 2D feature maps and
distill it to a scene-specific 3D feature decoder, which can avoid the
descriptor bias of Gaussian primitives introduced by alpha-blending.
We then propose an efficient salient 3D landmark selection algorithm
to reduce the computational overhead of 2D-3D matching caused by
a large number of Gaussian primitives. Finally, we perform position
and scaling regularization for key Gaussian primitives to reduce the
3D center shift. Overall, the specific contributions of our proposed
approach are summarized as follows:

• We propose an efficient and novel visual localization approach
based on 3D Gaussian primitives that achieves accurate local-
ization performance and high-quality, fast rendering with fewer
parameters.

• We introduce an unbiased 3D descriptor learning strategy for
precise 2D keypoints and 3D Gaussian primitives matching, using
a scene-specific 3D feature decoder to regress the feature volume
from multi-view feature maps.

• We develop an effective salient 3D landmark selection algorithm
to reduce the number of primitives used for localization. Addi-
tionally, to mitigate the Gaussian primitive center shift induced
by photometric rendering loss, we apply regularization on the
location and scale of key Gaussian primitives.

• We conduct extensive experiments to demonstrate the state-of-
the-art and comparable performance of visual localization and
high-quality novel view rendering.

The rest of our paper is structured as follows: In Sec. 2, we provide
a review of related works to contextualize our research. Next, in
Sec. 3, we explain each key component in our reconstruction pipeline.
Subsequently, in Sec. 4, we evaluate the performance of our system
through various synthetic and real-world scenes. Finally, the conclusion
and limitation are drawn in Sec. 5.

2 RELATED WORKS

In this section, we review the works most relevant to the proposed
method, including visual localization, 3D Gaussian Splatting, and 3D
feature field.

2.1 Visual Localization
Visual localization is one of the most commonly used localization
techniques for applications [26, 38] of AR/VR, which can estimate
the accurate 6-DoF pose of the camera. Generally, visual localiza-
tion approaches can be divided into feature-based and regression-based
methods. Regression-based approaches represent the map in an implicit
way, which encodes the geometry information of the scene in the convo-
lutional neural networks to regress the absolute pose [3, 17] and scene
coordinates [11, 27]. However, both pose and coordinate regression
methods need a large amount of 3D training data to make the scene-
specific CNN model convergence and are not competitive in terms of
localization accuracy. Feature-based approaches [24, 47, 61] obtain the
pose via performing feature matching between the 2D keypoints of
the query image and 3D points in the sparse Structure-from-Motion
(SfM) model. According to the estimated 2D-3D correspondences, the
pose of the query image can be computed via the Perspective-n-Point
(PnP) algorithm [22]. The localization performance of feature-based
methods relies on the discriminative ability of the hand-crafted [31] or
learning-based keypoint descriptors [9, 46]. Recently, inspired by the
neural implicit representation [37], some works have used neural im-
plicit representation to aid visual localization. For example, [6] and [39]
use a pre-trained NeRF model to synthesize more high-quality novel
views for the training of scene regression networks. PNeRFLoc [64]
uses the explicit point-based neural representation to employ the geom-
etry constraints and perform 2D-3D feature matching for 6-DoF pose
estimation. However, similar to traditional feature-based methods, [64]
also require a lot of memory to store the descriptors and matching graph
for the sparse SfM model.

2.2 3D Gaussian Splatting
Recently, 3D Gaussian splatting (3DGS) [18] has shown great potential
in 3D computer vision [5, 7, 14, 15, 28, 32, 54, 57]. Compared to the
neural radiance field (NeRF) [37], 3DGS uses an explicit representation
to reconstruct the scene and enable fast and high-quality view synthesis.
Besides, 3DGS gets rid of the need for MLP and ray marching, which
can accelerate the training speed for real-time rendering. Although
3DGS can achieve high-quality novel view rendering and fast training
and rendering speed, they usually lead to poor geometric accuracy, e.g,
the center of primitives are not accurately aligned with the surface.
Some works aim to control the shape of the primitives [14], use unbi-
ased depth rendering [5], and introduce geometric regularization during
the optimization process, such as monocular depth [34, 57], and nor-
mals [52, 55]. Besides, some works [42, 43] pay attention to reducing
the memory footprint of Gaussian splatting operations. Additionally, to
enhance the scene understanding ability, [44, 48] assign an additional
attribute, semantic feature, for each Gaussian primitive. To render the
high-dimensional features, they perform quantization or dimensional-
ity reduction, which leads to performance decreases for large indoor
scenes.

2.3 3D Feature Field
Since the development of NeRF, some works have attempted to learn
consistent 3D feature fields from the 2D feature map distilled from vi-
sion or language foundation models [4,20,45]. DecomposingNeRF [21]
is the first work that adds an additional branch for the neural network to
encode the semantic feature. The high-level contextual feature learned
from [4, 23] can be used to distinguish the background and objects,
which can be used for many editing tasks. To reduce the memory foot-
print, N3F [51] uses Principal Component Analysis (PCA) to compress
the high dimensional DINO feature into lower dimensions for efficient
3D segmentation. Similar to NeRF-based methods, some recent works
try to add feature attributes for Gaussian primitives. However, due to
the memory demands of recording high-dimensional embeddings for
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Fig. 2: Reconstruction processes. We incrementally initialize the Gaussian primitives, and each primitive is associated with position µ, rotation q,
scale s, opacity σ , color c, and 3D landmark score a. For key Gaussian primitives, we perform soft isotropy and scale regularization to mitigate the
anisotropic results. The color loss Lc, depth loss Ld , 3D landmark loss Lm, and regularization loss Lreg are used to optimize the properties of each
primitive via differentiable rasterization.

each primitive, it is infeasible like the way in [21]. To tackle those prob-
lems, Shi et al. [48] propose an efficient quantization scheme to reduce
the memory requirement of language embeddings. Qin et al. [44] train
an auto-encoder to obtain a very low dimensional latent feature, which
is associated with the Gaussian primitives. Those latent features can be
decoded into high dimensions, which can be used for localization and
segmentation. Learning feature fields via optimizing the similarity be-
tween rendered features and 2D feature maps from foundation models
is not suitable for 2D-3D matching. There is a domain gap between the
training and inference stages.

3 METHOD

In this section, we introduce the reconstruction and localization
pipelines of our localization approach. In Sec. 3.1, we first introduce
the 3D Gaussian scene representation. Then, we introduce the unbiased
3D descriptor feature field learning (Sec. 3.2). Besides, in Sec. 3.3, we
introduce the 3D landmark selection strategy for localization and model
compression. The regularization terms and overall optimization objec-
tives of our reconstruction system are shown in Sec. 3.4 and Sec. 3.5.
Finally, the visual localization process is introduced in Sec. 3.6.

3.1 3D Gaussian Scene Representation
In this part, we introduce the Gaussian primitive-based scene represen-
tation and incremental reconstruction process (Fig. 2).
Scene Representation. 3D Gaussian Splatting utilizes a collection of
anisotropic 3D Gaussian primitives to represent the scene explicitly.
Specifically, each Gaussian primitive is parameterized by its mean
µ ∈ R3 and covariance matrix Σ ∈ R3×3 defined in the world space,
which is shown in the following:

G(µ,Σ) = e−
1
2 (x−µ)T Σ(x−µ). (1)

To ensure the covariance matrix Σ maintains physical meaning during
optimization, it is decomposed into a scaling matrix S and a rotation
matrix R as proposed in [18]:

Σ = RSST RT , (2)

where the scaling matrix is computed from a 3D scale vector s, S =
diag([s]), and the rotation R is parameterized by quaternion.

Following the approach in Zwicker et al. [66], the 3D Guassians are
projected into the 2D image plane for rendering. Given the viewing
transformation matrix W and Jacobian J of the affine approximation
of the projective transformation, the covariance matrix in the camera
coordinates can be computed as:

Σ̃ = JWΣW T JT . (3)

The corresponding 2D Gaussian distribution Ĝ(µ̃, Σ̃) is derived from
the 2D pixel location µ̃ of the 3D Gaussian primitive center and the
projected covariance matrix Σ̃.

Differentiable Rasterization. For novel view synthesis and fast
rasterization-based rendering, each 3D Gaussian primitive is associated
with an opacity σ ∈ R and a color c ∈ R3, represented using spherical
harmonics (SH) coefficients. For photo-realistic rendering, the differ-
entiable rasterizer adopts alpha-blending [35] to render the Gaussian
property into the image plane, which accumulates Gaussian property
and opacity values σ on a given pixel by traversing the ordered primi-
tives. Specifically, the depth and color properties can be rendered with
the following equation:

Î =
N∑

i=1

ci ·αi ·
i−1∏
j=1

(1−α j), D̂ =

N∑
i=1

di ·αi ·
i−1∏
j=1

(1−α j), (4)

where Î, and D̂ are the rendered color and depth, respectively.
αi = Ĝ(µ̃, Σ̃) ·σi denotes the opacity contribution of each 2D pixel,∏i−1

j=1(1−α j) is the accumulated transmittance, and N is the number
of Gaussian primitives during the splatting process for a pixel.

Additionally, to identify salient 3D landmarks for accurate and ef-
ficient visual localization, each Gaussian primitive is assigned a 3D
landmark probability score a ∈ R, representing the likelihood of the
primitive being a key landmark in 3D space. Also, similar to the
color and depth rendering equation, we can render the 3D landmark
probability score into 2D with the following equation:

Â =

N∑
i=1

ai ·αi ·
i−1∏
j=1

(1−α j). (5)

Incremental Gaussian Initialization. During the reconstruction
process, Gaussian primitives are initialized incrementally for each
keyframe. For each incoming keyframe {I,D}, we first random sample
pixels and project the sampled points into 3D space according to the
camera pose, Twc, and camera intrinsic, K, with the following equation:

µ = Twc ·π−1(u,D(u)), (6)

where π−1(·) is the inverse of perspective projection, u is the sampled
pixel. Then the Gaussian primitive is initialized with the projected 3D
center µ and the color value from I(u).

Additionally,using the 2D keypoint score map generated by the
SuperPoint model [9], we classify Gaussian primitives with scores
exceeding a defined threshold as key Gaussian primitives, while others
are marked as non-key primitives. Key Gaussian primitives typically
exhibit higher 3D landmark probability scores and are more reliable for
localization during the inference stage.

3.2 Unbiased 3D Descriptor Learning
To achieve effective 2D-3D feature matching while compressing the
scene parameters, we propose learning descriptors for each Gaussian
primitive using a 3D feature decoder. As shown in Fig. 3(a), previous
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(a) Blending-based biased 3D feature learning.
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(b) Regression-based unbiased 3D feature learning.

Fig. 3: Illustration of biased and unbiased 3D descriptor field learning. (a) The biased 3D feature optimization of previous works [44,48], they use
alpha-blending to obtain the 2D blended feature. (b) Our unbiased 3D feature learning scheme, which directly learns the 3D feature decoder from the
constructed feature volume of multi-view feature maps.
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Fig. 4: The pipeline of our unbiased 3D primitive descriptor learning. We first encode images based on the 2D CNN model [9] to obtain the multi-view
feature maps and construct the 3D scene feature volume according to the depth and pose information. To enhance the representation ability of
the 3D feature decoder, we use multi-resolution parametric encoding to aid the 3D scene-specific descriptor learning. Besides, we only sample
descriptors on the scene surface for effective distillation.

approaches [44, 48] project 3D primitive feature into 2D blended fea-
ture via alpha-blending, then perform ray-wise similarity optimization
with CNN-generated 2D feature maps. The alpha-blending operation
accumulates the values of 3D Gaussian based on the learned opacity
weights to render 2D feature maps, which leads to learn a biased feature
space and can not establish a one-to-one correspondence between 2D
pixel and 3D Gaussian primitives. However, such methods introduce a
domain gap between the 2D CNN feature and the 3D Gaussian primi-
tive descriptor, making them unsuitable for our task of 2D-3D feature
matching. Furthermore, due to GPU memory constraints, directly learn-
ing high-dimensional descriptors is impractical. Existing solutions
that rely on dimensionality reduction [44] or feature quantization [48]
negatively affect localization performance. To address these issues,
we propose an unbiased, accuracy-preserving 3D descriptor learning
method (Fig. 3(b)), which directly regresses the 3D feature volume
without any feature quantization and dimensionality reduction. The
whole learning process is shown in Fig. 4.
2D Feature Map Lifting. To avoid the bias introduced by alpha-
blending, we lift the 2D feature map into 3D feature volume and learn a
3D feature decoder to generate scene-specific descriptors for primitives.
Specifically, for each keyframe, we first use a pre-trained CNN [9]
to extract its 2D feature map, fi ∈ RH×W×Df , where D f denotes the
feature map dimension. According to the 6-DoF camera pose and
intrinsics, we then project 2D feature maps into 3D feature volume,
V ∈ R{Dx×Dy×Dz×D f }, where Dx, Dy, and Dz are the volume dimen-
sions based on scene size and voxel resolution. To model geometry
information, we follow [8] and apply an additional TSDF volume to
capture surface details from depth images. Besides, we update the
3D feature volume by fusing multi-view observations. Specifically,
for each feature at position (x,y,z) in the volume, we apply weighted
average pooling for the observation from different viewpoints:

V[x,y,z] = wi ·V[x,y,z]+ fi(u)
wi +1

, (7)

where (x,y,z) is the volume coordinates derived from pixel location u
and its corresponding depth value, and wi is the weight of the current
volume when fusing the i-th feature map fi. During the optimization
process, we set the weight of each observation as default 1. So, for
each coming observation, wi is updated via wi = wi−1 +1. So, we can

obtain the feature of any spatial point in the scene through the trilinear
interpolation operation.
Multi-resolution Parametric Encoding. As shown in [44,50], a single
MLP or encoder-decoder module leads to a performance decrease in
scene representation and feature learning. To improve performance, we
adopt multi-resolution hash feature encoding [40] to enhance the MLP
decoder’s ability to represent complex scenes, as shown on the right
of Fig. 4. Specifically, for each Gaussian primitive with its 3D position
µ we can obtain its multi-resolution parametric encoding E(µ;Θ) using
the following equation:

E(µ;Θ) = [T (µ,θ1), · · · ,T (µ,θl)], (8)

where Θ is the multi-resolution features Θ = {θl}L
l=1, and T (·) is the

trilinear interpolation operation for each resolution level.
After obtaining the multi-resolution encoding feature, E(µ;Θ), the

3D descriptor of the primitive can be obtained with the 3D feature
decoder, D, which is implemented by a shallow MLP:

g =M f (E(µ;Θ)), (9)

where g ∈ RDf is the decoded high-dimensional descriptor at 3D posi-
tion µ , which can be directly optimized with our constructed 3D feature
volume V .
Surface-aware Descriptor Distillation. Since much redundant infor-
mation is stored in the feature volume V (e.g., the descriptors in empty
3D space are often invalid and inaccurate), so we only perform descrip-
tor distillation on the scene surface manifold. To achieve this, we first
use the Marching Cubes algorithm [30] to find the surface inside the
feature volume. Then, during the distillation process, we randomly
sample points on the surface and use the interpolation operation to
obtain their corresponding features, which are then used to optimize
the multi-resolution features Θ and the 3D feature decoder M f .

3.3 Salient 3D Landmark Selection
Due to the need for photo-realistic rendering, 3DGS typically produces
a large number of Gaussian primitives for indoor scenes (e.g., around
400k points for Room 0 in the Replica dataset). However, many of
these primitives contain redundant information that is unnecessary for
visual localization. For mobile or lightweight devices, using all these
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Algorithm 1: Salient 3D Landmarks Selection
Input: Primitives P , Search radius r, Number N
Output: Selected landmarks S

1 // Compute saliency score for all primitives
2 for p ∈ P do
3 // Significance + Generalizability + Consistency
4 H(p) = 2 ·Sig(p)+min(2, Gen(p))+Geo(p)
5 end
6 // Search N suitable landmarks
7 while |S|< N do
8 // Saliency-based greedy search
9 Ω = {p|p ∈ P, ||x− s||> r,∀s ∈ S}; // Candidates

10 p = argmaxH(p), for p ∈ Ω;
11 if p exist then
12 S = S ∪ p; // Find the target landmark
13 else
14 r = r/2; // Reduce search radius
15 end
16 end
17 return S // The final selected landmarks

primitives would incur significant computational costs. To address this,
we propose an efficient 3D landmark selection strategy based on the
primitive saliency score, reducing the number of primitives required
for localization.
Saliency Score Computation. Previous works [2, 10, 36, 59] have
reduced the number of map points based on differentiable optimization
or the importance of each point. However, there is no clear standard
for evaluating the distinctiveness of points for accurate pose estimation.
To reduce the number of primitives for localization, the 3D landmark
selection method should find the suitable subset of Gaussian primi-
tives from the reconstructed scene based on our defined saliency score.
To select the informative 3D landmarks for localization, we define a
saliency score for each Gaussian primitive p ∈ P , which is computed
based on the following criteria:

(1) Significance: Primitives with higher significance tend to be 3D
landmarks, making them more useful for localization. As described
in Sec. 3.1, each Gaussian primitive p is assigned a 3D landmark
probability score a, representing the likelihood of being a landmark.
So, for the significance term, we use the learnable landmark probability
score a as the evaluation metric:

Sig(p) = a. (10)

(2) Generalizability: Primitives that were observed from many
different viewing directions during the reconstruction are more general-
izable and robust for localization. For this generalizability term, we use
the largest angle between any two viewing directions as the evaluation
metric which is defined in the following equation:

Gen(p) = max{arccos(
(oi −µ)

||(oi −µ)|| ·
(o j −µ)

||(o j −µ)|| ) | oi ∈O}, (11)

where oi is the i-th camera center of database images, and µ is the
location the primitive p.

(3) Geometry Consistency: The primitives with smaller multi-view
geometric errors and aligned with the scene surface are more reliable for
localization. To measure this term, we use the multi-view 3D distance
error as the criteria, defined as:

Geo(p) = min(2,
tr

Mean({disti}) )+min(2,
tr

Std({disti}) ), (12)

where tr is the distance error threshold parameter and disti = µ − di
is the distance between the primitive position and its corresponding
surface point observed by i-th camera.

Based on the above-mentioned criteria terms, we compute the final
saliency score H(p) for all key Gaussian primitives:

H(p) = 2 ·Sig(p)+min(2, Gen(p))+Geo(p), (13)

where the constant coefficients and min(·) are used for balance the
weights for different terms.
3D Landmarks Selection. To select N effective and non-redundant
3D landmarks for visual localization, we apply a saliency-based greedy
search algorithm, as illustrated in Algorithm 1. Our goal is to maximize
the overall saliency score of selected landmarks and simultaneously
ensure those landmarks cover the reconstructed scene evenly. This
purpose is to enable the query cameras at different locations can observe
the selected landmarks as much as possible.

Specifically, the landmark selection process starts by selecting the
primitive with the highest saliency score as the initial landmark in
the selected set S. Next, we search for the primitive with the highest
saliency score that is located at a distance greater than the search radius
from any of the landmarks already in S . If a suitable primitive is found,
it is added to S. If no suitable primitive is found, the search radius is
reduced until a suitable primitive is identified. The process continues
until the size of the selected set S reaches the target number N, at which
point the greedy search stops.

3.4 Key Gaussian Primitive Regularization

In the incremental initialization of Gaussian primitives (Sec. 3.1), the
primitives initialized by the 2D keypoints are designated as key Gaus-
sian primtives. However, due to the lack of multi-view geometry
optimization, the centers of those key Gaussian primitives are not accu-
rately aligned with the surface and can shift away from their original 3D
centers. This drift occurs as the primitives adjust to better appearance
fitting. Such geometry errors can result in inaccurate 3D landmark
learning since the misaligned primitives can introduce errors in local-
ization. To address this, we apply position and scale regularization
to the key Gaussian primitives, as illustrated in the middle of Fig. 2).
During the differentiable optimization process, we prevent the centers
of key Gaussian primitives from being updated to preserve their original
alignment. Additionally, we use the 2D keypoint score map generated
by [9] to guide a soft isotropy and scale regularization, which penalizes
the scaling parameters as follows:

Lreg =
∑

s,m∈Pk

|s−δ · (1−m)|, (14)

where s and m are the 3D scale vector of the Gaussian primitive and its
2D keypoint score, Pk is the set of key Gaussian primitive set, and δ is
the scale threshold for key Gaussian primitive.

This regularization term has two purposes. The first is to control the
3D scale of the 3D key Gaussian primitives based on its 2D keypoint
score reducing their influence during rasterization. The other is to
ensure that key primitives remain isotropic by enforcing a uniform
scale constraint across all three axes.

3.5 Objective Functions

We adopt five different objective functions to optimize our system.
Reconstruction Loss. Similar to the [18, 34], we apply the reconstruc-
tion losses between the rendered value and ground truth value measured
by the camera, which is the pixel-level reconstruction loss based on the
ground truth depth and color values. The color and depth reconstruction
loss is shown in the following:

Lc =

H×W∑
i=1

|Î(i)− I(i)|, Ld =

H×W∑
i=1

|D̂(i)−D(i)|, (15)

where Î and D̂ are the rendered color and depth, which are computed
by Eq. (4). H and W are the height and width of the rendered images,
and i is the 2D pixel index.
3D Landmark Loss. As shown in Sec. 3.1, each Gaussian primitive
is associated with a 3D landmark probability score, a. Due to the
lack of 3D information, we can not directly optimize the 3D landmark
probability score of the primitive. So, to optimize the probability
score, we apply loss between the rendered 2D probability score map Â
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(Eq. (5)) and the 2D probability score map A generated by the [9]. The
loss is calculated on all rendered pixels:

Lm =
∑
i=1

BCE(Â(i),A(i)), (16)

where BCE(·) is the binary cross-entropy loss.
Descriptor Distillation Loss. We use the surface-aware descriptor
distillation loss term to optimize the scene-specific multi-resolution
feature and 3D feature decoder, which is defined as follows:

Ldis =
∑
x∈X

|1− cos(M f (E(x;Θ)),T (x;V))|, (17)

where X is the sampled point set on the scene surface manifold, and
cos(·) denotes the cosine similarity of two descriptors.
Regularization Loss. To mitigate the anisotropic (arrow-shaped) Gaus-
sian primitives and limit the influence of key Gaussian primitives, we
adopt the scale and isotropy regularization loss term Lreg (Eq. (14))
introduced in Sec. 3.4.

We adopt a two-stage optimization strategy to update the parame-
ters of our model. First, we optimize and update the geometry and
appearance parameters of 3D Gaussian primitives according to the
reconstruction loss. So, the total loss function for scene geometry and
appearance reconstruction is presented as follows:

L= λ1 ·Lc +λ2 ·Ld +λ3 ·Lm +λ4 ·Lreg, (18)

where {λi} are the weights for each optimization component.
We then use the descriptor distillation loss Ldis to optimize our

3D Gaussian descriptor field, which includes multi-resolution hash
parametric encoding Θ and a 3D feature decoder M f .

3.6 Localization
Once we obtain the reconstructed 3D Gaussian primitives, we can esti-
mate the 6-DoF pose of the query image during the inference stage. For
the query image, Iq, we first extract the 2D keypoints with descriptors
{ fi} via the pre-trained 2D CNN model, SuperPoint [9]. Directly using
all Gaussian primitives for visual localization is computationally inten-
sive for mobile or lightweight devices. Therefore we perform visual
localization with selected key Gaussian primitives, whereas all key
Gaussian primitives are used on the server end. The reference image
in the reconstruction database is obtained via image retrieval with the
image-level descriptor [1], and the 3D descriptors {gi} of the selected
primitives are computed via the scene-specific 3D feature decoder and
multi-resolution parametric encoding Eq. (9). Different from previous
pipeline [47] explicitly storing 3D point cloud and 2D features, we
extract the 3D descriptors from reconstructed scene-specific feature
fields. To estimate the 2D-3D correspondence, we used the cosine
similarity between the 2D and 3D descriptors, { fi} and {gi}, as the
measure criteria. So, we can use the RANSAC+PnP [12,22] algorithms
to estimate the 6-DoF pose based on the estimated correspondences.

4 EXPERIMENTS

In this section, we first introduce the used datasets and provide the
implementation details of our approach. Then, we evaluate our visual
localization and rendering performance. When compared with multiple
baselines, we highlight the best two results with different colors.

4.1 Datasets
We evaluate the performance of our method on a variety of scenes from
two commonly used datasets. The Replica [49] and 12-Scenes [53]
both contain high-quality RGB-D sequences of various indoor scenes.
For the Replica dataset, we take 8 synthetic scenes provided by [65].
Each scene contains two sequences, and each sequence includes 900
RGB-D frames. Following [6], we use the first sequence as the training
set, and the second sequence is used for evaluation. For the 12-Scenes
dataset, each scene contains different numbers of RGB-D sequences.
We follow the common setting [6, 53], the first sequence is used for
evaluation and others are used for the training set.

4.2 Implementation Details
For the incremental Gaussian initialization process, we project all pixels
with 2D keypoints score larger than a threshold 0.005 into 3D space for
key Gaussian primitive initialization. For the remaining pixels, we ran-
dom sample 1/64 points from each keyframe for initialization. The 3D
feature decoder is a 4-layer MLP with 128 hidden units, and the final
output dimension of the descriptor is set to 256. The finest resolution of
multi-resolution parametric encoding is 6cm. The learning rates of posi-
tion, color, opacity, 3D landmark probability, scale vector, and rotation
for each primitive are set to 1.6e-4, 2.5e-3, 0.05, 0.05, 0.001, and 0.001.
Besides, the learning rates of encoding parameters and 3D feature de-
coder are both set to 1e-3. We use Adam optimizer for the optimization
of Gaussian primitives, multi-resolution encoding parameters, and 3D
feature decoder. For the weight of objective functions in Eq. (18), we
set {λ1,λ2,λ3,λ4} to 1.0, 0.5, 1.0, and 0.01, respectively. After each
incremental Gaussian initialization, we random sample 5 frames to
construct the keyframes for optimization with 10 iterations. When we
finish the primitive initialization and geometry optimization, we per-
form additional appearance refinement with 30k iterations. We adopt
the same density strategy in the original 3DGS [18].

4.3 Evaluation of Localization
In this part, we show the localization performance on Replica [49] and
12-Scenes [53] datasets. Following the common setting [6], we take
the images in the second sequence of Replica and the first sequence of
12-Scenes as the test set. The compared baseline approaches, evaluation
metrics, and results of this part are shown in the following.
Baseline and Metrics. For the evaluation of localization, we follow the
setting of [6] and take five approaches as our compared baselines, in-
cluding four regression-based methods: SCRNet [27], SCRNet-ID [41],
SRC [11], NeRF-SCR [6], and one recent feature-based method PN-
eRFLoc [64]. PNeRFLoc and NeRF-SCR respectively represent the
SOTA of the current feature matching and scene coordinate regression
methods combined with NeRF-based representation. The values of
PNeRFLoc [64] are the PnP results obtained with their released codes,
and the values of other compared methods are taken from the [6]. For
our method, we use all key Gaussian primitives instead of selected
key Gaussian primitives for localization comparison with baselines.
To measure the localization accuracy of the different approaches, we
use the commonly used relative translation error Eq. (19) and relative
rotation error Eq. (20) as the evaluation metrics:

∆t = ||t − t̂||2, (19)

∆R = arccos((Tr(RT R̂)−1)/2), (20)

where t and R are the ground-truth translation and rotation, respectively,
and t̂ and R̂ are the estimated ones. And Tr(·) is the trace of the matrix.
Qualitative and Quantitative Results. To validate the effectiveness of
our method, we perform per-frame pose estimation for the query images
inside the test set. The quantitative localization results of Replica [49]
and 12-Scenes [53] datasets are shown in Tab. 1 and Tab. 2, respectively.
As can be seen from Tab. 1, compared with the previous best baseline,
PNeRFLoc [64], we achieved the best localization results on all scenes
in the Replica dataset with the lowest translation and rotation errors.

For the localization results in the challenging 12-Scenes dataset [53],
the performance of the point-based neural localization approach, PN-
eRFLoc [64], is not as good as in the Replica dataset. Compared with
the NeRF-based scene coordinate regression approach, NeRF-SCR [6],
PNeRFLoc shows worse performance on two scenes with translation
errors larger than 5cm and rotation errors larger than 3 degrees (scene
luke and gates381). Besides, PNeRFLoc totally failed on scene 5a,
which is denoted as ‘X’. Compared with those baselines, our approach
has achieved excellent localization results, achieving the best localiza-
tion performance in 11 scenes. Except for the scene Apt2/kitchen,
our performance is slightly lower than [64]. Among these 12 scenes,
our approach can achieve stable localization results. The reported
median errors for all scenes, the translation, and the rotation of our
method are less than 1.6 cm and 0.6 degrees, respectively. Our approach
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Table 1: Visual localization performance on Replica dataset. We report median translation and rotation errors (cm, degree).

Method Room 0 Room 1 Room 2 Office 0 Office 1 Office 2 Office 3 Office 4

SCRNet [27] 2.05 / 0.33 1.84 / 0.34 1.31 / 0.26 1.69 / 0.34 2.10 / 0.52 2.21 / 0.41 2.13 / 0.37 2.25 / 0.43
SCRNet-ID [41] 2.33 / 0.28 1.83 / 0.35 1.78 / 0.29 1.79 / 0.37 1.65 / 0.42 2.07 / 0.37 1.79 / 0.28 2.42 / 0.35
SRC [11] 2.78 / 0.54 1.92 / 0.35 2.97 / 0.63 1.45 / 0.30 2.07 / 0.53 2.53 / 0.51 3.44 / 0.63 4.84 / 0.90
NeRF-SCR [6] 1.53 / 0.24 1.96 / 0.31 1.34 / 0.22 1.61 / 0.35 1.54 / 0.44 1.69 / 0.33 2.40 / 0.38 1.69 / 0.32
PNeRFLoc [64] 1.00 / 0.21 1.32 / 0.28 1.43 / 0.29 0.72 / 0.15 1.08 / 0.28 1.71 / 0.37 2.39 / 0.30 1.63 / 0.32
Ours 0.53 / 0.10 1.06 / 0.20 1.05 / 0.22 0.42 / 0.08 0.85 / 0.21 1.25 / 0.24 1.30 / 0.22 1.10 / 0.19

Table 2: Visual localization performance on 12-Scenes dataset. We report median translation and rotation errors (cm, degree).

Scenes Apartment 1 Apartment 2 Office 1 Office 2

Method kitchen living bed kitchen living luke gates362 gates381 lounge manolis 5a 5b

SCRNet [27] 2.3 / 1.3 2.4 / 0.8 3.3 / 1.5 2.1 / 1.0 4.2 / 1.8 4.4 / 1.4 2.6 / 0.8 3.4 / 1.4 2.7 / 0.9 1.8 / 1.0 3.6 / 1.5 3.4 / 1.2
SCRNet-ID [41] 2.6 / 1.4 2.0 / 0.8 2.0 / 0.8 1.8 / 0.9 3.0 / 1.2 3.7 / 1.3 2.1 / 1.0 2.9 / 1.2 3.4 / 1.1 2.6 / 1.2 3.3 / 1.2 3.8 / 1.3
NeRF-SCR [6] 0.9 / 0.5 2.1 / 0.6 1.6 / 0.7 1.2 / 0.5 2.0 / 0.8 2.6 / 1.0 2.0 / 0.8 2.7 / 1.2 1.8 / 0.6 1.6 / 0.7 2.5 / 0.9 2.6 / 0.8
PNeRFLoc [64] 1.0 / 0.6 1.5 / 0.5 1.2 / 0.5 0.8 / 0.4 1.4 / 0.5 8.1 / 3.3 1.6 / 0.7 8.7 / 3.2 2.3 / 0.8 1.1 / 0.5 X 2.8 / 0.9
Ours 0.8 / 0.4 1.1 / 0.4 1.2 / 0.5 1.0 / 0.5 1.2 / 0.5 1.5 / 0.6 1.1 / 0.5 1.2 / 0.5 1.6 / 0.5 1.1 / 0.5 1.4 / 0.6 1.5 / 0.5

Table 3: Novel view synthesis performance on Replica dataset. All scenes are evaluated on the novel views in the test sequence. We outperform
PNeRFLoc [64] on the commonly used rendering metrics on all scenes.

Method Metric Room 0 Room 1 Room 2 Office 0 Office 1 Office 2 Office 3 Office 4 Avg.

PNeRFLoc [64]
PSNR ↑ 26.67 24.03 27.43 31.44 26.43 25.78 23.33 21.62 25.84
SSIM ↑ 0.8730 0.8387 0.8823 0.9355 0.8874 0.8617 0.8026 0.7310 0.8515
LPIPS ↓ 0.1228 0.2231 0.2603 0.1026 0.1397 0.1704 0.4078 0.5259 0.2440

Ours
PSNR ↑ 27.55 27.48 30.55 35.756 33.62 27.34 29.86 28.99 30.14
SSIM ↑ 0.8873 0.8885 0.9396 0.9674 0.9508 0.9158 0.9407 0.9171 0.9259
LPIPS ↓ 0.1034 0.1106 0.0719 0.0345 0.0624 0.0972 0.0659 0.1024 0.0810

can achieve more competitive performance localization results among
different scenes than the baselines.

4.4 Evaluation of Rendering

In this part, we evaluate the performance of novel view rendering on
Replica [49] dataset. Following the common setting [6], we take the
images in the second sequence as the test set. The compared baseline
methods, evaluation metrics, and results of this part are shown below.
Baseline and Metrics. For the evaluation of novel view rendering,
we take the recent neural-based visual localization approach, PNeR-
FLoc [64], as the compared baseline. The values of PNeRFLoc [64]
are obtained with their released codes. To evaluate the rendering perfor-
mance, we adopt the commonly used metrics, Peak Signal-to-Noise Ra-
tio (PSNR), Structural Similarity Index Measure (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS).
Qualitative and Quantitative Results. We show the novel view ren-
dering performance on each viewpoint in the test set. The quantitative
results of Replica [49] dataset are reported in Tab. 3. The results show
that our approach significantly outperforms the compared baseline on
all scenes by a substantial margin. Compared with PNeRFLoc [64],
we achieve the 4.302, 0.074, and 0.163 performance improvement on
PSNR, SSIM, and LPIPS metrics, respectively. Besides, we also show
the qualitative novel view rendering results of several selected scenes
in Fig. 5. From the figure, we can see that our method can generate
clearer results than PNeRFLoc [64]. PNeRFLoc cannot model the high-
frequency appearance details of the scene very well and may produce
artifacts and blurry rendering results from novel viewpoints. In con-
trast, our method can better reconstruct the appearance information of
the scene and have better rendering results from novel viewpoints. As
shown in the Tab. 3, higher LPIPS indicates higher perceptual similarity
of images rendered by our method.

Table 4: Training time, memory usage, and rendering FPS of different
methods on scene manolis from 12-Scenes Dataset.

Method Training Time↓ Memory↓ FPS↑
SCRNet [27] 2 days 165 MB -
NeRF-SCR [6] 16 hours - -
PNeRFLoc [64] 1 hour 788 MB 0.23
Ours 25 mins 112 MB 498

4.5 Memory Usage and Time Analysis

In this part, we measure the memory usage, method training time, and
rendering speed of the neural-based localization approach. The results
are shown in Tab. 4, evaluated in the scene manolis. Due to SCR-
Net [27] can not perform novel view rendering, we do not report it
rendering FPS performance. And NeRF-SCR [6] don’t release their
codes and do not report their memory usage, FPS in their paper. So, we
also don’t report them in the table. As can be seen from the table, our
method has a faster training speed, smaller model storage, and faster
rendering speed. Scene coordinate regression-based approaches, e.g.,
SCRNet [27] and NeRF-SCR [6], need more than ten hours or even
days for the convergence of the regression network. Due to the fast dif-
ferentiable rasterization process, our approach has a faster convergent
speed than the point-based neural implicit approach, PNeRFLoc [64]
(25 mins V.S. 1 hour). Due to the fact that we learn the descriptor from
the 3D feature decoder not the storage descriptor for each primitive,
our storage memory is 7x less than [64] (112 MB V.S. 788 MB). Be-
sides, for the rendering speed (FPS) at the resolution of 640×480, our
rendering speed is 2k times faster than [64] (498 FPS V.S 0.23 FPS).
We also conduct a speed comparison with PNeRFLoc on the Room 0
scene of the Replica dataset [49]. For each frame of the query images,
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Fig. 5: Visualization of novel view synthesis. We show some novel view rendering results from different scenes. From top to bottom, there are results
of PNeRFLoc [64], ours, and ground truth. Our rendering results are more clear and have less noise information.

PNeRFLoc takes 3.2 seconds to get the corresponding 6-DoF pose,
while our method only takes 0.08 seconds. Regarding image rendering
speed, PNeRFLoc takes 4.34 seconds to render each frame, while our
method only takes 0.002 seconds. Compared with PNeRFLoc, our
approach can not only estimate the accurate 6-DoF pose for the query
camera but also perform real-time high-quality novel view rendering
performance, which is more suitable for virtual and augmented reality.

4.6 Ablation Studies
In this part, we conduct ablation studies to validate the effect of each
part or design in our system.

Table 5: Visual localization performance with different descriptor learning
settings. We report the median translation and rotation errors (cm,
degree) on two selected scenes, Room 0 from Replica and apt1/kitchen
from 12-Scenes.

Case Description Room 0 Apt1/Kitchen

#1 Blending w/ Auto E.D. 2.97 / 1.69 3.90 / 2.69
#2 Ours 3D Dec. w/o P.E. 82.97 / 16.68 13.27 / 8.13
#3 Ours 3D Dec. w/ P.E. 6.87 / 4.60 7.53 / 3.71
#4 Ours w/o S.D.D 1.14 / 0.58 1.86 / 1.02
#5 Ours Full 0.53 / 0.10 0.77 / 0.43

Effects of Different Descriptor Learning Settings. In Tab. 5, we
show the performance of using different kinds of approaches to learn-
ing descriptors for Gaussian primitive on two selected scenes. #1
represents the way used in [44], which uses an auto encoder-decoder
(Auto E.D.) to compress the high dimensional feature and perform
biased alpha-blending. #2 and #3 represent that using our 3D feature
decoder without/with positional encoding, respectively. #4 represents
our approach with our muti-resolution parametric encoding but with-
out surface-aware descriptor distillation (S.D.D). We can draw some
conclusions from the results in the table. Comparing #2, #3, and #4,
the descriptor obtained by just optimizing a 3D feature decoder is not
accurate enough. In large indoor scenes, the representation ability of
an MLP is not enough to learn scene features with sufficiently high dis-
crimination ability, and additional parametric encoding needs to be used
to assist the descriptor learning of 3D scenes. Comparing #1 and #4,

our feature learning method is more accurate than the alpha-blending
method. Comparing #4 and #5, we show that paying more attention
to the 3D points on the scene geometry surface can lead to better and
faster convergence for primitive descriptor learning. Compared with the
baselines, our unbiased 3D descriptor learning approach can achieve
better localization results.
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Fig. 6: Visual localization performance of using different resolutions of
parametric encodings. We report median translation and rotation errors
(cm, degree) on two selected scenes.

Different Resolution of Parametric Encoding. In Sec. 3.2, we adopt
multi-resolution parameter encoding to enhance the representation
ability of the single MLP decoder. We investigate the performance of
the spatial resolution used for encoding feature grids. The results on
two selected scenes (Apt1/kitchen from 12-Scenes and Office 1
from Replica) are shown in Fig. 6. As shown in the figure, when the
resolution of parametric encoding is greater than 20 cm, the localization
accuracy will quickly decrease as the resolution increases. When the
resolution is below 10 cm, the localization accuracy will converge to
a stable value. So, we set the resolution as 6 cm for all scenes in our
experiments.
Effects of Different Numbers of 3D Landmarks. We show the
localization performance of using the different numbers of selected
landmarks. To validate the effectiveness of our proposed selection
algorithm (Sec. 3.3), we take several comparison baselines into con-
sideration. The localization results are shown in Sec. 4.6. ‘Uniform’
denotes the performance uniform downsample of the Gaussian primi-
tives. ‘w/o saliency’ denotes the performance achieved by the greedy
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Fig. 7: Visual localization performance of using different numbers of 3D
landmark. We report median translation and rotation errors (cm, degree)
on the scene of Room 0 from the Replica Dataset.

search method but without our saliency score for optimal selection.
As can be seen from the figure, our proposed landmark selection algo-
rithm can lead to better performance when only a small number of 3D
landmarks are used for localization (∼ 500 landmarks). Those results
without using greedy search and saliency score perform worse results
for the situation of small primitives. Compared with the baselines, our
3D landmark selection algorithm can achieve better localization results.
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Fig. 8: Visual localization performance of using primitive regularization
terms. We report median translation and rotation errors (cm, degree) on
four selected scenes from Replica.

Effectiveness of Key Gaussian Primitive Regularization. We validate
the performance of key Gaussia primitive regularization (Sec. 3.4) used
for our visual localization approach on four selected scenes in the
Replica dataset [49]. The localization results are shown in Fig. 8. ‘w/o
Regularization’ and ‘w/ Regularization’ represent the performance of
not using and using position and scale regularization terms for key
Gaussian primitives, respectively. Using regularization terms can lead
to more consistent and accurate 3D landmark learning. As can be
seen from the figure, with regularization terms, we can achieve better
and more stable localization performance improvement. Across the
selected four scenes, using regularization terms can reduce the error by
an average of 1.57 cm and 0.32 degrees.

4.7 AR Applications

In this part, we show the applications of our visual localization approach
in the AR field. Our approach can not only estimate the 6-DoF pose
of the camera in the reconstructed scene but also perform high-quality
novel view rendering based on the Gaussian primitives. Therefore,
our method can be very suitable for AR applications. We show two
different AR applications in Fig. 9 on scene Room 0 from the Replica
dataset. (1) Insert Objects: we virtual AR objects and IEEE VR text
logo into real scene. (2) Physical collision: we place a virtual blanket in
the scene and let it fall naturally to simulate physical collision between
our reconstructed scene geometry and the virtual blanket. As can be
seen, our approach can perform high-quality rendering and handle the
collision and occlusion between real and virtual content very well. For
more AR demo videos, please refer to our supplementary video.
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Fig. 9: The AR demo on the scene Room 0 of Replica [49]. We show two
kinds of augmented reality applications. The first row shows the original
RGB image. The second row shows the images with our inserted AR
objects and IEEE VR text logo. The third row shows the physical collision
between our reconstructed geometry and the virtual blanket.

5 CONCLUSION AND LIMITATIONS

In this paper, we propose SplatLoc, an efficient and novel visual local-
ization approach based on the 3D Gaussian primitives, which is more
suitable for AR/VR than traditional localization methods. Specifically,
to compress the scene model for localization, we learn an unbiased
3D descriptor field for reconstructed Gaussian primitives, which is
more accurate than previous alpha-blending approaches. Then, we
propose a salient 3D landmark selection algorithm to select more in-
formative primitives for visual localization based on the saliency score
of Gaussian primitives, which can reduce the memory and runtime
requirements for mobile devices. Besides, we propose an effective reg-
ularization term for key Gaussian primitives to avoid anisotropic shapes
and reduce geometric errors, which can lead to stable localization per-
formance improvement. Extensive experiments on two commonly used
datasets have shown the effectiveness and application of our proposed
system.

Currently, our proposed approach has some limitations. First, we
now need depth information or sparse point clouds to reconstruct the
scene. Similar to the original 3DGS [18], our approach also needs a
3D point cloud or depth data to initialize the position of each Gaussian
primitive. The second is that our method cannot currently be extended
to large outdoor scenes. Due to the limitation of scene parameters and
the sparsity and noise of depth data for outdoor scenes, our method is
currently difficult to scale to large-scale outdoor scenes. In the future,
we will try to use the visual foundation model, e.g., DepthAnything [58],
to estimate the depth of the RGB image, which can be viewed as a prior
for replacing the depth sensor and guide the scene reconstruction pro-
cess. In addition, we will consider using a hierarchical representation
approach [19] to extend our localization approach for large outdoor
scenes in our future work.
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