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ABSTRACT

In this work, we propose a tightly-coupled EKF framework for
visual-inertial odometry with NIN (Neural Inertial Navigation) aided.
Traditional VIO systems are fragile in challenging scenes with weak
or confusing visual information, such as weak/repeated texture, dy-
namic environment, fast camera motion with serious motion blur, etc.
It is extremely difficult for a vision-based algorithm to handle these
problems. So we firstly design a robust deep learning based inertial
network (called RNIN), using only IMU measurements as input.
RNIN is significantly more robust in challenging scenes than tradi-
tional VIO systems. In order to take full advantage of vision-based
algorithms in AR/VR areas, we further develop a multi-sensor fusion
system RNIN-VIO, which tightly couples the visual, IMU and NIN
measurements. Our system performs robustly in extremely chal-
lenging conditions, with high precision both in trajectories and AR
effects. The experimental results of evaluation on dataset evaluation
and online AR demo demonstrate the superiority of the proposed
system in robustness and accuracy.

Index Terms: VIO—SLAM—INS—IMU; AR—6DoF—Motion
Tracking—;

1 INTRODUCTION

6DoF motion tracking is a key technology for many applications,
such as robot navigation, pedestrian navigation, AR/VR, etc. In
the area of AR, high-precision and robust camera position tracking
are required to improve the immersive experience, and the system
must run in real-time with low-power consumption. Visual inertial
navigation [2, 11, 18, 18, 19, 23, 27, 35] can achieve high precision
and robustness on a mobile platform using a consumer-grade camera
and a low-cost IMU. At present, a series of excellent AR developer
platforms in the industry have adopted similar visual-inertial tracking
solutions, such as Apple’s ARKit1, Google’s ARCore2, which have
been widely used and achieved amazing results.

Although the existing visual-inertial navigation has achieved
state-of-the-art accuracy and stability, there are still many difficult
problems in the application of consumer-level AR. The current
visual-inertial navigation scheme always relies on continuous and
reliable visual tracking, which easily fails to track when the visual
information is quite weak or confusing, such as the scenes with
weak/repeated textures, shimmering light or dynamic change, the
camera is moving very fast with serious motion blur, and so on.
The IMU is not affected by external visual information and forms
a complement to the visual sensor. The purpose of our work is to
make better use of IMU information to reduce the dependence of
vision information in VIO system and provide higher accuracy and
more robust motion tracking.

*Corresponding author: Guofeng Zhang

1https://developer.apple.com/augmented-reality/arkit/
2https://developers.google.com/ar

The IMU measures the acceleration and angular velocity of the
device’s movement and the acceleration data must be integrated
twice to get the position information. However, consumer-grade
IMU data contains various noises such as bias, which will bring
a significant error accumulation. Traditional methods use zero-
velocity update (ZUPT) [13] and zero angular rate update [28] or
step counting [3, 16] to reduce the cumulative error. But these
methods only work well under periodic pedestrian motion. With the
development of deep learning, data-driven methods have been used
in inertial navigation. Deep learning based methods use windowed
IMU measurements to robustly estimate relative displacement or
velocity. IONet [6] is the first to propose an LSTM based network
to learn patterned motion and estimate the relative displacement of
the window. RoNIN [14] assumes the rotation can be read from
the phones and uses a network to regress the velocity. TLIO [21]
uses EKF to fuse the IMU raw data and the relative displacement
measurement from the ResNet network. The experiments have
shown that the neural network based methods have more advantages
than traditional methods both in accuracy and robustness.

In summary, compared with vision based methods, neural net-
work inertial navigation does not rely on visual information and can
provide more robust observations. Inspired by these methods, we
try to integrate the robust but low-precision neural network IMU
observations with the traditional visual-inertial navigation system,
in order to construct a highly robust and precise visual-inertial nav-
igation system. The traditional visual-inertial fusion can estimate
high accuracy states, such as pose, velocity, the direction of gravity,
and IMU bias. On the one hand, better state estimation can provide
better initialization data for the IMU neural network to regress rela-
tive translation and covariance, thereby improving the effectiveness
of network estimation. On the other hand, the IMU neural network
can enhance the robustness of the navigation system. In summary,
our paper has the following three major contributions:

• We propose a novel deep learning based inertial network to
learn the regularity of humans’ motion patterns in time series.
The designed relative loss and absolute loss can make the
network care about the local accuracy as well as the long-term
global accuracy. Our experiments show the proposed neural
inertial network has state-of-the-art precision.

• As far as we know, we are the first to propose a tightly-coupled
multi-sensor fusion motion tracking system to fuse vision, IMU
and network measurements. Leveraging high-robust inertial
networks, our visual-inertial fusion system can dramatically
improve the robustness in extreme situations and also remain
high precision in normal scenes at the same time.

• All of our algorithms can run on a consumer-grade mobile
phone in real-time. The mobile AR application demonstrates
the advantages of the proposed system.

We evaluate our system both on open source data IDOL [33] and
our own collected data. The experimental results show that our deep
learning based network of IMU data has achieved state-of-the-art
accuracy. Moreover, we integrate the deep learning based network
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with vision and inertial data to improve the accuracy and robustness
of visual-inertial navigation. Finally, we run the proposed system
on a consumer-grade mobile device to demonstrate the effective-
ness and efficiency. Compared with ARCore, our method achieves
better accuracy and robustness, especially under some extremely
challenging conditions.

2 RELATED WORK

2.1 Visual Related Odometry

We briefly outline the works strictly focused on monocular camera
and inertial measurement unit data.

Visual odometry: Visual odometry uses image information to
incrementally estimate ego-motion of a camera. PTAM [17] is the
first to propose a VSLAM system based on keyframe optimization.
The whole system is divided into a camera tracking thread and a
global mapping thread. In the tracking thread, 3D-2D matching is
used to obtain the matching relationship between the current image
and the local map, and then the optimal pose of the current camera is
obtained by minimizing the reprojection error. The global mapping
thread uses bundle adjustment to eliminate the error of keyframes
and map points. For the consideration of speed and robustness,
SVO [12] directly uses image intensity for matching, instead of slow
feature extraction process. It also uses deep probability filtering to
improve the accuracy of map point estimation. RKSLAM [20] is
another keyframe based VSLAM. By using the prior of homograph
and planes, the robustness of tracking has a significant improvement.
With the high processing frame rate, it is very suitable for mobile
AR. DSO [8] uses the direct method to take full use of image infor-
mation. It tries to minimize photography error to track camera pose.
This method is robust in the condition of motion blur but heavily
depends on image quality on the other hand. ORB-SLAM [24] is
a state-of-the-art visual SLAM system, which divides the system
into three modules: camera tracking, local mapping, and loop clo-
sure. At the same time, it proposes a robust visual initialization
method. Although VSLAM achieves relatively high accuracy in an
ideal visual environment, it often fails under dynamic conditions,
severe lighting changes, fast movement, pure rotation motion, etc.
Monocular VSLAM cannot estimate the absolute scale of the scene
and will lead to scale drift.

Visual inertial odometry: To alleviate visual dependence and
estimate absolute scale information, researchers have proposed a
visual-inertial navigation system, which combines the motion in-
formation of vision and IMU to obtain high-precision and robust
positioning results. In the past few decades, visual inertial odometry
(VIO) can be divided into filtering based methods and optimiza-
tion based methods. A representative of the filtering methods is
MSCKF [19, 23]. MSCKF uses multi-state Kalman filtering to fuse
visual geometric information and IMU motion information. This
method does not include the visual landmark in the state vector
and has low computational complexity. It obtains high accuracy
in a variety of scenarios. SR-ISWF [35] is another typical filter-
ing method. Because of the square-root formulation, they can use
single-precision floating points to speed up numerical operations
while ensuring numerical properties. The typical representative of
the optimization method is OKVIS. OKVIS [18] is a tightly-coupled,
nonlinear optimization-based method, which minimizes visual repro-
jection errors and preintegrated IMU errors. It uses sliding window
marginalization strategies to bound the computational cost. VINS-
Mono [27] is a robust visual-inertial SLAM system. It has robust
initialization and 4DoF global pose graph optimization methods to
improve accuracy. Although the VIO system achieves impressive
accuracy and robustness, it needs continuous and effective visual in-
formation. It will fail in the case of long-range perspective, dramatic
lighting changes, weak textures, and continuous visual loss, etc.

2.2 IMU based Odometry

There are many IMU based motion tracking algorithms in literature,
which are named PDR (Pedestrian Dead Reckoning) or INS (Inertial
navigation system). We divide these algorithms into two categories:

Traditional kinematics based algorithms: These methods in-
clude acceleration integration approach [15] and step counting ap-
proach [3]. The former one first subtracts the gravity component,
gets the user’s acceleration, and integrate them twice to get user
translation. But this approach is difficult to be applied in mobile
phones, because consumer-grade IMU is noisy and large error will
accumulate easily. Since pedestrians have a regular walking pattern,
the latter one [3,16] detect steps with acceleration directly. And step
lengths are estimated by heuristic rules. Then it counts steps to get
the translation. This method is used widely on mobile platforms
since it does not depend on very accurate acceleration measurement.

Data-driven algorithms: With the rapid development of deep
learning, data-driven methods are also applied in the area of INS.
Deep learning based method can robustly estimate velocity or rela-
tive translation using IMU measurements directly rather than using
double integration, which will lead to dramatical accumulated error
on consumer-grade phones. [4–7,9,10, 14,21,25,32,34] are typical
examples of data driven methods. IONet [6] first proposed an LSTM
network structure to estimate relative displacement and accumulate
them to obtain the 2D position. Silva do Monte Lima et al. [32]
process Gyroscope and accelerometer data separately by two convo-
lutional layers. The output of these layers is concatenated and fed
to LSTM layers to regressed relative pose. However, a simple two-
layer convolution cannot extract good high-level features of motion,
and the loss function of a single-window cannot enable the network
to learn the motion relationship of a long sequence. RoNIN [14]
assumes orientation is known from android phones and IMU data
are transformed into a gravity-aligned coordinate firstly. Then it
uses three variants of neural network based on ResNet, LSTM, or
TCN to regresses velocity and integrates them together. TLIO [21]
adopts traditional EKF to fuse raw IMU measurements and displace-
ment which are learned from ResNet neural network. This approach
reduces yaw and position drift observably and can output 6DoF pose
at IMU frame rate. Dugne-Hennequin et al. [7] presented a deep
analysis of data-driven inertial odometry with DNN that could help
the community in future work. Our network of deep inertial odome-
try is inspired by TLIO and RoNIN. Current human motion hidden
variables are learned by the ResNet module. However, We believe
human motion is continuous and regular. So we use LSTM to fuse
the current hidden state with the previous hidden state and produce
the best current hidden state of motion, which will be passed through
two fully connected layers to regress the relative position and the
corresponding covariance. The loss functions are newly designed to
make the network care about the local accuracy and the long-term
global accuracy.

The above method is mainly applied to human movement, and
there are also methods to apply the learned inertial odometer to the
scene of the vehicles. AbolDeepIO [9] uses three LSTMs to ex-
tract features from accelerometer, gyroscope, and sampling time. It
concatenates features as input of LSTM to regress the amplitude of
the 3D relative displacement and rotation. But it cannot predict 3D
position from these outputs. AI-IMU [4] uses a CNN network to dy-
namically estimate the uncertainty of the simple model assumptions
of vehicle motion and combines EKF to estimate the vehicle’s posi-
tion, speed, and IMU bias. Obviously, this method is only suitable
for automotive application scenarios. Inspired by the loop control
system, a feedback control system is proposed [25], which takes
the output of the neural network at the previous moment and the
acceleration of the car as input to predict the current displacement of
the car. And experiments show that the system has great advantages
compared with traditional INS.

Recently, there are other works using deep inertial networks to
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Fig. 1: The pipeline of the proposed system.

estimate orientation. OriNet [10] uses a neural architecture based on
LSTMs to estimate the rotation and a Genetic Algorithm algorithm is
introduced to correct the gyroscope bias. Weber et al. [34] designed
a neural network based on RNN or CNN to directly regress attitude
from IMU data. Martin Brossard et al. [5] use CNN to correct the
noise and bias of the gyroscope, and directly integrate the corrected
gyroscope to calculate the attitude. Experiments of [5,10,34] demon-
strate that the proposed network is better than traditional filtering
algorithms under different motions. Because the traditional IMU
orientation estimation algorithm can achieve relatively good results
in a variety of sports, we do not consider the problem of attitude
estimation but focus on the more difficult translation estimation
problem from IMU measurements.

3 OVERVIEW

3.1 System overview
The structure of the proposed system is illustrated in Fig. 1. Our
estimation system takes IMU data and image as input and is mainly
composed of four modules including preprocessing, initialization,
neural network, and filter.

As in [27], the IMU data between two consecutive frames are
pre-integrated and sparse features are extracted and tracked from the
images. We also maintain the IMU Buffer as the input of the neural
network.

An initialization phase is necessary to ensure the filter will con-
verge. In order to adapt to a variety of motion situations, when the
system detects static motion, we use static initialization, and when
the system detects motion, we use motion initialization.

The neural network is trained to learn prior motion distribution.
The network takes a local window of IMU data as input, without
obtaining the initial velocity, and regresses the 3D relative displace-
ment and uncertainty of this window. Regardless of the influence of
noise, under the same windowed IMU data, different initial velocities
correspond to different motions, which means that motion cannot be
estimated by IMU data alone. Since our system is mainly designed
for handheld AR, AR glasses, and other applications, our estimated
movement is mainly concentrated on human motions. We believe
that despite the broad movement distribution, the human movement
distribution should be relatively narrow, and the same IMU data
corresponding to different motions will rarely appear. Based on this
consideration, we believe that such a network can work normally,
just like the previous related work.

The filter propagates with IMU data and uses sparse features and
network outputs for updates, which tightly couples all measurements.
In our system, the visual constraints can be removed at any time,
and state estimation can also be carried out only based on IMU
measurements.

3.2 Notation
We now define notations and frame definitions that we use through-
out the paper. We consider W (·) as the world frame. C(·) is the

camera frame and I(·) is the body frame or IMU frame.We use both

rotation matrices R and Hamilton quaternions q to represent rotation.⊗
represents the multiplication operation between two quaternions.

W ggg= [0,0,g]T is the gravity vector in the world frame. The direction
of the gravity is aligned with the z axis of world frame. Finally, we

denote ˆ(·) the noisy measurement or estimate of a certain quantity.

4 LEARNING MOTION MODEL

Fig. 2: The proposed nerual inertial network.

Fig. 3: The proposed loss function.

4.1 Network Architecture
The overall architecture of our network is shown in Fig. 2, which
consists of the 1D version of ResNet18, standard LSTM, and fully
connected layers. Similar to TLIO [21], we use the ResNet module
to learn human motion hidden variables. However, we believe that
human motion is continuous and regular. So we use LSTM to fuse
the current hidden state with the previous hidden state to estimate
the best current hidden state of motion. Finally, two fully connected
layers are used to regress the relative position of the window and the
corresponding covariance.

The mathematical form of the network is:

(d̂dd, ûuu) = f ((W aaan−N ,
W wwwn−N), ...,(

W aaan,
W wwwn),hhhn−N)

W aaan =
W Rn(aaa−bbba)−W ggg

W wwwn =
W Rn(www−bbbg)

(1)

where f (·) is the function defined by the neural network. aaa and www are
the raw acceleration and angular velocity read from the IMU sensor,
and bbba, bbbg are the corresponding bias, which are obtained from

the following filter section 5. W ggg is the gravity vector [0,0,9.8].
W aaan−N ,

W wwwn−N respectively represent the acceleration and angular
velocity of human motion at the Nth IMU moment in the inertial
frame. hhhn−N is a hidden state produced by the LSTM at the last
time step. At each time step, the network infers motion based on
a hidden state hhhn−N , a local window of N acceleration and angular
velocity in the inertial frame, which are similar to the acceleration
and angular speed of human motion with noise. The output of the

network contains two vectors: the relative displacement d̂dd and their
uncertainties ûuu.

4.2 Loss Function
To make the network care about the local accuracy and also pay
attention to the long-term global accuracy, We design two different
loss functions shown in Fig.3.

Relative Loss In order to allow the network to learn the move-
ment of a single window and improve the measurement accuracy of
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the direct output of the network, we add a relative loss (RL) function
to the single window. The Mean Square Error (MSE) is chosen to
optimize the loss. RL loss is defined as:

LMSE
RL (ddd, d̂dd) =

1

n

n

∑
i=n

(
m+M

∑
j=m

(ddd j→ j+1− d̂dd j→ j+1)) (2)

where d̂dd j→ j+1 is the j-th window 3D translation output of the net-
work and ddd j→ j+1 is the corresponding ground truth. n is batch size
during training, and m is the start window of sequence. M is the
number of LSTM window.

‘Absolute’ Loss In addition to the accuracy of a single window,
we are more concerned about the cumulative error over a longer
period of time. To allow the network to learn the long sequence
relationship of human motion, thereby reducing the long-term cu-
mulative error, we designed the absolute loss function

LMSE
AL (ddd, d̂dd) =

1

n

n

∑
i=n

(
m+L

∑
j=m

(dddm→ j+1− d̂ddm→ j+1)) (3)

To obtain the mean and covariance of Gaussian, fused into the
EKF framework, we also use a negative log-likelihood loss to replace
the above MSE loss during training the neural network.

LLLNLL =
1

2
(ddd− d̂dd)T Σ̂ΣΣ−1

(ddd− d̂dd)+
1

2
ln(

∣∣∣Σ̂ΣΣ
∣∣∣) (4)

Our covariance estimation is similar to [21, 30]. The output of the
covariance of the network is a three-dimensional vector. The three
elements are the log of diagonal elements of the covariance matrix.

4.3 Data Collection
Our dataset is mainly composed of two parts, including IDOL open
source 20 hours of data and 7 hours of data collected by ourselves.
IDOL data were collected by Kaarta Stencil, which uses a lidar-
visual-inertial SLAM algorithm to estimate its pose at 100Hz. From
testing in a VICON motion capture studio, they measured < 1.5◦
RMS orientation error and < 10cm RMS position error. IDOL
mainly includes some simple plane movements. To increase the
diversity of sports and equipment, we use multiple smartphones,
such as Huawei, Xiaomi, OPPO, etc., to collect data with cameras
and IMUs. The full dataset was captured by five people and includes
a variety of sports, including walking, running, standing still, go-
ing up and down stairs, and random shaking, etc. We use BVIO
introduced in Section 5 to provide the positions aligned with gravity
at IMU frequency on the dataset. Part of the data is collected in
the VICON room, so it has high-precision trajectory provided by
VICON. The dataset is divided into 80% train, 10% validation, 10%
test subsets. Our self-collected data is available at the project page:
https://zju3dv.github.io/rnin-vio/.

4.4 Implementation Details
For the input of the network, we use a sliding window with a certain
sampling frequency on each data sequence to collect input samples.
Each sliding window includes N IMU samples and the total input
dimension is N × 6. In our training, the sampling frequency is
selected as 20Hz. On each sequence, we perform linear interpolation
at 100 Hz to ensure that all input data are at a fixed frequency. Our
purpose is to allow the network to learn the distribution of human
movement, therefore all IMUs are processed according to Equations
(1). The window size is 100, which represents 1.0s, and the LSTM
time steps is selected as 10, so the size of each input sample is
10×100×6. The supervision signal of the network is the relative
position of the window under the gravity system.

Data enhancement is a commonly used method to increase the
diversity of data and avoid over-fitting to a certain extent. Because

different IMU devices may have different degrees of Gaussian white
noise and deviation, and to widely adapt to the noise of a variety of
IMU equipment, in the training phase, we randomly superimpose
Gaussian white noise and bias on each input sample. We randomly
sample 1×6 acceleration bias and gyroscope bias from a uniform
distribution, and two random Gaussian noises with dimensions of
10× 100× 3 for each input sample 10× 100× 6. There is also a
potential error in the direction of gravity, so we perform gravity noise
enhancement like the method [21]. Since people have the same
motion distribution in different yaw directions, we add a random
yaw angle rotation to each sample so that the network can learn the
yaw angle invariance characteristics.

We use Pytorch [26] as the implementation of our model, and
train it through the Adam optimizer with an initial learning rate of
0.0001. We found that if the NLL loss is directly used for training,
the network will be difficult to converge and the accuracy will be
poor. So we first use MSE loss to train until convergence, and then
switch to NLL loss training until convergence. On the IDOL data set,
a total of about 150 epochs are required to fully converge. It takes
about 10 hours of training time on an NVIDIA 1080Ti GPU. The
model with the best validation loss was chosen as the best model for
testing.

5 MULTI-SENSOR FUSION FOR ROBUST 6DOF TRACKING

Our multi-sensor fusion motion tracking system tightly integrates
vision, IMU and neural inertial network measurements. The objec-
tive of the system is to minimize the cost function C⊕k+1 for all the
measurements at each time step k+1:

C⊕k+1 =Ck +Cu +Cz +Cn (5)

where Ck,Cu,Cz,Cn represents the cost function of the prior, IMU
measurements, visual measurements and neural inertial network
information. And {Ck,Cu,Cz} is the same with the cost terms of
traditional MSCKF based VIO. We use square root inverse filter
[22, 35] to solve the cost function C⊕k+1 because of its low cost in
computation. Similar to [35], BVIO (short for Basic VIO) maintain
a sliding window poses in filter state and employ square root inverse
filter to fuse cost functions of {Ck,Cu,Cz}. The major difference
with [35] is that BVIO does not consider SLAM features. By adding
neural inertial network constraints to the BVIO system, we achieve
the complete system RNIN-VIO. We will first show the state vector
of the system, and then describe step by step how to obtain C⊕k+1.
Finally, we will show how the system updates the state frame by
frame.

5.1 State Definition
Like most EKF based VIO systems, we define the states of our
system as follows:

SSSk = [SSST
Ik−(m−1)

, ...,SSST
Ik
,SSST

Ek
]T (6)

for i = k− (m−1), ...,k represent the state vector of m cloned IMU
poses at frame i. Each cloned IMU pose is defined as:

SSSIi = [W qqqT
Ii
,W pppT

Ii
]T (7)

where W qqqT
Ii

is the orientation of frame i with the quaternion repre-

sentation in the world frame, W pppi is the position of frame i in world

frame. And the last term SSST
Ek

is defined as follows:

SSSEk = [bbbT
gk
,bbbT

ak
,W vvvT

Ik
]T (8)

where bbbT
gk

and bbbT
ak

correspond to the bias of gyroscope and acceler-

ater. W vvvT
k is the velocity of frame k in the world coordinate.

The error state is defined as S̃SSk = SSSk− ŜSSk, where SSSk is the true

state and ŜSSk is the estimated state.
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5.2 IMU Measurement
IMU noise model: IMU (Inertial Measurement Unit) is consisted
of accelerometer and gyroscope, which can measure the device’s
rotational velocity and linear acceleration at a high frame rate. But
the measurements are always with white Gaussian noise and time-
varying biases in consumer-level mobile phones. The biases of
both are modelled as random walks, driven by zero-mean Gaussian
noise processes nnngk and nnnak , while the gyroscope and accelerometer
measurements ŵwwk and âaak at frame k are:

ŵwwk = wwwk +bbbgk +nnngk

âaak = aaak +bbbak +
I RRRW

W ggg+nnnak

(9)

where wwwk and aaak are ground truth states at frame k.
Pre-integration: IMU measurements have a high frame rate

(often 200/400Hz on mobile phones), so we firstly do the procedure
of pre− integration. Variables are represented in a local coordinate
of frame k. This is the same with [11, 27]’s implementation:

Ik α̂αα i+1 =
Ik α̂αα i +

Ik β̂ββ iΔt +
1

2
RRR(Ik γ̂γγ i)(âaai− b̂bbak )Δt2

Ik β̂ββ i+1 =
Ik β̂ββ i +RRR(Ik γγγ i)(âaai− b̂bbak )Δt

Ik γ̂γγ i+1 =
Ik γ̂γγ iQuat((ŵwwi− b̂bbgk )Δt)

(10)

Here, we donate Quat(·) as the function to transpose a rotation from
Euler Angles to Quaternion. And then we further define the cost
term of IMU measurements based (10):

Cuk = ||

⎡
⎢⎢⎢⎢⎢⎣

Ik RRRW (W pppIk+1
−W pppIk

+ 1
2

W
gggΔt2

k −W vvvIk Δtk)−Ik α̂αα Ik+1

Ik RRRW (W vvvIk+1
+W gggΔtk−W vvvIk )−Ik β̂ββ Ik+1

2[(W qqqIk
)
−1 ⊗W qqqIk+1

⊗
(Ik γ̂γγ Ik+1

)
−1

]xyz
bbbak+1

−bbbak

bbbgk+1
−bbbgk

⎤
⎥⎥⎥⎥⎥⎦
||2ΣΣΣu

= ||HHHIk S̃SSIk +HHHIk+1
S̃SSIk+1

+HHHEk+1
S̃SSEk+1

− rrruk+1
||2ΣΣΣu

(11)

where [Ik α̂αα Ik+1
,Ik β̂ββ Ik+1

,Ik γ̂γγ Ik+1
]T are pre-integrate IMU measurement

terms between image frame k and k+ 1. ΣΣΣu is the pre-integration
covariance matrix. HHH is the Jacobian matrix of the corresponding
state, and rrruk+1

is the measurement residual. This cost term is the
same as [27].

5.3 State Augmentation and Marginalization
The prior information obtained from the previous time step k is

Ck(S̃SS
⊕
k ). At each time step k+1, new state SSSIk+1

and SSSEk+1
are added

into the current state vector SSSk using the IMU measurement. To
maintain constant computational complexity, we marginalize the
oldest cloned state SSSIk−(m−1)

and last IMU state SSSEk . Following [35]

, we reorder the prior matrix and then perform QR decomposition
to eliminate the state that needs to be marginalized. In the end, the
prior matrix of the system after marginalization only contains states

S̃SSk+1 = [SSST
Ik−(m−2)

, ...,SSST
Ik+1

,SSST
Ek+1

]T that are not marginalized. The

new prior cost function is:

Ck+1(S̃SSk+1) = ||Hk+1S̃SSk+1− rrrk+1||2 (12)

5.4 Image Process and Measurement
Since commercial-grade mobile phones are often with low comput-
ing power, we use FAST [29] to detect feature points and KLT [31]
to track them. Both FAST and KLT are simple and with low compu-
tational complexity, easy to run on mobile phones. Similar to most
MSCKF-like methods, feature tracks which are out of sliding win-
dow or tracking lost will be triangulated first, and refined by bundle

adjustment (BA). Parameters of 3D points will be projected into
nullspace, and only camera and IMU states remain in state vector
and will be updated like [35]. The cost term of visual features is
defined by:

Cz(S̃SSk+1) = ||HHHzS̃SSk+1− r̃rrz||2Σz
(13)

where Σz is the Gaussian covariance matrix of feature measurement.

5.5 Neural IMU Network Measurement
The outputs of neural work are relative displacement dddi j and mea-
surement uncertainty uuui j between time ti and t j. dddi j is expressed in
the inertial coordinate system. There are two points needing special
attention here. First, the learned movement pattern is yaw angle
quivariant, that is, dddi j changes with the change of the yaw angle at
time ti. Second, ti and t j are not aligned in time with the estimated
state of the current sliding window. Therefore, to completely define
the motion mode constraints, the propagation of IMU is needed.
Assuming that the rotation matrix at time ti is W RIi , we use the Euler
angle form of the external parameter XY Z to decompose the rotation
matrix, that is, W RIi = Rγ Rβ Rα , α , β , and γ respectively represent

roll, pitch, and yaw angles. When the pitch angle is close to 90◦, the
Euler angle will have a deadlock phenomenon, then this conversion
is invalid. Unlike [21], the constraint is directly discarded. When
|pitch−90◦|< 10◦, we use the external parameter “YXZ” conver-

sion instead, that is, W RIi = Rγ Rα Rβ to avoid deadlock. Then the
constraints provided by the network are:

CCCn(S̃SSk+1) = ||(Rγ )
T (W pppIj

−W pppIi
)−dddi j||2Σn

(14)

where W pppIi
, W pppIj

are the corresponding positions in the world frame

at time ti, t j, and Σn is the covariance matrix of this constraint.
Assuming that the states in the window closest to time ti and t j are
tm and tn, respectively. Through the pre-integration theory of IMU
[11], the following constraints can be established:

W pppIi
=W pppIm

+W vvvIm Δtm− 1

2

W
gggΔt2

m +W RIm
Im ααα Ii

W pppIj
=W pppIn

+W vvvIn Δtn− 1

2

W
gggΔt2

n +
W RIn

In ααα I j

W RIi =
W RIm RRR(Im γγγ Ii

)

(15)

Here, W vvvIm is the velocity of IMU in the world frame at time tm. Δtm
equals tm minus ti. Im ααα Ii ,

In ααα I j , and Im γγγ Ii
is the mean part of IMU

pre-integration [11].
Combining Equations (14) and (15), we can write the final con-

straint:

CCCn(S̃SSk+1) = ||g(W RIm RRR(Im γγγ Ii
))T ((W pppIn

+W vvvIn Δtn− 1

2

W
gggΔt2

n +
W RIn

In ααα I j )

− (W pppIm
+W vvvIm Δtm− 1

2

W
gggΔt2

m +W RIm
Im ααα Ii))−dddi j||2Σn

= ||HHHnS̃SSk+1− rrrn||2Σn

(16)

where g(·) is the function converting the rotation matrix to the yaw
angle. The covariance of the rotating part is mainly related to the
bias and noise of the gyroscope. In a short time, the noise of the
gyroscope is much smaller than the noise of the accelerometer, and
In αI j has considered the noise of the gyroscope. To facilitate the
calculation of covariance, we omit the covariance generated by the
term g(W Rm

Im γIi)
T . Then the final covariance of the constraint is:

ΣΣΣn = g(W RIm
Im γγγ Ii

)T (W RIn
In
α PPPIj (

W RIn)
T +W RIm

In
α PPPIi(

W RIm)
T )

g(W RIm
Im γγγ i)+ΣΣΣi j

(17)
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where In
α PIj is the pose part of IMU pre-integration covariance ma-

trix [11]. ΣΣΣi j is the covariance matrix of network output.

5.6 Outliers Removal

Before employing visual measurement and NIN measurement up-
dates, we requires an outlier removal module to ensure the fusion
system to be robust. Ours system employs the standard Mahalanobis
distance test to protect the filter estimate. We discard the measure-

ment when Mahalanobis distance ||ddd− d̂dd||HHHPPPHHHT+Σ̂ΣΣ is greater than

a threshold, where H,P represent measurement Jacobian and corre-
sponding covariance of state. For NIN measurement, we scale the
covariance of network output by a factor of 10 to compensate for the
inaccurate measurement.

5.7 State Update

Finally, the states are updated by minimizing all the measurements
and prior terms. We stack all the constraints to get the following
equation:

min
S̃SSk+1

C⊕k+1(S̃SSk+1) = min
S̃SSk+1

∥∥∥∥∥∥∥

⎡
⎢⎣

HHHk+1

Σ−
1
2

z HHHz

Σ−
1
2

n HHHn

⎤
⎥⎦ S̃SSk+1−

⎡
⎢⎣

rrrk+1

Σ−
1
2

z rrrz

Σ−
1
2

n rrrn

⎤
⎥⎦

∥∥∥∥∥∥∥

2

(18)

There are many methods to solve (18), here we adopt [22, 35]’s QR
factorization to solve it. After that, we can get the estimation of
S̃SSk+1. Then the state will be updated with the following equation:

S̃SS⊕k+1 = ŜSSk+1 + S̃SSk+1 (19)

where ŜSSk+1 includes the states estimated in the previous time step
and new state from IMU propagation. Here, all the constraints are
used for filter update, and QR factorized equation of (18) will serve
as the new prior information for the next time step.

5.8 Initialization

A high-quality initialization will help speed up the filter convergence.
We use different initialization methods according to different motion
states, such as motion and static. If the average displacement of
the sparse features of 3 consecutive frames of images on the image
plane is lower than a certain threshold and the standard deviation of
acceleration and angular velocity is lower than a certain threshold,
we consider that it is currently in a stationary state, otherwise, it is
moving. When it is currently in a static state, we try to perform static
initialization. The initial translation is set to zero. The initial local
gravity is the average of the accelerometer measurements between
the latest two frames of images, and the initial rotation is aligned
with the local initial gravity. The initial gyroscope bias is the average
of gyroscope measurements between the latest two frames of images.
The initial acceleration bias is set to zero. For motion initialization,
we refer to this work [27]. We perform vision-only SfM first to get
a pose without scale, and then align the IMU pre-integration results
with the SfM results to recover the scale, velocity, gravity, and IMU
bias.

6 EXPERIMENTS

In this section, we conduct a series of experiments to verify the
accuracy and generalization of our proposed neural inertial network
(NIN), and the accuracy and robustness of our filter system, which
fuses visual, inertial, and NIN information. Finally, we prove that
our system has better practical application value through an online
AR demo.

6.1 Baselines
We compare our method against the following baseline algorithms:

• 3D-RoNIN [14]: a data-driven method, where the positions
are estimated from a sequence of IMU sensor measurements.
We evaluate all version of RoNIN (LSTM, TCN and ResNet)
using their open source implementation.

• TLIO [21]: the tightly-coupled method, fuse the measure-
ment from trained network and kinematic motion model into
a stochastic cloning EKF to solve for pose, velocity and IMU
biases.

• VINS-Mono [27]: a representative state-of-the-art visual iner-
tial odometry with open source code.

• ARCore: a representative open platform for building aug-
mented reality apps on Android. Their motion tracking tech-
nology uses a fusion of visual and inertial data allowing the
phone to understand and track its position relative to the world.

We note that baseline methods can be divided into two categories:
1) Pose estimates based on IMU data (3D-RoNIN and TLIO).
We compared with these methods to demonstrate the superiority of
our IMU neural network on open-source IDOL dataset [33]. These
competing methods and our proposed one estimate the translation as-
suming the rotation is known. So we use the ground truth orientation
to estimate the translation for all methods. We use the same training
and validation data with the baseline methods to make a fair compar-
ison. Since the open-source IDOL [33] has not yet been announced,
and the article does not explain how to divide the training data, we do
not compare our method with it. 2) Pose estimates using IMU and
visual sensor fusion (VINS, ARCore). These methods are used
to demonstrate that visual inertial navigation algorithmm, fusing
with human motion model from neural network, can obtain higher
accuracy and robustness.

6.2 Metrics Definitions
To demonstrate the effectiveness of our system, Absolute Trajectory
Error (ATE), Time-Relative Trajectory Error(T-RTE), and Distance-
Relative Trajectory Error (D-RTE) metrics introduced in [33] is
adopted. For the sequence without ground-truth, we define the Final
Translation Drift (FTD)(%) metric as

‖p̂ppe− p̂pps‖/L.

If the starting point and ending point of the sequence are roughly
the same, we can use FTD to measure position accuracy without
ground-truth. p̂ppe, p̂pps are the starting and ending positions estimated
by the algorithm, and L is the trajectory length.

Fig. 4: The cumulative density function of corresponding metrics on
the entire test set.

6.3 Neural Inertial Network Performance
IDOL datasets: The dataset has been divided into 3 buildings.
Each building dataset is grouped into two subsets: ‘known’ and
‘unknown’. The users of the training set are the same as the ‘known’
data, and the training set only includes building 1. This allows
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(a) Building1 (b) Building2

(c) Building3 (d) Building3

Fig. 5: Trajectories of different methods on IDOL dataset. Each
trajectory have same starting point.

Fig. 6: Trajectories using different orientation.

for testing the generalization of networks across users, buildings
and devices. We use the same training and validation data with the
corresponding baseline methods to make a fair comparison. Since
the neural inertial network estimates relative displacement in the
known gravity-aligned frame, during the test, we mainly verify the
performance of the network to estimate the displacement under the
ground-truth gravity direction.

Fig. 4 shows the error distribution on the entire test set. It
confirmed that compared with RoNIN and TLIO, our system consis-
tently maintains higher accuracy.

Tables 1 and 2 show that the IMU neural network can be gener-
alized to different people, different devices, and different environ-
ments. TLIO (wo EKF) is the TLIO pure network version without
EKF framework. Ours (wo AL) is our proposed network without
absolute loss. Our network has obvious advantages over other base-
lines in all metrics. Our end-to-end network does not need to use
EKF fusion like TLIO, and can also achieve the best local and global

Table 1: ATE metrics on IDOL dataset.

Model
Building 1 Building 2 Building 3

Known Unknown Known Unknown Known Unknown

RoNIN-LSTM 18.33 15.18 45.58 45.58 32.68 25.81
RoNIN-TCN 25.81 25.81 41.42 35.83 35.17 43.99

RoNIN-ResNet 2.90 4.46 15.27 11.82 10.03 13.74
TLIO(wo EKF) 5.58 6.08 7.23 7.09 7.04 6.30

TLIO 3.75 4.14 6.23 7.17 5.06 5.23
Ours (wo AL) 3.43 4.78 9.53 7.41 9.77 9.65

Ours 2.71 3.62 6.19 5.23 4.57 3.38

Table 2: D-RTE, T-RTE metrics on IDOL dataset.

Model
Building 1 Building 2 Building 3

T-RTE D-RTE T-RTE D-RTE T-RTE D-RTE

RoNIN-LSTM 6.77 0.66 15.58 1.06 9.08 0.73
RoNIN-TCN 8.61 0.77 19.14 0.985 11.33 0.85

RoNIN-ResNet 2.08 0.32 7.58 0.36 4.73 0.4
TLIO(wo EKF) 2.05 0.21 5.00 0.22 5.32 0.22

TLIO 2.52 0.28 7.25 0.26 4.94 0.29
Ours (wo AL) 1.72 0.25 5.05 0.23 3.60 0.24

Ours 1.49 0.17 4.19 0.19 2.99 0.20

Table 3: Metrics using different orientation.

Model
API Orientation Ground Truth Orientation

ATE T-RTE D-RTE ATE T-RTE D-RTE

RoNIN-ResNet 6.88 7.10 0.42 9.75 4.80 0.36
TLIO(wo EKF) 8.82 7.36 0.35 6.55 4.12 0.22

TLIO 5.27 5.16 0.27 5.26 4.9 0.28
Ours 6.53 6.75 0.32 4.28 2.89 0.19

accuracy. Human movement has a certain rhythm and regularity.
We recognize human movement characteristics through ResNet, and
then use LSTM to learn the regularity of movement in time series.
Therefore, compared with the motion recognition of a single win-
dow, we use historical motion features to achieve better local relative
accuracy and global accuracy. The relative loss and absolute loss
can make the network care about the local accuracy and also pay
attention to the long-term global accuracy. The tables also confirm
the effectiveness of the loss. Fig. 7 shows the trajectories of different
methods on IDOL sequence.

Table 3 shows the displacement accuracy of the inertial network
under different rotation inputs. The accuracy of RoNIN, TLIO
(wo EKF) and our network decreases with the decrease of rotation
accuracy, while TLIO is not affected because of its own estimation
of rotation. The visual-inertial system can estimate the reliable
gravity direction, which will help improve the accuracy of the inertial
network. Fig. 6 confirms that low-precision rotation input will
increase the yaw direction error, which leads to a decrease in the
overall trajectory accuracy.

Our Data: Table 4 shows the performance comparison on our
self-collected data. Our system achieves the best local and global
accuracy, and the conclusion is consistent with IDOL datasets.

6.4 EKF Fusion System Performance
We use Huawei Mate20 Pro mobile phone to collect the verifica-
tion data in indoor scenes and outdoor scenes for this subsection.
Indoor scenes are equipped with VICON equipment, which can
give ground-truth trajectories to measure the accuracy of the recov-
ered trajectories. In outdoor scenes, the starting point and ending
points of each sequence are roughly the same, so we choose the
error between the starting point and the ending point to measure
the positioning errors. We also split the data set into normal data
and challenging data. Normal data includes a high-quality visual
environment, such as scene depth in the range of 1-5m, good lighting
conditions, no dynamic obstacles, no occlusion, no image blur, etc.
The opposite is challenging data.

Table 4: Comparison on Our Data.

Model
Ourdoor Indoor

ATE T-RTE D-RTE ATE T-RTE D-RTE

RoNIN-LSTM 16.62 15.47 1.23 2.41 1.62 0.55
RoNIN-TCN 18.33 17.01 1.33 2.72 1.81 0.57

RoNIN-ResNet 1.93 2.19 0.24 1.49 1.33 0.58
TLIO 1.82 2.06 0.15 2.09 1.73 0.30
Ours 1.55 1.81 0.15 1.24 1.43 0.30
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We note that our RNIN model used in this experiment is trained
on our own collected data, which is only about 7 hours with not very
accurate ground truth. However experiment results show our fusion
system still performs quite well.

It can be seen from the Table 5 that the accuracy of RNIN-VIO
is close to that of BVIO in normal scenarios. The traditional visual-
inertial system does not reduce the accuracy of the system due to
the integration of low-precision NIN observations. In challenging
scenarios, the accuracy of RNIN-VIO is significantly better than that
of VIO. Therefore, the NIN fusion system can maintain more robust
tracking in extreme scenarios. VINS-Mono performed poorly on
our dataset. The possible reason is that it does not consider dynamic
exposure time and we use the default parameters.

Table 6 shows the final translation error of the outdoor. Each
outdoor sequence is about 430m in length and is mainly divided into
normal scenes and challenging scenes. Challenge scenes include
occlusion, distant view, normal walking and shaking, dynamic pedes-
trians, and weak textures. All Challenging means that all challenges
are included in the entire sequence. The outdoor test results are
similar to the indoor results. In normal scenarios, the accuracy of
the NIN-integrated VIO algorithm is similar to that of the traditional
VIO algorithm, and the fusion vision algorithm has higher accuracy
than the pure IMU methods, which is reasonable because vision can
provide a rich map of the external environment to greatly reduce
the cumulative error of the system. In challenging scenarios, the
NIN method has better robustness. The VIO algorithm fused with
NIN has higher robustness and higher accuracy. Among them, the
accuracy of two sequences has a certain decrease, mainly due to the
NIN measurements outlier. How to accurately eliminate the outliers
of NIN will be our next work.

Table 5: ATE (m) on Indoor room with VICON equipment.

Sequence VINS-Mono BVIO RNIN-VIO

Normal00 0.256 0.146 0.124
Normal01 0.362 0.078 0.077
Normal02 0.228 0.081 0.078
Normal03 0.418 0.150 0.157
Normal04 2.766 0.215 0.212
Normal05 0.415 0.383 0.318

Challenging00 X 3.553 3.150
Challenging01 5.452 1.563 1.318
Challenging02 X 0.743 0.520

Table 6: FTD(%) on ourdoor.

Sequence VINS-Mono BVIO RNIN RNIN-VIO

Normal00 8.81 1.95 2.67 1.81
Normal01 X 1.89 5.35 1.65

Occlusion00 X X 3.88 2.27
Occlusion01 X 8.57 4.14 2.08
Far Scenes00 X 3.62 4.78 3.60
Far Scenes01 X X 5.22 3.34

Shake00 X 4.50 5.59 3.80
Shake01 X 2.15 7.29 6.00

All Challenging00 X X 7.23 3.14
All Challenging01 X 27.3 2.17 1.32

6.5 Augmented Reality Application

We have developed an Android application to demonstrate the RNIN-
VIO’s rubustness and accuracy. We use tensorflow [1] to do the
inference of our NIN. Other part of the system fully run on CPU
platform. We take Huawei’s Mate20 pro as the testing device. The
input are 30Hz images with 512×384 resolution and 200 Hz IMU
data. The module of NIN run in a background thread with 2Hz frame
rate, and cost time is 43ms. VIO module has a high processing speed,

(a) Normal motion (b) Fast shaking

(c) Looking at far sky (d) Camera occlusion (with hands)

Fig. 7: Mobile AR: We test RNIN-VIO in different types of challenging
situations, including fast shaking & motion blur, looking at far sky, and
camera occlusion for a long time. RNIN-VIO works well in all these
challenging situations.

and the processing time is much less than the input image frames’
interval.

We add some virtual 3D animals into the scene in our AR demo.
We evaluate the robustness in different challenging situations, such
as fast shaking with motion blur, looking at far sky, and camera
occlusion for a long time. In all of these situations, RNIN-VIO
achieves a robust and continuous 6DoF tracking without tracking
lost. Please watch the supplementary video for the complete results.

7 GENERALIZABILITY

The test set includes unknow sequences (such as different users,
devices and environments) that are not included in the training set
in subsection 6.3. Tables 1, 2 and 4 show that the IMU neural
network can be generalized to different people, different devices, and
different environments. We believe that this generalization is mainly
due to the similar acceleration and angular velocity distribution of
different people’s movements, the noise of different equipment can
be simulated through data enhancement, and the IMU measurements
have nothing to do with the external environment.

In the experiment, we also found that our system will fail for
the types of motion that do not appear in the training set (such as
very slow walking, sitting on a chair and moving, drone movement,
etc.). Like general supervised learning algorithms, our system has
difficulties in accurately estimating the movements that are not
included in the training set. How to adapt the IMU neural network
to various motions through online learning will be our future work.

8 CONCLUSION

In this article, we propose a tightly coupled visual-inertial odometry
with the help of NIN. Our objective is to enhance the robustness and
accuracy of traditional visual-inertial systems by using highly robust
but relative low precision NIN information. We design a robust
IMU neural network to learn human movement priors from IMU
data. The experiments prove that our network has reached the level
of state-of-the-art. Then we further fuse NIN and VI information
and improve the robustness of odometry in extremely challenging
environments while maintaining the original high-precision level.
The online AR demo also proves the application potential of our
system in mobile augmented reality.
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