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In this supplementary document, we first provide the
implementation details in Sec. A. Next, we supply addi-
tional analysis and more visualization results of our meth-
ods in Sec. B. The limitations of our approach are intro-
duced in Sec. C.

A. Implementation Details
A.1. Datasets
Following the setting in [12], we use the selected 10 scenes
from ScanNetV2 [2] for evaluation, and we train our model
with every 20 frames from the given video images. Be-
sides, following the same evaluation setting, we also use
the provided point clouds for initialization, freeze the coor-
dinates of the point clouds, and disable the original den-
sification process in 3DGS [3]. The selected 10 scenes
in [12] are scene0000, scene0062, scene0070, scene0097,
scene0140, scene0200, scene0347, scene0400, scene0590,
and scene0645. All selected scenes are evaluated on the 00
trajectory. The 19 classes used for text queries and eval-
uation are wall, floor, cabinet, bed, sofa, table, door, win-
dow, bookshelf, picture, counter, desk, curtain, refrigerator,
shower curtain, toilet, sink, and bathtub.

For Replica dataset [9], we follow the setting in [6], the
commonly-used 8 scenes {room0-2, office0-4} are used for
evaluation, and we train our model with every 10 frames
from the given video images. Since the Replica dataset [9]
contains more attributes, two additional labels (other furni-
ture and ceiling) are used for evaluation. The whole label
set and its Thing and Stuff definitions are shown in Tab. A.

A.2. Details of Baselines

OpenGaussian†. When evaluating the performance of 3D
point-level semantic segmentation, OpenGaussian [12] re-
moves 3D Gaussian primitives with opacity less than a
threshold and only conducts evaluation on the primitives
with opacity greater than the threshold. In order to perform
a fair and complete 3D panoptic segmentation evaluation,
we do not filter primitives with small opacity. We mark this

Class ID Class Name Type

0 wall Stuff
1 floor Stuff
2 cabinet Thing
3 bed Thing
4 chair Thing
5 sofa Thing
6 table Thing
7 door Stuff
8 window Stuff
9 bookshelf Stuff
10 picture Stuff
11 counter Stuff
12 desk Thing
13 curtain Stuff
14 refrigerator Stuff
15 shower curtain Stuff
16 toilet Thing
17 sink Thing
18 bathtub Stuff
19 other furniture Stuff
20 ceiling Stuff

Table A. Classes and their type (stuff or thing) used in our experi-
ments for ScanNetV2 [2] and Replica [9] datasets.

difference as OpenGaussian†.

LangSplat∗. The results of LangSplat [7] shown in Table
2 of OpenGuassian [12] are too worse. Because LangSplat
only works well in small scenes with obvious foreground
objects and large overlaps. It does not perform well in in-
door scene datasets, like ScanNetV2 [2] and Replica [9].
Therefore, to enhance its performance on indoor scenes, we
use LSeg [5] to extract multi-view visual-language features
and lift to 3D space to formulate a 3D feature cloud for
compression and distillation. Following the original setting
in [7], we use their auto-encoder to compress the fused 3D
feature cloud and perform the same learning optimization
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process in their paper.

A.3. Details of Our Approach
For the latent pyramid tri-planes, we use coarse feature
planes with a resolution 20 cm and fine feature planes with
6 cm. All feature planes have 10 channels, and we employ
sum operation on the features from all resolution channels,
which results in 10-dimensional features. Our 3D language
feature decoder is two-layer MLPs with {128, 512} chan-
nels in the hidden layers, respectively. We train each scene
on a single NVIDIA RTX 4090 card. During the reconstruc-
tion of 3D Gaussian primitives, we perform 20 optimization
iterations of rendered appearance and depth for each frame.
We use the Adam optimizer to update the attributes of 3D
Gaussian primitives, the learning rates for rotation, opacity,
and scaling are set to 0.001, 0.05, and 0.001, respectively.
To learn the 3D language feature, we also use the Adam op-
timizer to update MLPs and latent parametric features, with
a learning rate of 0.001. The betas and weight decay for the
Adam optimizer are set to (0.9, 0.99) and 1e-6.

A.4. Evaluation Metrics
To evaluate the 3D segmentation performance, we use the
3D semantic segmentation and panoptic segmentation met-
rics with the following definition.

3D Semantic Segmentation. For class c, its mean Intersec-
tion over Union (mIoU) and mean Accuracy (mAcc.) met-
rics can be computed via the following equations:

mIoU =
1

C

C∑
c=1

TPc

TPc + FNc
(1)

mAcc. =
1

C

C∑
c=1

TPc

TPc + FPc + FNc
(2)

where TPc, FPc, and FNc denote point-level true positives,
false positives, and false negatives for class c, respectively.

3D Panoptic Segmentation.. Following [1], we use the
panoptic reconstruction quality (PRQ) as an average mea-
sure across the class categories with the following equa-
tions:

PRQc =

∑
(i,j)∈TPc

IoU(i, j)

|TPc|+ 0.5× |FPc|+ 0.5× |FNc|
(3)

where TPc, FPc, and FNc denote the instance-level true
positives, false positives, and false negatives for class c, re-
spectively.

For the evaluation of panoptic segmentation, we view the
predicted semantic instance with an overlap larger than 25%
with GTs as true positive matches. Besides, for the perfor-
mance of classes in the Thing and Stuff sets, we denote them
as PRQ (T) and PRQ (S), respectively.

B. More Experiment Results

Table B. 3D Instance segmentation results of ScanNetV2 [2]
Dataset.

Methods Input Type AP

OpenMask3D 3D Sup. 47.61
MaskClustering 2D + 3D Z.S. 33.92
OpenGaussian 2D Z.S. 18.63
Ours 2D Z.S. 38.78

Comparison of 3D Instance Segmentation. Tab. B shows
additional instance segmentation results. 2D and 3D indi-
cate using GT images and point clouds as input. Sup. in-
dicates the supervised methods trained on the ScanNetV2,
and Z.S. represents the zero-shot setting. Our approach
achieves the best results among 2D and Z.S. settings, only
worse than the supervised method, OpenMask3D [10],
which uses the supervised approach, Mask3D [8], to extract
3D instances.

Complexity Analysis of Graph Construction. In
scene0000, for language-guided graph-cut, we construct
edges (∼570k) for reconstructed primitives (∼82k) and use
breadth-first search to construct super-primitives (∼500),
which takes ∼4s. For progressive graph-based clustering,
4 iterations take ∼1.2s to obtain final 3D instances (52).

Table C. 3D panoptic segmentation results of different combina-
tion with graph cut (G.C) on ScanNetV2 [2] Dataset.

Ablations PRQ (T) PRQ (S)

OpenGaussian (G.C) 9.00 9.27
LangSplat (G.C) 8.68 14.39
Ours (G.C) 19.36 25.15
Ours (Full) 33.84 36.22

Table D. 3D panoptic segmentation results of different edge con-
struction strategy on ScanNetV2 [2] Dataset.

Edges PRQ (T) PRQ (S)

Feat. 19.04 21.36
KLD 29.77 32.59
Ours 33.84 36.22

Performance of others using graph-cut (G.C). G.C is only



used to generate super-points and is already used in many
methods [4, 11, 13, 14], such as MaskClustering [13]. As
shown in Tab. B our AP is 4.86% higher than MaskClus-
tering [13]. From Tab. C, we can know that G.C is not the
key to improving instance segmentation performance. Our
algorithm can greatly improve segmentation performance.

Gains of our edge strategy (JSD). As shown in Tab. D,
using language features (Feat.) to construct edges is sen-
sitive to the semantic similarity threshold and has poor
performance. Compared with Kullback-Leibler divergence
(KLD), our JSD is a symmetric function and our perfor-
mance is better than KLD by a margin.

Figure A. Visualization of the uncertainty of fused feature cloud.
We show the variance of the feature cloud that fused from multi-
view 2D feature maps.

Visualization of 3D Feature Uncertainty. In Fig. A, we
show the variance of the 3D feature cloud obtained by pro-
jecting the reconstructed 3D Gaussian primitives back to the
multi-view 2D feature map and then fusing it. The brighter
the color, the greater the uncertainty. The figure shows that
in some semantically complex areas, the features extracted
from multiple views maybe inconsistent and with low con-
fidence.

Visualization of Learned Language Feature. In Fig. B,
we show the visualization results of the language fea-
tures learned by different methods. As can be seen from
the figure, compared with the previous 3DGS-based meth-
ods (LangSplat [7] and OpenGaussian [12] ), our method
can learn smoother and more consistent language features
(without noise primitives, which are affected by alpha-
blending and its low opacity). Compared with Open-
Scene [6], the features we learned can distinguish finer-
grained objects, such as carpet and floor, bed and sofa, etc.

Effects of Different Latent Code Lengths. In Fig. C, we
show the effect of using different lengths of the latent codes
g from the latent pyramid tri-plane. As can be seen from the
figure, our method can still achieve relatively good results
in the case of extremely short features (lengths less than 5).

Effects of Different Feature Cloud Resolutions. Com-
pared to previous 3DGS-based methods, which bind the dis-
crete features to each explicit Gaussian primitive, our ap-

proach regresses the language feature from a latent pyra-
mid tri-plane representation. Previous discrete representa-
tion lacks the inherent feature smoothness and is easily af-
fected by the resolution of the explicit representation. Our
approach can achieve better segmentation results even un-
der the supervision of sparse feature cloud. In Fig. D, we
demonstrate the segmentation effect of our method under
different spatial sampling rates of the 3D feature cloud. As
can be seen from the figure, our method only requires 10%
of the data to achieve a relatively stable segmentation per-
formance.

Detailed Segmentation Performance of Each Scene. The
detailed 3D semantic and panoptic segmentation perfor-
mance of our approach and different baselines are shown
in Tab. F and Tab. G, respectively.

Memory and Training time. In Tab. E, we show the train-
ing time of different methods, as well as the memory re-
quirement for 3D open vocabulary scene understanding.
Due to OpenScene [6] was trained on the entire dataset,
including many data processing, e.g., feature sampling, it
is different from the current 3DGS-based approaches, so
we do not list its training time. As shown in the table,
OpenScene [6] and OpenGaussian [12] explicitly store the
high-dimensional language features of each point or prim-
itives, so they require a lot of memory. Though Open-
Gaussian [12] uses quantization and clustering to reduce the
memory requirements, it is still higher than the approach
(LangSplat [7]) of using MLPs to regress language features
implicitly. We use a latent pyramid tri-plane to regress lan-
guage features from a low-dimensional space, which re-
duces the number of parameters required, speeds up our
convergence, and enables us to learn smoother and more
accurate features.

Table E. Training time, and memory usage of different methods on
scene scene0000 from ScanNetV2 [2] Dataset.

Method Training Time Memory.

LangSplat [7] 52 mins 16.79 MB
OpenGaussian [12] 15 mins 65.8MB
OpenScene [6] — 158.92 MB
Ours 12 mins 8.33 MB

More Visualization Results. In the main paper, we only
show some visualization results of semantic and panoptic
maps. So, we show more visualization results here. The
open vocabulary query results, 3D semantic segmentation
results on Replica [9] dataset, 3D panoptic segmentation re-
sults on ScanNetV2 [2] and Replica [9] datasets are shown
in Fig. E, Fig. F, Fig. G, and Fig. H, respectively.



LangSplat [7] OpenGaussian [12] OpenScene [6] Ours

Figure B. Visualization results of the learned 3D language feature of different methods. For better visualization, we perform principal
components analysis (PCA) on the learned high-dimensional language features.
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Figure C. 3D semantic segmentation performance with different
latent code lengths on ScanNetV2 [2] dataset.

C. Limitations
While our approach shows impressive performance on 3D
open vocabulary scene understanding, there still remain two
limitations. Firstly, our system relies on accurate 2D seg-
mentation masks [4] , which are used to guide the cluster-
ing process of 3D Gaussian primitives. Besides, we can not
generate multi-level 3D instance masks, which is also lim-
ited by the 2D image segmentation models.
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Table F. 3D semantic and panoptic segmentation results on Replica dataset [9]. The results of OpenScene [6] are obtained from their pre-
trained model. ∗ indicates our better implementation of LangSplat [7]. Compared approaches use SoftGroup [11] to D generate instance
mask.

Method Metric Room 0 Room 1 Room 2 Office 0 Office 1 Office 2 Office 3 Office 4

LangSplat∗ [7]

mIoU 7.56 4.26 2.58 3.78 3.21 2.7 7.64 5.51
mACC. 11.68 6.48 5.69 6.4 5.77 6.05 12.88 9.19
PRQ (T) 11.46 9.68 0 9.29 0 0 12.56 9.58
PRQ (S) 2.98 2.69 0 2.28 0 0 3.24 4.82

OpenScene(Dis.) [6]

mIoU 49.43 61.89 49.7 37.44 36.4 48.19 44.06 37.63
mACC. 68.74 79.24 70.95 54.55 45.60 63.97 65.47 55.2
PRQ (T) 30.97 10.57 18.13 49.83 35.62 34.43 27.52 20.14
PRQ (S) 7.22 8.69 8.15 4.84 9.93 13.18 6.66 9.87

OpenScene(Ens.) [6]

mIoU 45.27 63.39 38.36 59.05 34.98 57.55 53.65 40.02
mACC. 61.57 74.77 53.47 70.89 45.35 70.04 72.05 50.18
PRQ (T) 25.39 13.93 23.75 44.29 10.49 36.94 38.57 17.38
PRQ (S) 5.87 12.70 5.83 12.13 11.78 17.33 8.65 11.86

Ours

mIoU 73.81 72.88 73.65 46.71 24.89 57.46 56.91 42.33
mACC. 82.06 84.66 89.80 57.16 35.56 66.79 71.72 52.06
PRQ (T) 53.15 17.03 56.62 54.21 23.58 44.81 39.73 47.00
PRQ (S) 10.60 31.40 41.60 17.28 29.97 56.87 20.99 37.03

Table G. 3D semantic and panoptic segmentation results on ScanNetV2 [2]. The results of OpenScene [6] are obtained from their pre-
trained model. ∗ indicates our better implementation. † indicates no Gaussian filter is used for the evaluation of panoptic segmentation.
Compared approaches use SoftGroup [11] to D generate instance mask.

Method Metrics 0000 0062 0070 0097 0140 0200 0347 0400 0590 0645

LangSplat∗ [7]

mIoU 16.68 40.42 23.25 43.52 30.25 44.08 31.79 30.01 16.05 18.70
mACC. 30.50 50.97 36.13 59.57 54.22 62.79 44.97 52.16 30.31 31.33
PRQ (T) 19.35 31.57 10.96 23.29 46.11 33.71 10.82 18.85 13.49 17.60
PRQ (S) 12.52 45.99 15.44 42.89 21.47 45.03 34.10 34.14 18.59 14.30

OpenGaussian† [12]

mIoU 23.46 25.53 15.26 28.81 17.36 27.39 24.96 15.72 21.89 21.54
mACC. 37.73 46.61 27.66 47.08 36.03 41.62 36.53 31.69 31.54 37.05
PRQ (T) 11.44 27.54 21.99 39.09 29.02 22.21 25.72 0 25.33 26.37
PRQ (S) 18.32 31.92 15.58 23.01 11.43 26.44 20.88 24.91 12.75 11.94

OpenScene(Dis.) [6]

mIoU 37.07 61.19 42.17 64.37 39.23 49.31 63.28 42.08 36.44 28.34
mACC. 57.15 79.52 65.25 87.05 62.02 73.45 84.90 71.01 59.34 47.71
PRQ (T) 33.87 51.51 38.95 44.03 63.76 25.42 46.17 49.35 42.03 42.02
PRQ (S) 24.55 59.01 29.09 47.64 22.35 55.88 55.80 47.00 32.63 27.39

OpenScene(Ens.) [6]

mIoU 41.90 62.19 43.17 65.52 40.34 50.62 64.17 43.08 36.33 29.23
mACC. 64.50 79.52 65.25 87.05 62.09 73.63 84.90 71.01 58.26 47.72
PRQ (T) 37.06 51.51 38.95 44.03 63.76 24.33 46.17 49.35 40.70 41.70
PRQ (S) 27.69 59.01 29.09 47.78 22.38 56.02 55.65 47.00 32.05 27.15

Ours

mIoU 41.72 73.25 46.98 59.50 51.76 45.21 58.43 46.55 40.19 43.76
mACC. 64.49 90.25 65.75 78.11 67.11 65.41 77.92 72.65 55.52 64.84
PRQ (T) 28.53 36.86 36.45 42.06 55.31 21.04 20.00 25.84 32.94 40.96
PRQ (S) 37.59 45.53 25.59 43.68 32.47 34.15 41.07 45.26 29.71 26.26
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Figure F. Qualitative 3D semantic segmentation comparison. We show some reconstructed semantic maps selected from Replica [9]
datasets.
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Figure G. Qualitative 3D panoptic segmentation comparison. We show some reconstructed panoptic maps selected from ScanNetV2 [2].
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Figure H. Qualitative 3D panoptic segmentation comparison. We show some reconstructed panoptic maps selected from Replica [9] dataset.
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