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Figure 1. Open Vocabulary 3D Panoptic Scene Understanding. Visualization of open-vocabulary semantic segmentation (yellow boxes)
and object query with text toilet (red boxes). Our PanoGS can achieve more accurate segmentation results and generate 3D instance-level
results for open-vocabulary text queries, unlike previous methods that generate heatmaps between scene features and text queries.

Abstract

Recently, 3D Gaussian Splatting (3DGS) has shown en-
couraging performance for open vocabulary scene under-
standing tasks. However, previous methods cannot distin-
guish 3D instance-level information, which usually predicts
a heatmap between the scene feature and text query. In this
paper, we propose PanoGS, a novel and effective 3D panop-
tic open vocabulary scene understanding approach. Techni-
cally, to learn accurate 3D language features that can scale
to large indoor scenarios, we adopt the pyramid tri-plane to
model the latent continuous parametric feature space and
use a 3D feature decoder to regress the multi-view fused 2D
feature cloud. Besides, we propose language-guided graph
cuts that synergistically leverage reconstructed geometry
and learned language cues to group 3D Gaussian primi-
tives into a set of super-primitives. To obtain 3D consistent
instance, we perform graph clustering based segmentation
with SAM-guided edge affinity computation between differ-
ent super-primitives. Extensive experiments on widely used
datasets show better or more competitive performance on
3D panoptic open vocabulary scene understanding. Project
page: https://zju3dv.github.io/panogs.

†Corresponding author.

1. Introduction

3D scene understanding is a critical problem in computer
vision that enables humans or intelligent agents to compre-
hensively understand the 3D scenes and facilitate the down-
stream applications [15, 28, 49, 55, 58, 59]. They usually in-
corporate vision-language models (VLMs) [2, 21, 33] for a
fine-grained and holistic understanding of the environment.

Recently, Neural Radiance Fields (NeRF) [27] and 3D
Gaussian Splatting (3DGS) [16] have rapidly gained much
research attention for novel view synthesis. Due to the fast
rendering ability and explicit scene representation of 3DGS,
it has been widely integrated into reconstruction [4, 14, 54],
generation [39, 52], and understanding [51, 60, 63]. While
the domain of combining 3DGS with scene understand-
ing has recently made several progress [1, 13, 32, 34, 63],
these approaches are primarily designed for 2D pixel-level
semantic segmentation with rendered 2D language feature
maps, which cannot distinguish the different objects with
the same semantics in the 3D space.

Although previous 3DGS-based approaches [1, 32, 34,
45] have achieved impressive performance that combines
VLMs with 3DGS for open vocabulary scene understand-
ing, there also exist the following limitations that pre-
vent 3DGS-based approaches for panoptic open vocabulary
scene understanding: 1) inaccurate 3D language feature
learning. The discrete features attached to the Gaussian
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primitive can affect the inherent smoothness of language
features for semantically similar objects [32, 34, 60]. The
alpha-blending technique accumulates the 3D discrete fea-
tures of primitives based on the opacity weight, which leads
to a domain gap between 2D and 3D feature space [45, 57].
And the 2D feature compression [32] and feature distilla-
tion [34, 63] will inevitably damage the distinguishing abil-
ity of learned language features. 2) unable to recognize
3D instance-level information. Previous methods [30, 45]
usually predict a heatmap of similarity between the lan-
guage feature of the 3D scene and the text query. These
approaches may lead to inconsistent instance segmentation
results and can not distinguish the multi-instance objects of
the same semantics. However, instance-level information is
essential for 3D panoptic scene understanding.

To address the aforementioned two limitations, we pro-
pose PanoGS, a novel and effective 3DGS-based approach
for 3D panoptic open vocabulary scene understanding.
Firstly, to enhance the representation ability and spatial
smoothness of our learned language feature, we use a pyra-
mid tri-plane to model the latent continuous parametric fea-
ture space of the 3D scene. We use the 2D multi-view
fused feature cloud and confidence to perform distillation
of learned language features in 3D space, not 2D rendered
space, which can avoid the domain gap between 2D and
3D feature spaces caused by alpha-blending. In addition, to
obtain 3D instance information, we formulate 3D instance
segmentation as a graph clustering problem. To build the
3D scene graph, we use our language-guided graph cuts
algorithm to group Gaussian primitives into geometrically
and semantically consistent graph vertices, that is super-
primitives. Besides, we use the 2D segmentation model
SAM [19] to obtain 2D mask labels and construct the affin-
ity between 3D super-primitives based on the mult-view
consistency of 2D mask label distribution. Finally, a pro-
gressive clustering strategy is used to obtain globally con-
sistent instance information. Overall, the technical contri-
butions of our approach are summarized as follows:
• We propose PanoGS, the first 3DGS-based approach for

3D panoptic open vocabulary scene understanding.
• We learn an inherent smooth and accurate 3D language

feature field based on our latent pyramid tri-plane, which
is optimized by 2D fused feature cloud and confidence.

• We design an effective graph clustering based segmenta-
tion algorithm to synergistically leverage geometric and
semantic cues to obtain consistent 3D instances.

• We conduct extensive experiments on commonly used
datasets to demonstrate the 3D panoptic segmentation
performance of our approach.

2. Related Work
Panoptic Segmentation. Kirillov et al. [18] propose the 2D
panoptic segmentation task as a new research topic. While

many methods [5, 6, 31] focus on improving the reason-
ing ability of CNN models to understand individual images,
there is still a gap in 3D panoptic scene understanding due
to the lack of 3D training data. To enhance the 3D panoptic
segmentation, some works aim to lift 2D panoptic predic-
tions into 3D scene space, with different scene representa-
tions, such as point cloud [11, 61], voxels [29], 3DGS [44],
and implicit representation [10, 20, 35, 62]. However, those
works are rather limited to close-set panoptic segmentation
and can not recognize the objects of unseen classes.
3D Gaussian Splatting. Recently, 3DGS [16] has demon-
strated remarkable advancements in many tasks of 3D com-
puter vision [4, 14, 39, 57]. Compared to previous NeRF-
based approaches [22, 23, 27, 56], 3DGS represents the
scene with a set of anisotropic 3D Gaussian primitives ex-
plicitly. To enforce geometric consistency, some studies
aim to control the shape of the primitives [14], use unbi-
ased depth rendering [4], and introduce geometric regular-
ization during the optimization process, such as monocular
depth [25, 47], and normals [41, 46]. Besides, some works
extend 3DGS to model dynamic scenes with deformable
fields [50] and explicit motion estimation [36, 43]. Mean-
while, some work equips 3DGS with scene understanding
by extending each primitive with learnable language em-
beddings for open-vocabulary 3D queries. LangSplat [32]
uses an auto-encoder to compress the dimension of lan-
guage features. N2F2 [1] uses a tri-plane [3] as the addi-
tional feature encoding to reduce parameters.
3D Open Vocabulary Scene Understanding. Inspired by
the successful 2D visual-language models (VLMs) [2, 21,
33], some approaches aim to learn 3D consistent feature
fields to model the semantic property with explicit 3D struc-
tures [30] (e.g., point clouds). Besides, some researchers
try to perform scene understanding with neural implicit
representations [16, 27]. To achieve this, LERF [17] and
N3F [40] are early exploratory works, which optimize an
additional field branch to align the feature space with VLMs
(e.g., CLIP [33], DINO [2]). Recent efforts [32, 34, 60, 63]
have combined 3DGS with 2D scene understanding tech-
niques due to its advantage of explicit representation. How-
ever, they cannot distinguish the different objects with the
same semantics, which is not suitable for panoptic scene
understanding.

3. Method
As shown in Fig. 2, given multi-view posed images
{Ii, Di}mi=1, we can perform 3D open vocabulary scene un-
derstanding. To achieve this goal, we propose an effective
3D language feature field learning module, which adopts a
pyramid tri-plane to model the latent continuous parametric
feature space and regress the language feature from fused
feature cloud and confidence (Sec. 3.2). Besides, we apply a
graph clustering based segmentation algorithm to obtain 3D
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Figure 2. Overview of our approach. (a) Given posed RGB-D images, we reconstruct the scene with 3D Gaussian primitives, and each
primitive is associated with additional latent language code g generated from a latent continuous pyramid tri-plane feature space. (b) After
the geometry reconstruction, we obtain 2D fused primitive-level features and confidences via back projection, which is used for efficient
3D language feature regression and latent pyramid tri-plane and 3D decoder optimization. (c) We perform a language-guided graph cuts
algorithm to construct super-primitive and use the 2D instance mask generated by SAM [19] to conduct progressive graph clustering.

consistent instances based on the scene graph reconstructed
with geometry and language cues (Sec. 3.3).

3.1. Scene Representation
Benefiting from the efficiency of 3DGS [16], we take it as
our scene representation for 3D panoptic scene understand-
ing. Following the fast differentiable rasterization [26], we
can render the 3D scene properties to the 2D image plane.

Â =
∑
i

ai · αi ·
i−1∏
j=1

(1− αj), (1)

where Â are the rendered 2D scene information (e.g., color,
depth). ai and αi denote the 3D property and opacity con-
tribution of i-th Gaussian primitive, and

∏i−1
j=1(1 − αj) is

the accumulated transmittance.
Following previous works [16, 25], the appearance and

geometry loss functions are used for optimization:

Lrecon = w1 · Lc(Î , I) + w2 · Ld(D̂,D), (2)

where {wi} are the weights for each optimization compo-
nent and Lc and Ld are the L1 loss terms between rendered
color/depth and input color/depth.

Similar to previous 3DGS-based scene understanding
works [32, 34, 45, 60, 63], we additionally attach a latent
low-dimensional code g for each Gaussian primitive. Dif-
ferent from them, to reduce the memory requirement and
spatial noise introduced by the discrete representation, we
don’t explicitly save the individual features but model it via
a latent continuous pyramid tri-plane feature space. This de-
sign allows us to learn better scene language feature fields
for panoptic 3D scene understanding.

3.2. 3D Language Feature Learning

As an explicit modeling method, 3DGS can not store high-
dimensional language features for each primitive. Previous
approaches [32, 34, 63] apply quantization or compression
to reduce the dimensions. However, these operations in-
evitably reduce the accuracy and distinguishability of the
learned language features. To learn accurate 3D language
features, we regress the feature via decoding the latent lan-
guage code sampled from the 3D pyramid tri-plane.
Latent Pyramid Tri-plane. As shown in the middle part
of Fig. 2, we adopt a pyramid tri-plane to model the la-
tent continuous parametric feature space of the 3D scene.
Compared with the previous discrete feature of each Gaus-
sian primitive, our method can directly regress the language
features of the 3D scene, which is not affected by the bias
introduced by the alpha-blending as pointed out in [45, 57].
Specifically, given a 3D position µ, we first query its multi-
resolution latent language code via the following equation:

g(µ) =

n∑
i

{T (µ,X i
xy), T (µ,X i

yz), T (µ,X i
xz)}, (3)

where T (·) is the trilinear interpolation operation, and X i
xy ,

X i
yz , X i

xz represent the decomposed feature planes of i-th
resolution level in the pyramid.

Due to memory constraints, the dimension of the la-
tent code g(µ) is usually much less than the original lan-
guage feature. So, to obtain the high-dimensional language
feature for open vocabulary scene understanding, we use
the 3D language feature decoder Dlang , which transforms
the low-dimensional latent code into high-dimensional lan-
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guage feature with the following equation:

f3D(µ) = Dlang(g(µ)), (4)

where f3D(µ) ∈ RDl is the decoded high-dimensional lan-
guage and Dl is the dimension of the language feature.
Multi-view Feature Fusion. After obtaining the recon-
structed Gaussian primitives, we can project primitives into
multi-view 2D images. We use LSeg [21] to extract visual-
language feature maps for RGB images. So, for a 3D
Gaussian primitive pi, we can obtain its multi-view 2D fea-
ture vectors {f1, · · · , fm} from m 2D feature maps. To
obtain its fused primitive-level feature f2D

i , we adopt the
weighted average on the multi-view 2D feature vectors ac-
cording to the occlusion and observation of the 3DGS prim-
itive, f2D

i = Φ({f1, · · · , fm}) and Φ(·) is the pooling op-
eration. Additionally, the fused 3D primitive-level features
may have different confidence due to multi-view inconsis-
tency and occlusion. To measure this, we compute the con-
fidence value γ2D

i for i-th primitive pi as follows:

γ2D
i =

Obs(pi)∑
Dl

Var({f1, f2, · · · , fm})
, (5)

where Obs(pi) count the normalized number of valid obser-
vations of primitive pi, Var(·) denote the variance of the ob-
served multi-view language features {f1, f2, · · · , fm}, and
Dl is the dimension of the observed language feature fi.

So, for the reconstructed scene with N Gaussian prim-
itives, we can obtain the primitive-level 2D fused feature
cloud {f2D

i }Ni=1 and confidence {γ2D
i }Ni=1.

Language Feature Distillation. With the fused features
cloud and confidence, we can optimize our 3D latent pyra-
mid tri-plane {X i

xy,X i
yz,X i

xz} and 3D language feature
decoder Dlang to learn accurate feature representation.
Specifically, the latent codes g from the pyramid tri-plane
are assigned to 3D Gaussian primitives, and the 3D lan-
guage features of primitives are decoded from their latent
codes. So, for i-th primitive, its 2D fused language feature
f2D
i and 3D learned feature f3D

i , we can use the following
equation for optimization:

Lfeat =

N∑
i

γ2D
i · |1− cos(Dlang(gi), f

2D
i )|, (6)

where cos(·) denotes the cosine similarity function.

3.3. Graph Clustering based Segmentation
Previous methods [35, 62] lift 2D information to 3D space
for feature learning, which may lead to 3D multi-view in-
consistencies. Different from them, we directly cluster the
reconstructed 3D Gaussian primitives into several disjoint
subsets, where each subset can represent a class-agnostic
instance in the 3D scene. So, to achieve this goal, we for-
mulate this problem as a graph clustering task and construct

the 3D scene graph G = ({Vi}, {Eij}) based on our re-
constructed Gaussian primitives and learned 3D language
feature in Sec. 3.2. In the following, we elaborate on the de-
tails of how to construct the graph vertex {Vi}, edge affinity
{Ei}, and progressive graph clustering.
Graph Vertex Construction. Viewing each 3D Gaussian
primitive as a vertex and building a fully connected edge
weight graph between all vertexes is impractical for solv-
ing graph clustering problems due to indoor scenes usually
containing millions of 3D Gaussian primitives. Previous
works [12, 48, 53] use normal information and graph cuts
algorithm [9] to group 3D points into a set of superpoints.
However, only using the geometric properties can lead to
over-segmentation or under-segmentation. Benefiting from
our language feature learned in Sec. 3.2, we can simulta-
neously take the local geometry information and global se-
mantic information into consideration for grouping individ-
ual Gaussian primitives into a set of super-primitives.

To obtain geometrically and semantically consistent
super-primitives {Vi}, we perform the language-guided
graph cuts with our language feature during the merge pro-
cess. Additionally, to access the global semantic property
of super-primitives, we retrieve the language feature of the
current super-primitive, which is updated during the merge
process. In language-guided graph cuts, to judge whether
two super-primitives merge into a new vertex, we adopt the
following criteria:

∆ = 1 ((ni · nj) > λn) · 1
(
(f3D

i · f3D
j ) > λf

)
, (7)

where 1(·) is the indication function that equals 1 when
the condition is satisfied, ni and f3D

i are the normal and
language features within the current super-primitive. λn

and λf are the threshold parameters at this iteration in our
language-guided graph cuts process.

With our language-guided graph cuts algorithm, we can
obtain geometrically and semantically consistent super-
primitives rather than only using geometry information.
After traversing all reconstructed Gaussian primitives, we
view each super-primitive as a vertex Vi in the graph G,
which is represented by the disjoint sets of super-primitives.
Edge Affinity Computation. After obtaining graph ver-
tices {Vi}, we build edge and compute affinity based on
the spatial adjacency relationships between these super-
primitives. Inspired by recent works [38, 45, 48, 51, 53]
that use powerful segmentation models [19, 24] to generate
multi-view 2D instance masks as the guidance of instance-
level feature learning and clustering. Similarly, we also use
the 2D multi-view instance masks generated by SAM [19]
to aid the edge affinity computation.

To build the affinity between two super-primitives Vi and
Vj , we first project them into k-th image mask according to
the camera intrinsic. The 3D Gaussian primitives inside Vi

will fall in k-th instance mask, and each primitive should
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Figure 3. By projecting primitives inside different graph vertices
into k-th 2D SAM mask, V1 and V2 have similar mask label dis-
tributions, while V3 has different mask label distributions. So, we
can cluster V1 and V2 into the same category based on the distance
between the distributions.

have a 2D mask label in the k-th mask. So, we can obtain
its 2D mask label distribution qi based on the segmenta-
tion results of SAM [19]. As shown in Fig. 3, two super-
primitives that belong to the same 2D instance should have
similar 2D mask label distributions. So, we can take the 2D
mask label distribution as our 3D super-primitives consis-
tency criterion. To measure the difference between the 2D
mask label distribution of two 3D super-primitives, we use
the Jensen-Shannon divergence (JSD):

Ek
ij =

1

2

∑
z

[qi(z) log(
qi(z)

y(z)
) + qj(z) log(

qj(z)

y(z)
)], (8)

where y = (qi + qj)/2 is the average of two mask label
distributions.

Evidently, affinity from a single view may be noisy and
inaccurate. We should consider the multi-view consistency
when performing 3D consistent panoptic segmentation. So,
we aggregate multi-view affinity to achieve cross-view con-
sistency based on the proportion of primitives that can be
observed in different views. The final multi-view affinity is
defined in the following equation:

Eij =
1

k

∑
k=1

(
Vis(Vi)

|Vi|
· Vis(Vj)

|Vj |
· Ek

ij) (9)

where Vis(·) function indicates the number of visible prim-
itives in the current viewpoint and |Vi| denotes the number
of primitives insides Vi.

When we obtain the multi-view consistency criterion of
two super-primitives, we can merge them into the same in-
stance group based on the following progressive clustering
process.
Progressive Graph Clustering. According to the graph
G = ({Vi}, {Eij}) built in the previous section, we per-
form graph clustering that merges {Vi} with large affinity

scores into the same instance. To obtain the global con-
sistent clustering results, we adopt a progressive local-to-
global way to merge super-primitives with spatial neighbor
connections. Specifically, we first cluster the local super-
primitives with high-affinity scores and merge them into
large super-primitives. During each iteration, we update
the graph vertexes and edge affinity for the next iteration
due to the changes in the scene graph structure. We update
the affinity threshold during progressive clustering, which
is linearly reduced from 0.9 to 0.6 with 4 iterations.

3.4. Open Vocabulary Panoptic Segmentation
When we finish progressive graph clustering, we can obtain
a set of non-overlapping clustering groups where each en-
try represents a 3D class-agnostic instance. Besides, with
the 3D feature decoder optimized in Sec. 3.2, we can ob-
tain the 3D language feature for each primitive. For 3D
open vocabulary panoptic segmentation, we assume that the
Gaussian primitives inside the same super-primitive should
belong to the same semantic category. Therefore, we use
a prediction voting method to calculate the semantic cate-
gory of the super-primitive, which can get more complete
instance-level semantic segmentation results.

4. Experiments
In this section, we first describe our experimental setting
and then present quantitative and qualitative results of our
approach and state-of-the-art baselines on two commonly
used datasets. Additionally, we perform a detailed ablation
study to justify our design choices.

4.1. Experimental Settings
Datasets. Following the previous works [30, 45], we eval-
uate our method on two widely used indoor scene datasets,
Replica [37] and ScanNetV2 [8] for both quantitative and
qualitative evaluations. The Replica dataset contains high-
quality indoor scenes with carefully annotated ground-truth
semantic and instance labels. For a fair comparison, we take
the commonly-used 8 scenes {room0-2,office0-4}
for evaluation. The ScanNetV2 [8] dataset consists vari-
ous of challenging indoor scenes with different numbers of
RGB-D frames for each sequence, as well as reconstructed
point clouds and GT 3D point-level semantic labels. Fol-
lowing [45], we use the same 10 selected sequences and
settings for the evaluation of scene understanding.
Evaluation Metrics. For the evaluation of open vocabulary
3D scene understanding, we evaluate the performance of
our method on four widely-used metrics: point cloud mean
Intersection over Union (mIoU), mean Accuracy (mAcc.),
and 3D Panoptic Reconstruction Quality (PRQ) [7] which is
modified from the common 2D panoptic segmentation qual-
ity [18]. In our experiments, we use the thing-level metric,
PRQ (T), and stuff -level metric, PRQ (S) for evaluation.
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Method mIoU mAcc. PRQ (T) PRQ (S)

Open-vocab. semantic + Sup. mask [42]
LangSplat [32] 3.78 9.11 — —
LangSplat∗ [32] 29.47 45.29 22.57 28.44
OpenGaussian [45] 24.73 41.54 — —
OpenGaussian† [45] 24.89 37.35 22.87 19.71
OpenScene(Dis.) [30] 46.91 68.50 43.77 40.69
OpenScene(Ens.) [30] 47.63 69.74 43.53 40.43
Ours 50.72 70.20 33.84 36.22
Ours + Sup. mask [42] 50.72 70.20 49.26 48.24

Table 1. 3D semantic and panoptic segmentation results on Scan-
NetV2 [8]. The results of [32] and [45] are taken from [45] and
OpenScene [30] are obtained from their pre-trained model. ∗ in-
dicates our better implementation. † indicates no Gaussian filter is
used for the evaluation of panoptic segmentation.

Method mIoU mAcc. PRQ (T) PRQ (S)

Open-vocab. semantic + Sup. mask [42]
LangSplat∗ [32] 4.82 10.03 8.29 1.28
OpenScene(Dis.) [30] 44.32 56.14 31.43 10.95
OpenScene(Ens.) [30] 49.03 62.89 33.04 11.84
Ours 54.98 67.35 43.04 30.60
Ours + Sup. mask [42] 54.98 67.35 40.80 11.31

Table 2. 3D semantic and panoptic segmentation results on
Replica [37]. The results of OpenScene [30] are obtained from
their pre-trained model. ∗ indicates our better implementation of
LangSplat [32].

Implementation Details. Following [30, 45], we use
LSeg [21] as our pixel-aligned visual-language feature ex-
tractors for ScanNetV2 and Replica datasets. To extract
the language feature of the text query, we use the Open-
CLIP [33] ViT-B/16 model. For the 2D masks, we use the
ViT-H SAM [19] model to segment images. More details
are provided in our supplementary material.
Baselines. We compare our approach with recent 3DGS-
based approaches, LangSplat [32], OpenGaussians [45] and
point-cloud based method, OpenScene [30]. Due to the per-
formance of LangSplat [32] reported in [45] is too worse,
we modify it for better performance, which is indicated by
∗. And † indicates that no Gaussian filtering is used in [45]
for the evaluation of panoptic segmentation. Besides, due
to these methods can only extract the point-level language
features, we use the fully supervised 3D instance segmen-
tation approach SoftGroup [42] (trained on ScanNetV2 [8])
to provide instance mask proposals for the comparison of
panoptic segmentation.

4.2. Main Experiments
We evaluate the 3D panoptic segmentation metrics of
our approach and baseline on two commonly used Scan-

NetV2 [8] and Replica [37] datasets. Due to the open-
source codes of OpenGaussian [45] is not complete, we
can’t obtain its 3D scene understanding performance on the
Replica dataset. For OpenScene [30] , we use its 3D Distill
(Dis.) and 2D/3D Ensemble (Ens.) variants for comparison.
The best results are shown in bolded, and the second-best
results are represented in underlined.

3D Semantic Segmentation. The averaged quantitative se-
mantic segmentation results are shown in Tab. 1 and Tab. 2,
respectively. According to the 3D semantic segmentation
results in the table, our approach achieves the best results
on the mIoU and mAcc metrics of two datasets. Compared
with 3DGS-based approaches [32, 45], our method can
achieve significant improvements. Benefiting from learn-
ing language features in the 3D space, we can learn con-
sistent features for each Gaussian primitive, and avoid the
bias introduced by alpha-blending. Previous 3DGS-based
approaches learn individual and discrete features for each
Gaussian primitive which can lead to spatial noise and de-
stroy the smoothness of the semantic features. Our ap-
proach inherently learns language features from a 3D la-
tent pyramid tri-plane. Also, OpenScene [30] which utilizes
the 3D and 2D information to perform scene understanding
has achieved better performance than current 3DGS-based
methods. Our method still performs better than OpenScene
on the open vocabulary 3D semantic segmentation task. The
qualitative semantic segmentation results with open vocab-
ulary query of ScanNetV2 [8] are shown in Fig. 4. Our
method can achieve consistent segmentation results, while
previous 3DGS-based methods often lead to noisy segmen-
tation results, as shown in the first two columns of Fig. 4. In
addition, compared with OpenScene, we can achieve better
segmentation results on the long-tail categories.

3D Panoptic Segmentation. The averaged quantitative re-
sults are also shown in Tab. 1 and Tab. 2, respectively.
For the 3D panoptic segmentation performance, due to the
compared baselines only output point-level segmentation
results, we use the fully supervised 3D instance segmen-
tation approach, SoftGroup [42] (trained on ScanNetV2),
to generate 3D instance proposals for them. Since Soft-
Group [42] has a better instance segmentation performance
on ScanNetV2, our PRQ (T) and PRQ (S) are slightly worse
than the combination of OpenScene+SoftGroup. However,
when we use the 3D instance maks generated by SoftGroup,
we achieve the best results on 3D panoptic reconstruction
quality. For the Replica dataset, the segmentation results
of SoftGroup are worse than our approach. Based on our
learned language features and clustering-based segmenta-
tion results, we can achieve the best results in terms of PRQ
(T) and PRQ (S). Besides, we also show the qualitative
panoptic segmentation results of SoftGroup [42] and ours
in Fig. 5. As can be seen from the figure, we can general-
ize better than SoftGroup [42] for the instance segmentation
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LangSplat [32] OpenGaussian [45] OpenScene [30] Ours GT Segmentation

Figure 4. Qualitative 3D semantic segmentation comparison of ScanNetV2 [8]. Our approach outperforms recent 3DGS-based approaches,
LangSplat [32] and OpenGaussian [45], by a large margin. Compared with OpenScene [30], we can achieve better segmentation results on
thing-level objects.

SoftGroup [42] Ours GT Panoptic

Figure 5. Qualitative 3D panoptic segmentation comparison.
We show two reconstructed panoptic maps selected from Scan-
NetV2 [8] and Replica [37] datasets.

results on the Replica [37] dataset.
Open Vocabulary Query. We show the qualitative open
vocabulary query results of two selected scenes in Fig. 6.
Previous methods [30, 32, 34, 45] calculated the similar-
ity between scene features and text queries, and they can
not distinguish different objects with the same semantics.
However, our approach can obtain instance-level informa-
tion of different objects with the same semantics through
our clustering (shown in the first row of Fig. 6).

4.3. Ablation Studies and Analysis
We conduct ablation studies to analyze the effectiveness of
3D language feature learning and graph clustering based

vase

light

RGB & Query OpenScene [30] Ours

Figure 6. Qualitative results of open vocabulary query. The query
text is in the lower left of the RGB image. For OpenScene, the
redder the color, the higher the similarity. We use different colors
to distinguish different instances found in the query.

3D Dec. Py. Tri. mIoU mAcc. PRQ (T) PRQ (S)

✗ ✗ 24.51 40.48 20.57 23.07
✓ ✗ 36.39 53.17 23.68 33.59
✓ ✓ 50.72 70.20 33.84 36.22

Table 3. Ablation studies of our 3D language feature learning
module. The results are evaluated on the ScanNetV2 [8] dataset.

segmentation modules. When we analyze one module, the
other one is fixed and under the default setting.
Effects of the designs for our 3D language feature learn-
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JSD. Lang. Vot. mIoU mAcc. PRQ (T) PRQ (S)

✗ ✗ ✗ 50.21 61.69 20.28 17.42
✓ ✗ ✗ 50.21 61.69 33.22 25.21
✓ ✓ ✗ 50.21 61.69 35.28 27.41
✓ ✗ ✓ 52.69 63.25 40.10 31.57
✓ ✓ ✓ 54.98 67.35 43.04 30.60

Table 4. Ablation studies of our graph clustering based segmenta-
tion module. The results are evaluated on the Replica [37] dataset.

ing module. In Tab. 3, we show the quantitative analysis of
our feature learning module. 3D Dec. and Py. Tir. indicate
using the 3D decoder to regress language features from the
projected multi-view primitive-level feature and using our
latent pyramid tri-planes, respectively. w/o 3D Dec. and
Py. Tri. means that we use a 2D autoencoder similar to
LangSplat [32] and replace triplane with positional encod-
ing for feature learning. As shown in the table, compared
with directly performing distillation with 2D auto encode-
decoder (without 3D Dec. and Py. Tri.), using 3D feature
distillation and latent parametric encoding both can lead to
better performance and reduce the noise introduced by the
discrete Gaussian language feature. Additionally, on the
left of Fig. 7, we also show the language feature learning
gap of using 2D and 3D distillation way. From the fig-
ure, we can know that for large scenes, using the 2D dis-
tillation, the similarity of the learned language feature can
only reach 0.9. But using the coordinate-based 3D distil-
lation approach and our latent pyramid tri-plane, the fea-
ture learning performance can reach 0.95 and close to 1,
respectively. Besides, the performance of using the confi-
dence during distillation is shown in the right part of Fig. 7.
The results also validate the effectiveness of our confidence
based feature learning, which can efficiently reduce the im-
pact of features from unobserved and unreliable areas.
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Figure 7. Ablation studies of our 3D language learning module.
The results are evaluated on Replica [37] dataset.

Effects of the designs for our graph clustering based seg-
mentation module. In Tab. 4, we show the quantitative
analysis of our graph clustering based segmentation mod-
ule. JSD., Lang., and Vot. indicate using multi-view JSD
of mask label distributions to construct graph edge affinity,
using language-guided graph cuts to construct graph ver-

RGB w/o Lang. w Lang.
Figure 8. Qualitative comparison of using language-guided graph
cut for graph vertex construction. Using our learned language fea-
ture can distinguish the door (shown in red color).

tices, and using predictions voting (Sec. 3.4) for seman-
tic segmentation, respectively. Besides, w/o JSD. means
that we use the similarity of learned language features be-
tween super-primitives to construct edge affinity. As can be
seen from the table, compared with using language features
(w/o JSD.) to build graph edge affinity, using our multi-
view affinity from mask label distributions will significantly
improve our 3D panoptic reconstruction quality (PRQ (T):
33.22 v.s 20.28 and PRQ (S): 25.21 v.s 17.42). Using our
language-guided graph cuts can avoid merging different se-
mantic objects with similar structures into the same ver-
tex/instance, such as wall and door, as shown in Fig. 8. It
also can further improve the panoptic segmentation perfor-
mance of 3D instances. In addition, after obtaining accu-
rate clustering results, when performing semantic segmen-
tation, we vote the prediction results inside the same super-
primitive to obtain consistent prediction results for objects.
The results validate Vot. is also effective. It can ensure that
the primitives inside a 3D instance object have consistent
semantic prediction results, which can increase instance-
level IoU metrics for the predicted results and ground truth
in 3D panoptic segmentation.

5. Conclusion

In this paper, we propose PanoGS, an effective 3DGS-based
approach for 3D open vocabulary panoptic scene under-
standing which addresses the challenge of accurate 3D lan-
guage feature learning and consistent instance-level open
vocabulary segmentation. For the semantic information,
we regress the 3D language features from a latent contin-
uous parametric feature space learned by the latent pyramid
tri-planes and 3D feature decoder. For the panoptic infor-
mation, we adopt the language-guided graph cuts and pro-
gressive clustering strategy to construct geometrically and
semantically consistent super-primitives and obtain the 3D
panoptic information. Extensive experiments on commonly
used datasets demonstrate that PanoGS outperforms exist-
ing state-of-the-art methods for 3D open vocabulary panop-
tic scene understanding.
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