
Learning Object-Compositional Neural Radiance Field
for Editable Scene Rendering

Supplementary Material

Bangbang Yang1

Han Zhou1
Yinda Zhang2

Hujun Bao1
Yinghao Xu3

Guofeng Zhang1
Yijin Li1

Zhaopeng Cui1*

1State Key Lab of CAD&CG, Zhejiang University 2Google 3The Chinese University of Hong Kong

In this supplementary material, we will describe the
model architecture in Sec. A, the implementation details in
Sec. B, and dataset information in Sec. C. Besides, we also
provide more experiment results in Sec. D.

A. Model Architecture
The model architecture is shown in Table A. We fol-

low Mildenhall et al. [5] and use separated “coarse” and
“fine” models with 64 sampling locations. For the learn-
able voxel embeddings, we use 16-dimension for fscn and
8-dimension for fobj , and fix the voxel size at 0.1m to main-
tain constant memory consumption. Besides, the design of
the object branch is shallower than the scene branch since
we find it sufficient to learn an accurate and intact object
opacity field for editable scene rendering, as shown in Fig. I
and Fig. J.

B. Implementation Details
B.1. Training Details

We train our model with a batch size of 2048 rays on
a single Nvidia RTX2080Ti-11G GPU, where the rays are
sampled from all the training images. Practically, we follow
NeRF’s sampling strategy and jointly train two branches
with the same sampled rays while assigning an object iden-
tity to each ray (Sec 3.3), which is sufficient for the object
branch to converge. In this way, the training time of the
object branch is not proportional to the number of object
classes. We adopt the Adam optimizer with an initial learn-
ing rate of 0.001 and a polynomial decay schedule with the
power of 2. For the object supervision loss (Eq.2 in the
paper), we set λ1 = 1.0 and λ2 = 10.0, and set 0.05 for
“0” signals and 1.0 for “1” signals in the balanced weight
w(r)k, so as to ensure a smoother convergence for object
opacity learning. The training process takes about one day
for each scene.

*Corresponding author

Input Description Output Output Dimension

Inputs
/ Space Coord. Emb. γ(x) #1 63 (3+3×10×2)
/ Ray Dir. Emb. γ(d) #2 27 (3+3×4×2)
/ Scene Voxel Feature Emb. γ(fscn) #3 208 (16+16×6×2)
/ Object Voxel Feature Emb. γ(fobj) #4 104 (8+8×6×2)
/ Object Activation Code lobj #5 128

Scene Branch
#1 ⊕ #3 MLP(256, 256, 256, 256) + LReLU #6 256
#1 ⊕ #3 ⊕ #6 MLP(256, 256, 256, 256) + LReLU #7 256
#7 MLP(1) σscn 1
#7 MLP(256) #8 256
#8 ⊕ #2 MLP(128) + LReLU #9 128
#9 MLP(128, 3) + Sigmoid cscn 3

Object Branch
#1 ⊕ #3 ⊕ #4 ⊕ #5 MLP(128, 128) + LReLU #10 128
#1 ⊕ #3 ⊕ #4 ⊕ #5 ⊕ #6 MLP(128, 128) + LReLU #11 128
#11 MLP(1) σobj 1
#11 MLP(128) #12 128
#12 ⊕ #2 MLP(64) + LReLU #13 64
#13 MLP(64, 3) + Sigmoid cobj 3

Table A. Model architecture. MLP(C1, C2) denotes the multi-
layer perceptron with the FC output size of C1, C2. ⊕ is the oper-
ation of concatenation.

B.2. Implementation of Sparse Voxel (NSVF)

The official codebase of NSVF [4] does not include the
preprocessing code or instructions to run on the ScanNet
dataset, and we also fail to run it on our selected scenes due
to the GPU OOM error. Thus, we use our implementation.
The main difference is that we use 16-dimension for voxel
embeddings to make a fair comparison, which ensures to
train on the selected scenes without OOM issue. We name
our implementation for NSVF as Sparse Voxel in the exper-
iments.

C. Datasets

C.1. ToyDesk Dataset

The ToyDesk dataset contains two image sets with 96
and 151 posed images and the corresponding 2D instance
segmentation. Several toys are randomly placed on a desk,
and we capture images around the desk. We use a DSLR
(FoV 68.7◦) and a mobile phone (FoV 67.9◦) to capture

Config. PSNR SSIM LPIPS

w/o SG, 3DGM 22.842 0.674 0.081
w/o 3DGM 22.853 0.673 0.077
Our Scene Renderer 23.541 0.705 0.070

Table B. Ablation for the effectiveness of our proposed scene guid-
ance and 3D guard mask on learning object radiance field.

two image sets with different toy layouts and camera trajec-
tories. Then, we utilize the SfM [6] and 3D reconstruction
techniques [8, 3] to recover meshes with camera poses. Fi-
nally, we annotate objects on the meshes and project the
mesh labels to generate 2D segmentation masks. Note that
the quality of the 2D segmentation masks highly depends
on the reconstructed mesh, and usually not accurate near
object boundaries. In our evaluation, we randomly sample
80% frames for training and others for testing.

C.2. ScanNet Dataset

In our experiments, we choose ‘scene0024 00’,
‘scene0038 00’, ‘scene0113 00’ and ‘scene0192 00’
for scene rendering and editing comparison. For these
sequences, we count the percentage of pixel coverage
of objects (∼30%) and distance between the camera
center to target objects (∼2m) for ScanNet images, which
indicates that some images are captured far from objects
and thus have good coverage of background. For ablation
studies, we choose ‘scene0033 00’, ‘scene0038 00’,
‘scene0113 00’ and ‘scene0192 00’, as these four scenes
contain occlusion observations for target objects. Besides,
we also find that some of the images have a black border
caused by image undistortion. Thus, we mask out the
border of the images at the training process for NeRF [5],
NSVF [4] and our method.

D. More Experimental Results
D.1. Evaluation of Scene Guidance and 3D Guard

Mask

We also evaluate the effectiveness of the proposed scene
guidance and 3D guard mask. We choose ‘scene0113 00’
and ‘scene0192 00’ and follow the same evaluation setup
from the paper (4.6). The results are shown in Table B and
Fig. B. It is clear that our proposed strategies not only bring
a smoother rendering contour (the first row in Fig. B) but
also ensure a more complete rendered object (the second
row in Fig. B).

D.2. Robustness against Input Segmentation

To inspect the robustness of our method on the segmen-
tation, we manually add noise to the input segmentation by
randomly dilating or eroding input masks for several pixels,
and the results are shown in Fig. F. We also visualize the

Figure A. We visualize the effectiveness of scene guidance and 3D
guard mask by ablating them on the training process of the Scan-
Net dataset, where (b) is produced by scene branch with sampling
rays clipped inside the bounding box, which can be considered
as a reference view of the complete object, (c) is trained without
guided biased sampling and 3D guard mask, (d) is trained without
3D guard mask, and (e) is trained with the complete model. The
proposed strategies effectively prevent the overkill of the occluded
region and ensure a complete and smooth object rendering.

Our Edit NPCR Edit NSVF Edit
0

15

30

45

60

75

63.9%

19.4% 16.7%

Scene Editing Visual Naturalness

Figure B. User study of visual naturalness on scene editing.

perturbed mask at the rows of input segmentation, where the
yellow border denotes the dilated area and the green border
denotes the eroded area. To our surprise, even we add 30-
pixel noise to the segmentation in 640×480, our model still
renders complete objects with only the border being slightly
affected.

D.3. Robustness against 2D Predicted Segmentation

To evaluate the robustness of our method on the auto-
labeled segmentation, we train our network with segmenta-
tion predicted by BlendMask [1] that contains randomly er-
roneous mask boundaries (e.g., occasionally over-covering
or missing part as annotated with red rectangles in (d)). As
shown in Fig. D, our method is not affected by inconsistent
mask, and the rendered object is complete.

(a) Image view (b) Rendered
object by our

method

(c) Rendered
opacity by our

method

(d) Rendered
object by learned

mask

(e) Rendered
opacity by learned

mask

Figure C. We show the rendered objects and opacity by our method and an alternative design which learns 3D masks.

(a) Original view (b) 3D based masks (d) 2D based masks(c) Rendered Obj.
with (b)

(e) Rendered Obj.
with (d)

Figure D. We show the rendered object that is trained with different masks. (a) is the input image view. (b) is the 3D based masks provided
by the ScanNet dataset. (c) is the rendered object trained with (b). (d) is the 2D based masks predicted by BlendMask [1] and contains
randomly erroneous mask boundaries (e.g., over-covering or missing part as annotated with red rectangles). (e) is the rendered object
trained with (d).

D.4. Comparison to the Alternative Design

There is an alternative design that learns 3D object masks
and directly applies them to the scene-level radiance field.
To compare with it, we construct a learnable object opacity
mask with the object branch by adding a Sigmoid function
to the output of σobj in Table A. Then we apply this mask to
the outputs of the scene branch to obtain the object radiance
field. We present the rendered objects and 2D opacity in
Fig. C, which demonstrate that this alternative design strug-
gles to learn details of the object (e.g., blurry handle of the
chair at the first row), and shows less accuracy of the ob-
ject boundary (e.g., the bottom of the chair is much fuzzi-
ness), and even the background opacity is slightly bleed-
ing out (green rectangle at the first row of Fig. C (e)). Be-

sides, to render an object, we need to perform two forward
passes on the scene branch and the object ‘mask’ branch,
respectively, which increases the computational cost com-
pared to our method. In conclusion, we think the object
decomposition of neural implicit representation should be
jointly learned in our way instead of learning separately.

D.5. More Results on Scene Rendering

We show more qualitative results of scene rendering on
ToyDesk dataset and ScanNet dataset in Fig. G and Fig. H.
Compared to other SoTA methods, our rendered images
show finer details on the objects (e.g., dragon teeth at the
last row of Fig. G, chair leg at the second row of Fig. H)
and the surrounding environment (e.g., background at the
second row of Fig. G).

(a) Original View (b) Supervisory Seg. (c) Rendered Object (d) Rendered Opacity

Figure E. We show the training input ((a) original view and (b) supervisory segmentation) and rendered results ((c) rendered object and (d)
rendered opacity) on a complex shape. The rendered results are animatable if opened by Adobe Reader.

D.6. More Results on Scene Editing

We present more visual results of scene editing on the
ToyDesk dataset and the ScanNet dataset in Fig. I and Fig. J.
Specifically, we also show the editing examples of Sparse
Voxel (Fig. J (c)) and our method without depth supervi-
sion (Fig. J (d)). For the Sparse Voxel, we transform the
sampling points according to the bounding boxes of tar-
get objects, so that the input voxel embeddings are inter-
polated from the transformed coordinates. However, it still
suffers from the similar issue of bounding box based ob-
ject manipulation (e.g., moved window texture at the first
row and moved carpet texture at the third row). In con-
trast, our method consistently produces more realistic scene
editing results even without the supervision of depth loss.
We also perform a user study of the view naturalness on 50
edited shuffled image results with 20 users, and our method
is ranked the first as shown in Fig. B. Please refer to the sup-
plementary video for vivid animations of our scene editing.

D.7. Experiment on Complex Shapes

To test the network ability on complex shapes, we
train the model on the VaseDeck sequence from Milden-
hall et al. [5] with coarse segmentation annotated by La-
belMe [7]. As shown in Fig. E (animation if opened by
Adobe Reader), except some missing stamens, the ren-
dered petals and leaves are clear and complete.

References
[1] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yong-

ming Huang, and Youliang Yan. BlendMask: Top-Down
Meets Bottom-Up for Instance Segmentation. In Proceed-
ings of IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8570–8578, 2020. 2, 3

[2] Peng Dai, Yinda Zhang, Zhuwen Li, Shuaicheng Liu, and
Bing Zeng. Neural Point Cloud Rendering via Multi-Plane
Projection. In Proceedings of IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7827–7836,
2020. 6

[3] Michael M. Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson Surface Reconstruction. In Proceedings of Euro-

graphics Symposium on Geometry Processing, pages 61–70,
2006. 2

[4] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In Proceed-
ings of Advances in Neural Information Processing Systems,
volume 33, 2020. 1, 2, 6

[5] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing Scenes as Neural Radiance Fields for View Syn-
thesis. In Proceedings of European Conference on Computer
Vision, pages 405–421, 2020. 1, 2, 4, 6

[6] Johannes L. Schönberger and Jan-Michael Frahm. Structure-
from-Motion Revisited. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 4104–
4113. IEEE Computer Society, 2016. 2

[7] Kentaro Wada. labelme: Image Polygonal Annotation with
Python. https://github.com/wkentaro/labelme,
2016. 4

[8] Qingshan Xu and Wenbing Tao. Multi-Scale Geometric Con-
sistency Guided Multi-View Stereo. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5483–5492, 2019. 2

https://github.com/wkentaro/labelme

Im
ag

e
V

ie
w

Im
ag

e
V

ie
w

In
pu

t
Se

gm
en

ta
tio

n
R

en
de

re
d

Se
gm

en
ta

tio
n

R
en

de
re

d
O

bj
ec

t
In

pu
t

Se
gm

en
ta

tio
n

R
en

de
re

d
Se

gm
en

ta
tio

n
R

en
de

re
d

O
bj

ec
t

No Noise Random 5 Pixels
Dilation or Erosion

Random 10 Pixels
Dilation or Erosion

Random 20 Pixels
Dilation or Erosion

Random 30 Pixels
Dilation or Erosion

No Noise Random 5 Pixels
Dilation or Erosion

Random 10 Pixels
Dilation or Erosion

Random 20 Pixels
Dilation or Erosion

Random 30 Pixels
Dilation or Erosion

An example of dilated and eroded area.

eroded areadilated area

Figure F. Qualitative evaluation w.r.t. noise on the input 2D segmentation mask. We randomly erode or dilate input segmentation masks
by some pixels and visualize them in the second row and the sixth row, where the yellow border denotes the dilated area and the green
border denotes the eroded area.

Figure G. We compare scene rendering quality with NeRF [5] and Sparse Voxel [4] on the ToyDesk dataset. Please zoom in for more
details.

Figure H. We show scene rendering examples of NPCR [2], NeRF [5], Sparse Voxel [4] and our method on the ScanNet dataset. Please
zoom in for more details.

Figure I. Scene editing comparison on the ToyDesk dataset. Please zoom in for more details.

Figure J. Scene editing comparison on the ScanNet dataset. Please zoom in for more details.

	anm1:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

