
Factorized and Controllable Neural Re-Rendering of Outdoor
Scene for Photo Extrapolation

Supplementary Material
Boming Zhao∗

bmzhao@zju.edu.cn
Zhejiang University

Bangbang Yang∗
ybbbbt@gmail.com
Zhejiang University

Zhenyang Li
zhenyounglee@gmail.com

Baidu.com

Zuoyue Li
zuli@student.ethz.ch

ETH Zürich

Guofeng Zhang
zhangguofeng@zju.edu.cn

Zhejiang University

Jiashu Zhao
jzhao@wlu.ca

Wilfrid Laurier University

Dawei Yin
yindawei@acm.org

Baidu.com

Zhaopeng Cui†
zhpcui@gmail.com
Zhejiang University

Hujun Bao†
bao@cad.zju.edu.cn
Zhejiang University

In this supplementary material, we will describe more details of
our method, including a preliminary that describes the acronyms,
concepts and related rendering models of our work in Sec. A, model
architectures (geometry / base appearance MLP, shadow MLP, sky
generator and tone mapper) in Sec. B, details of training and ex-
trapolated 3D photo generation in Sec. C. Besides, we also provide
more discussions of limitations in Sec. D and experiment results in
Sec. E.

A Preliminary
A.1 NeRF and NeuS Preliminaries
Neural Radiance Fields (NeRF) [11].NeRF represents scene with
several MLP layers, which take as input a 3D position x = (𝑥,𝑦, 𝑧)
and viewing direction d = (𝑑𝑥 , 𝑑𝑦, 𝑑𝑧), and produce as output a
density 𝜎 and color c = (𝑟, 𝑔, 𝑏). To render the color of a single
pixel, NeRF approximates the volume rendering integral. Each pixel
in an image corresponds to a ray r(𝑡) = o + 𝑡d. To render the color
of r, NeRF draws point samples with distances {𝑡𝑖 }𝑁𝑖=1 along the
ray, and passes the point locations r(𝑡𝑖 ) as well as view directions
d to obtain density 𝜎𝑖 and colors c𝑖 . The resulting color is rendered
following the quadrature rules [9], which is defined as:

𝐶 (r) = R(r, c, 𝜎) =
𝐾∑︁
𝑘=1

𝑇 (𝑡𝑘 )𝛼 (𝜎 (𝑡𝑘 )𝛿 (𝑡𝑘 )) c(𝑡𝑘 ),

𝑇 (𝑡𝑘 ) = exp(−
𝑘−1∑︁
𝑘′=1

𝜎 (𝑡𝑘′)𝛿𝑘′), 𝛼 (𝑥) = 1 − exp(−𝑥),

(1)

where R(r, c, 𝜎) is the volumetric rendering through ray r of color
c with density 𝜎 , c(𝑡) and 𝜎 (𝑡) are the color and density at point
r(𝑡) respectively, and 𝛿𝑘 = 𝑡𝑘+1 − 𝑡𝑘 is the distance between two ad-
jacent sampling points on the ray. Stratified sampling and informed
sampling are used to select sample points {𝑡𝑘 }𝐾𝑘=1 between the near
plane 𝑡𝑛 and far plane 𝑡𝑓 .

∗Boming Zhao and Bangbang Yang contributed equally to this work. The authors from
Zhejiang University are also affiliated with the State Key Lab of CAD&CG.
†Corresponding authors: Hujun Bao and Zhaopeng Cui.

To enable the NeRF MLP to represent higher frequency detail,
the inputs x and d need to be preprocessed by a positional encoding
𝛾𝑃𝐸 :

𝛾𝑃𝐸 (𝑝) = [sin(20𝜋𝑝), cos(20𝜋𝑝), ..., sin(2𝐿−1𝜋𝑝), cos(2𝐿−1𝜋𝑝)],
(2)

where 𝐿 is the frequency of positional encoding.
Neural Implicit Surfaces [15]. Although NeRF can synthesize
high-quality novel view images, extracting high-fidelity surface
from the learned implicit field is difficult due to lack of sufficient
constraints on its level sets. In contrast, NeuS selects SDF func-
tions as the representation of scene geometry, which delivers exact
surfaces and smooth normal that facilitate our factorized neural
re-rendering model. The design of NeuS’s rendering formulation
(see Eq. (1) in the main paper) aims at achieving transmittance’s
maximal slope precisely at the zero-crossing of its SDF, allowing
an unbiased estimate of the corresponding surface.

A.2 The Rendering Equation
Though recent neural rendering approaches [8, 10] have achieved
great success in modeling outdoor lighting variations with latent
appearance code, they are not capable of controllable re-rendering
with user-selected lighting effects. Inspired by explicit lighting mod-
els [6, 19], wemodel scene appearance with a rendering formulation
that is derived from the classical rendering equation [6]. Here, we
first briefly introduce the rendering equation. For a surface point
x with surface normal n, suppose 𝐿𝑖 (𝜔𝑖 ; x) is the incident light in-
tensity at location x along the direction 𝜔𝑖 , and BRDF 𝑓𝑟 (𝜔𝑜 , 𝜔𝑖 ; x)
is the reflectance coefficient of the material at location x for inci-
dent light direction 𝜔𝑖 and viewing direction 𝜔𝑜 , then the observed
light light intensity 𝐿𝑜 (𝜔𝑜 ; x) is an integral over the hemisphere
Ω = {𝜔𝑖 : 𝜔𝑖 · n > 0}:

𝐿𝑜 (𝜔𝑜 ; x) =
∫
Ω
𝐿𝑖 (x, 𝜔𝑖 ) 𝑓𝑟 (𝜔𝑜 , 𝜔𝑖 ; x) (𝜔𝑖 · n)d𝜔𝑖 . (3)

Since our goal is to model outdoor scenes, we adopt the Lambertian
reflectance assumption [7, 17, 18], so the diffusion term has the
same reflection intensity for all 𝜔𝑜 in the hemisphere. Hence, in



MM ’22, October 10–14, 2022, Lisboa, Portugal. Boming Zhao and Bangbang Yang, et al.

our setting, Eq. (3) can be rewritten as:

𝐿𝑜 (x) =
∫
Ω
𝐿𝑖 (x, 𝜔𝑖 )a(𝜔𝑖 · n)d𝜔𝑖 . (4)

where a is the basic color from the base appearance MLP. Specifi-
cally, we represent illumination in the form of an environment map
(introduced later) and ignore indirect reflections between objects.
Therefore the integral of Eq. (4) can be represented as the sum of
all environment light sources:

𝐿𝑜 (x) =
∑︁
𝜔𝑖

𝐿𝑖 (x, 𝜔𝑖 )a(𝜔𝑖 · n)Δ𝜔𝑖 . (5)

A.3 The Environment Map
We adopt a an HDR environment map [1] (with the form of latitude-
longitude) for external lighting modeling. Specifically, we follow
the setting of NeRFactor [19] and use a 16 × 32 resolution for the
HDR map. Intuitively, the environment map can be regarded as 512
point light sources with fixed positions.

B Model Architecture
Geometry / base appearance MLP. The geometry and base ap-
pearance MLPs consist of 8 hidden layers with the hidden size of
256, where we use SoftPlus for the former and ReLU activation for
the latter, and add skip connections to the forth layer as suggested
by Wang et al. [15]. To increase the representing resolution of the
network, we apply positional encoding to the query point position
x (with 10 frequencies). Note that different from the color branch in
previous works [11, 15], our base appearance MLP takes the same
input as the geometry MLP, i.e., only the query point position x
without the viewing direction v, because we adopt the Lambertian
reflectance assumption [7, 17, 18] to ease the representation and
factorized learning of outdoor scenes.
ShadowMLP. As shown in Fig. 2 from the main paper, our shadow
MLP takes the query position x (with the positional encoding of 6
frequencies) and a 64-dimensional per-frame latent shadow code 𝒍𝑠
as input, and then outputs the scalar shadow value 𝑠 at x. Practically,
we build the shadow MLP of 4 hidden layers with the hidden size of
256, which is shallower than the geometry/base appearance MLPs.
Neural sky generator. The neural sky generator models the vary-
ing sky appearance as a spherical dome at infinity, i.e., taking the
viewing direction v and a 64-dimensional per-frame latent envi-
ronment code 𝒍𝑒 as input and directly output RGB colors, which is
inspired from GANCraft [4] and also follows the concept of “Sky
Box” in the standard rendering pipeline. In practice, the sky gener-
ator is constructed as an MLP of 3 hidden layers with the hidden
size of 256, and the network input v is also elevated with positional
encoding (4 frequencies).
Affine tone mapper. The affine tone mapper is introduced to com-
pensate for the limitation of data-driven HDR prior that struggles
to handle sensor variations (e.g., white balancing, auto-exposure),
as explained in Sec. 3.1 of the main paper. Instead of optimizing the
explicit affine matrix, motivated by Rematas et al. [12], we learn
an MLP based mapper that converts a 64-dimensional per-frame
latent tone code into a 3 × 4 affine matrix, which empirically en-
sures a smoother optimization space for the training. To avoid the

overfitting, we set the MLP with 2 hidden layers and the hidden
size of 64.

C Implementation Details
C.1 Training Settings
As introduced in Sec. 3.2 of the main paper, we use a composited
training scheme to learn factorized scene re-rendering from clut-
tered datasets, which includes a geometry learning stage and a
scene re-rendering learning stage. For both two stages, we use the
same setting with a batch size of 512 rays, 64 coarse and 64 fine
sampling points along each ray. We employ the Adam optimizer
with an initial learning rate of 0.0005 and a cosine annealing sched-
uler with 5000 warm-up steps. The training process takes about 20
hours for each scene on a single Nvidia RTX3090-24G GPU, with
90k iterations for the first stage and 40k iterations for the second
stage.

C.2 Extrapolated 3D Photo Generation
The processing of extrapolated 3D photo generation can be divided
into the background rendering (e.g., scene buildings) step, fore-
ground warping (e.g., tourists) step, and blending step. During the
background rendering step, we first obtain the camera pose of the
given photo, which is directly accessible for our testing dataset
and can be also estimated for unseen photos with mature visual
localization pipelines [13]. Then, we adapt the lighting conditions
of the model by optimizing latent codes to the given photo with
masked background areas (see Sec. 3.3 in the main paper). Finally,
we synthesize swaying poses based on the current camera pose and
enlarge the field of view (FoV) to obtain an extrapolated background
view of the photo. During the foreground warping step, we aim
to sway the selected tourists to make their motion consistent with
the global swaying poses. Instead of recovering human body ge-
ometries for human warping [14], we simply treat the front tourist
lying at a vertical plane in front of the camera, and thus we can
compute a homography warping matrix with the same swaying
pose [5] to make the foreground move together. In practice, during
the computation of homography, we assume that the target per-
sons are standing in front of the camera at a reasonable distance,
which is adjustable by users. Besides, to facilitate foreground and
background blending, we also warp the foreground human masks
with the same homography. In the final blending step, we feather
the warped foreground human mask, and then apply the linear
blending to blend the foreground and the background together.

D More Discussions
Limitation for real-world applications. 1) Due to the frequent
network queries of volume rendering, the rendering speed of our
method is about 4minutes for each frame (at a resolution of 960×540).
In the future, we can accelerate network inference by adopting the
latest volume caching techniques [2, 3]. 2) During the extrapolated
3D photo generation, the swaying foreground persons are directly
obtained from the given photo. So we only support photo extrapo-
lation for the background scene and 3D photo generation without
downward views, while the uncaptured part of the human bod-
ies are not considered. A possible workaround is to adopt portrait



Factorized and Controllable Neural Re-Rendering of Outdoor Scene for Photo Extrapolation
Supplementary Material MM ’22, October 10–14, 2022, Lisboa, Portugal.

GT

NeRF-W
Normal

Trevi Fountain Sacre Coeur Westminster Abbey Pantheon Notre Dame

Scene Re-Rendering

Ours
Normal

Figure A: We compare the surface normal between our method and NeRF-W (with density gradient w.r.t. query points). Note
that our normal is much smoother and more reasonable than the previous NeRF-based method like NeRF-W, which ensures a
natural re-rendering with external scene lighting.

image completion techniques [16] to complete the tourist persons
at the beginning, which can be integrated into our method and
considered as a future work.
Limitation of realism augmentation. Since the network of our
realism augmentation is fine-tuned with a single user-captured
photo, it works well for familiar patterns where both the user’s
photo and the rendered image overlap, but might lose generaliza-
tion if the overlapping area is not sufficient (e.g., the user’s photo
only contains a small portion of the background). In the case that
the user’s photo is very narrow, we suggest conducting realism
augmentation in a partially fine-tuned way, i.e., optimizing only
the decoder of realism augmentation while freezing others, which
might be less detailed but can avoid unexpected artifacts caused by
overfitting.

E More Experiment Results
Comparison of surface normal.We compare the rendered sur-
face normal between our method and NeRF-W [8]. As shown in
Fig. A, our surface normal is much smoother than NeRF-W even
trained with the same cluttered dataset (e.g., a smoother dome in
Trevi Fountain and clearer arch doors in Notre Dame). As a smooth
normal is proven to be essential for re-renderingwith given external
lighting [19], we believe such SDF-based geometry representation
is more suitable for outdoor scene re-rendering with controllable
lighting conditions.
Data-driven HDR decoder vs. explicit HDR parameters or
MLP decoder from stratch. One alternative design of learning
sky HDR map is to directly optimize explicit HDR parameters (i.e.,

Ours with 
Data-Driven Prior

Original
Scene 

Rendering

Explicit Param.

Change HDR map snowy

 

Given HDR

Learned HDR Learned HDR

Re-Rendering 
with Given 
HDR Map

Given HDR Given HDR

Learned HDR

MLP Decoder 
from Scratch

Figure B: We compare our data-driven HDR decoder with
two alternative designs, i.e., explicit HDR parameters and
learnable HDR decoder trained from scratch.



MM ’22, October 10–14, 2022, Lisboa, Portugal. Boming Zhao and Bangbang Yang, et al.

optimize a 16×32×3matrices per frame) [19], or train anMLP-based
HDR decoder from scratch. We thus make a comparison between
our HDR decoder with data-driven prior and these two alternative
designs in the second re-rendering training stage as introduced in
Sec. 3.2, and visualize the learned HDRmaps and the controllable re-
rendering results in Fig. B. It is clear that when training re-rendering
without any prior knowledge, the factorized re-rendering model
cannot learn a plausible HDR map (e.g., cluttered HDR maps in the
top row), which also affects the scene rendering and controllable
re-rendering with customized HDR maps (e.g., unconverged or
blurry rendering results at the first two column in Fig. B). Thanks
to the data-driven HDR decoder, our learned HDR map is much
more plausible and can better support scene re-rendering with
user-defined HDR maps.

References
[1] Paul Debevec. 2008. Rendering Synthetic Objects into Real Scenes: Bridging Tra-

ditional and Image-based Graphics with Global Illumination and High Dynamic
Range Photography. In Acm siggraph 2008 classes. 1–10.

[2] Fridovich-Keil and Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields without Neural Networks.
(2022).

[3] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien
Valentin. 2021. Fastnerf: High-Fidelity Neural Rendering at 200FPS. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 14346–14355.

[4] Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu Liu. 2021. GANcraft:
Unsupervised 3d Neural Rendering of Minecraft Worlds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 14072–14082.

[5] Richard Hartley and Andrew Zisserman. 2003. Multiple View Geometry in Com-
puter Vision. Cambridge university press.

[6] James T Kajiya. 1986. The Rendering Equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques. 143–150.

[7] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and
Manmohan Chandraker. 2020. Inverse Rendering for Complex Indoor Scenes:
Shape, Spatially-Varying Lighting and SVBRDF from a Single Image. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2475–2484.

[8] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron,
Alexey Dosovitskiy, and Daniel Duckworth. 2021. NeRF in the Wild: Neural Radi-
ance Fields for Unconstrained Photo Collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7210–7219.

[9] NelsonMax. 1995. Optical Models for Direct Volume Rendering. IEEE Transactions
on Visualization and Computer Graphics 1, 2 (1995), 99–108.

[10] Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues Hoppe, Rohit Pandey,
Noah Snavely, and Ricardo Martin-Brualla. 2019. Neural Rerendering in the
Wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 6878–6887.

[11] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In European conference on computer vision. Springer,
405–421.

[12] Konstantinos Rematas, Andrew Liu, Pratul P. Srinivasan, Jonathan T. Barron,
Andrea Tagliasacchi, Tom Funkhouser, and Vittorio Ferrari. 2022. Urban Radiance
Fields. CVPR (2022).

[13] Johannes L. Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion
Revisited. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Computer Society, 4104–4113.

[14] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. 2020. 3D Pho-
tography Using Context-Aware Layered Depth Inpainting. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[15] PengWang, Lingjie Liu, Yuan Liu, Christian Theobalt, TakuKomura, andWenping
Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction. NeurIPS (2021).

[16] Xian Wu, Rui-Long Li, Fang-Lue Zhang, Jian-Cheng Liu, Jue Wang, Ariel Shamir,
and Shi-Min Hu. 2019. Deep Portrait Image Completion and Extrapolation. IEEE
Transactions on Image Processing 29 (2019), 2344–2355.

[17] Ye Yu, Abhimitra Meka, Mohamed Elgharib, Hans-Peter Seidel, Christian
Theobalt, andWilliam AP Smith. 2020. Self-Supervised Outdoor Scene Relighting.
In European Conference on Computer Vision. Springer, 84–101.

[18] Ye Yu and William Alfred Peter Smith. 2021. Outdoor Inverse Rendering from
a Single Image Using Multiview Self-Supervision. IEEE Transactions on Pattern

Analysis and Machine Intelligence (2021).
[19] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T

Freeman, and Jonathan T Barron. 2021. NeRFactor: Neural Factorization of Shape
and Reflectance Under an Unknown Illumination. ACM Transactions on Graphics
(TOG) 40, 6 (2021), 1–18.


	A Preliminary
	A.1 NeRF and NeuS Preliminaries
	A.2 The Rendering Equation
	A.3 The Environment Map

	B Model Architecture
	C Implementation Details
	C.1 Training Settings
	C.2 Extrapolated 3D Photo Generation

	D More Discussions
	E More Experiment Results
	References

