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Abstract. Very recently neural implicit rendering techniques have been
rapidly evolved and shown great advantages in novel view synthesis and
3D scene reconstruction. However, existing neural rendering methods
for editing purposes offer limited functionality, e.g ., rigid transforma-
tion, or not applicable for fine-grained editing for general objects from
daily lives. In this paper, we present a novel mesh-based representation
by encoding the neural implicit field with disentangled geometry and
texture codes on mesh vertices, which facilitates a set of editing func-
tionalities, including mesh-guided geometry editing, designated texture
editing with texture swapping, filling and painting operations. To this
end, we develop several techniques including learnable sign indicators
to magnify spatial distinguishability of mesh-based representation, dis-
tillation and fine-tuning mechanism to make a steady convergence, and
the spatial-aware optimization strategy to realize precise texture edit-
ing. Extensive experiments and editing examples on both real and syn-
thetic data demonstrate the superiority of our method on representation
quality and editing ability. Code is available on the project webpage:
https://zju3dv.github.io/neumesh/.

Keywords: neural rendering, mesh-based representation, scene editing,
view synthesis, 3D deep learning

1 Introduction

Neural implicit field has achieved great success in 3D reconstruction and free-
viewpoint rendering, and becomes a promising solution to take the place of
traditional 3D shape and texture representation, e.g ., point cloud or textured
mesh, due to its phenomenal rendering quality. However, for 3D modeling and
CG creation, artists still prefer to use mesh-based workflow across daily works.
For instance, in modern 3D CG software (e.g ., Blender, Maya and 3ds Max),
polygon mesh-based representations can be precisely controlled and edited, i.e.,
texturing with UV-map and changing shapes by altering vertices and faces, with
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Fig. 1. NeuMesh. We present a novel representation for volumetric neural rendering,
which encodes the neural implicit field with disentangled geometry and texture features
on a mesh scaffold. With the locally separated latent codes, our representation enables
a series of editing functionalities, including mesh-guided geometry deformation, desig-
natable texture swapping, filling and painting.

all the previewed modification accurately reflected in the final rendering prod-
uct. Despite great progress made to improve the flexibility of the neural implicit
field, including handling dynamic scenes [34,35], becoming scene agnostic [56,45],
fast rendering [43,28], and scalability improvement [51,60], the support of neural
implicit field towards editing is still limited, e.g ., on a very specific semantic cat-
egory [6,23,15] or purely rigid transformation [69,64,12]. One plausible reason is
that particular network encoding structures (e.g ., coordinate-based MLP, vox-
els or scattered point cloud) are not compatible with fine-grained scene editing
such as non-rigid geometry deforming and texture editing for a local region of
interest, and thus cannot satisfy the broad demands of artistic creation.

In this paper, we propose a novel neural implicit representation, NeuMesh, to
facilitate editing in both 3D modeling and texturing. Our representation bares
the following properties to seamlessly integrate with existing common workflow
for 3D editing: 1) The neural representation encodes scene with a series of vertex-
bounded codes on a mesh scaffold and MLP-based decoders, instead of a pure
MLP, point clouds or voxels, and can be deformed together with the mesh.
During the volume rendering, the implicit field is decoded via interpolation of
these codes. By doing so, any modification to the mesh geometry or local codes
would precisely reflect the rendering output. 2) The geometry and appearance
representations are disentangled, i.e., encoded in two separate latent codes, such
that texture can be transferred across geometry by replacing the appearance
code from one another. As shown in Fig. 1, our representation supports non-rigid
object deformation with a handful approach (e.g ., deforming with a mesh proxy),
and provides various fashions of texture editing, including texture swapping of
irregular mesh segments, texture filling at a specific area with pattern from
a pre-captured object, and a user-friendly texture painting which reflects the
philosophy of ‘what you get is what you see’.
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However, learning and deploying such representation for rendering and edit-
ing is non-trivial. 1) Unlike voxel-based representation [20], näıve trilinear code
interpolation is not sufficient to measure spatial variation since we dedicate to
encoding the implicit field with a set of ‘single layer’ codes on mesh vertices, and
the inner/outer queries along the direction perpendicular to the surface lacks
spatial distinguishability (i.e., failing to determine positive or negative direction
when crossing through a mesh face). A possible workaround is to complement
the network input with signed distance to the mesh surface [21], which, how-
ever, is not always available, especially on non-watertight/ill-defined geometries.
To tackle this challenge, we propose to maintain a set of learnable sign indica-
tors for mesh vertices. Then, for each query point along the ray, we compute
a signed distance from nearby vertices by weighting the projected distances on
the indicators. In this way, our representation is completely agnostic to arbi-
trary mesh typologies (e.g ., non-watertight or non-manifold meshes). During the
training process, these sign indicators are continuously adjusted to best fit the
optimization objective. 2) Although such vertex-bounded and geometry-texture
disentangled representation merits good flexibility on editing purpose, it does
not preserve spatial continuity as MLP-based methods [27,55,65] and thus easily
suffers from unstable training. To mitigate this problem, we employ a distillation
and fine-tuning training scheme, which leverages a pre-trained implicit field to
guide the optimization of our representation. In this way, we transfer a baked
MLP-based implicit model into NeuMesh, the first neural rendering model that
naturally inherits editable capability from the flexible mesh-based workflow. 3)
To fulfill the demand for flexible and user-friendly texture editing operations
(e.g ., propagating 2D image painting to the 3D field), a näıve approach is fine-
tuning with a single image. However, this might let the network overfit to a
specific view and the rendered images from other views degrade (e.g ., introduc-
ing noticeable artifacts as shown in Fig. 8 (b)). In order to solve this challenge,
we propose a spatial-aware optimization strategy that is naturally derived from
our representation, in which we select the affected texture codes with several
probing rays from painted pixels to the mesh surface, and only fine-tuning these
codes during the optimization. Therefore, we can precisely transfer the painting
to the desired region while maintaining other parts unchanged.

The contributions of our paper can be summarized as follows. 1)We present a
novel mesh-based neural implicit representation which aims to break the barrier
between volumetric neural rendering and mesh-based 3D modeling and textur-
ing workflow, and delivers a set of editing functionalities, including mesh-guided
geometry editing, designated texture editing with texture swapping, filling and
painting operations. To make the representation locally editable both on geome-
try and texture, we design to encode the implicit field into mesh vertices, where
each vertex possesses disentangled geometry and texture features of its local
space. 2) We analyze the technical challenges and develop several techniques
to enhance the spatial distinguishability with learnable sign indicators, ensure
a steady training with distillation and fine-tuning mechanism, and improve the
texture editing precision with spatial-aware optimization strategy. 3) Extensive
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experiments and impressive editing examples on both real and synthetic datasets
demonstrate that our method achieves photo-realistic rendering quality, and is
flexible and powerful at geometry and texture editing of the neural implicit field.

2 Related Works

Mesh-based representation and rendering. In computer vision and graph-
ics, polygon mesh has been widely used in 3D scene modeling and render-
ing [13,1,22]. Traditional methods utilize multi-view geometry and numerical
theories to reconstruct surface meshes of a captured scene [44,62,17,54]. Re-
cently, more attention has been paid to neural network based scene reconstruc-
tion [29,49] and texture learning [52,8,59]. However, existing mesh-based ren-
dering pipelines usually require UV-mapping to build correspondences between
meshes vertices and texture maps, which limits the applicability from represent-
ing scenes with complex topology and delicate structure. Another line of methods
uses MVS based mesh as a geometry proxy for image feature aggregation [41,42],
but requires nearby source images to be warped back to the mesh surface and is
not feasible for high-level editing operations. Instead of storing textures in a flat
2D map or warping-based view synthesis, our method directly encodes appear-
ance information on 3D vertices, and is more flexible in representing complex
objects whose UV-maps are difficult to be unwrapped.

Neural rendering. Given a set of image captures, neural rendering meth-
ods [5,66] aim to render photo-realistic images of novel views. NeRF [27] takes
advantages of volume rendering to boost rendering quality, which inspires a lot
of works, including surface reconstruction [32,55,65], human modeling [21,36],
pose estimation [67], scene understanding [63] and relighting [48,71,2,72], etc..
To further increase network capacity and reduce computation, many works pro-
pose to decompose scene into local representations, such as multiple tiny net-
works [39], point clouds [33] and voxels [20,43]. Although these works explicitly
encode scenes in a 3D spatial structure, they are not designed to be easily ma-
nipulated as polygon meshes, thus not capable of high-level applications like
geometry and texture editing.

Neural scene editing. Scene editing is a popular topic in computer vision
and photography. Early methods mainly focus on editing a single static view by
inserting [16], compositing [37], moving [18,46] objects or changing lighting [26]
for an existing photograph. With the development of neural rendering, many
works start to edit scenes with movable [69,64,12] and deformable [68] objects,
changeable colors, shapes [61,23] and textures [59]. However, existing methods
are either limited to object-level rigid transformation [69,64,12], not generalize
to out-of-distribution categories [6,23,31,50,4,57], restricts its representation to
simple shapes [59] or orthographic projection [40], or does not support fine-
grained texture editing [23,66,71,48,30,68]. By contrast, we pick up triangle mesh
as a scaffold to encode the scene, since the mesh can be edited conveniently and
intuitively in mature industry software, and the region of interest on the mesh
can be precisely selected by vertices. Built upon this, our method delivers the
capability of non-rigid geometry editing and fine-grained texture editing.
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Fig. 2. Overview. We encode neural implicit field on a mesh-based scaffold, where
each vertex possesses a geometry and texture code lg, lt, and a sign indicator n for
computing projected distance h. For a query point x along a casted camera ray, we
retrieve interpolated codes and signed distances from the nearby mesh vertices, and
forward to the geometry/radiance decoder to obtain SDF value s and color c.

3 Method

We introduce NeuMesh, a novel scene representation that encodes neural implicit
field at a mesh-based scaffold. As demonstrated in Fig. 2, instead of learning the
entire scene as a whole in a coordinate-based network, we leverage 3D mesh
structure by decomposing the scene into a set of local-vertex-bounded implicit
fields (Sec. 3.1), where each vertex stores geometry and texture information of
its neighboring local space. Motivated by previous works [27,55,39], we adopt
the volume rendering technique to render pixels, and employ a distillation and
fine-tuning training scheme to encode the neural implicit field into the mesh
surface (Sec. 3.2). During the rendering stage, we retrieve interpolated codes and
learnable signed distances (i.e., projected distances to the mesh vertices, which
complements spatial distinguishability) from the mesh, and use two separated
MLPs to decode geometry (i.e., SDF values) and radiance color. In this way,
the scene representation is locally aligned to the mesh, and the geometry and
color are encoded in two separated latent spaces, which naturally derives the
approaches of mesh-guided geometry deforming and designatable texture editing
(Sec. 3.3).

3.1 Neural Mesh-based Implicit Field

Mesh-based representation. As illustrated in Fig. 2, we use a mesh-based
scaffold to model the neural implicit field. First, we reconstruct the target object
using out-of-box NeuS [55] and marching cubes [25], which yields a triangle mesh
with about 50K∼150K vertices. Then, for each vertex v on the mesh, we store a
set of learnable parameters, including a geometry code lg, a texture code lt and
a sign indicator n (n helps to identify relative position, and will be introduced
later). In a typically volume rendering process that sample points x along the
ray, we first find K nearest vertices {vk|k = 1, 2, ...,K} for each point x, and
perform spatial interpolation to obtain the interpolated codes l̃g(x), l̃t(x) and
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signed distances h̃(x). Specifically, we adopt inverse distance weighting based
interpolation [38], as:

l̃(x) =

∑K
k=1 wklk∑K
k=1 wk

, wk =
1

||vk − x||
. (1)

Then, we forward all these variables to geometry decoder FG and radiance de-

coder FR to obtain the SDF value s = FG

(
l̃g, h̃

)
and color c = FR

(
l̃t, h̃,d,∇xs

)
at point x, where d is the viewing direction, ∇xs is the gradient of the SDF
w.r.t query position. Different from the previous methods [66,55,65], we replace
the global coordinate x with locally retrieved codes l̃g, l̃t and sign distances h̃,
where h̃ complements spatial distinguishability without hurting the locality of
the representation. Note that we also apply positional encoding γ(·) [27] to the
interpolated codes, distance and direction before feeding them into the MLP, but
we omit it in the equations for brevity. Following the formulation of NeuS [55]
and quadrature rules [27], we render the pixel Ĉ(r) with points {xi|i = 1, ..., N}
along the ray r as:

Ĉ(r) =

N∑
i=1

Tiαici, Ti =

i−1∏
j=1

(1− αj), αj = max

(
Φs(si)− Φs(si+1)

Φs(si)
, 0

)
, (2)

where T is accumulated transmittance, Φs is the cumulative distribution of lo-
gistic distribution, and α is opacity derived from adjacent SDF.
Learnable sign indicator for interpolated signed distance. To comple-
ment the spatial distinguishability of the network query along the direction per-
pendicular to the surface (i.e., inside or outside the mesh), we introduce a learn-
able sign indicator nk for each vertex vk that aids at computing interpolated
signed distances for spatial query points. Indeed, the sign indicator plays a simi-
lar role as vertex normal (i.e., initialized with vertex normal), but is continuously
adjusted during the training process to best fit the target loss. The computation
of interpolated signed distance h̃(x) is defined as:

h̃(x) =

∑K
k=1 wkhk∑K
k=1 wk

, hk = pk ·
ωnnk + ωp

kpk

ωn + ωp
k

, pk = x− vk, (3)

where wk is inverse distance weighting as defined in Eq. (1), ωn and ωp
k con-

trols the influence between sign indicator and point-to-vertex vector pk, and we
empirically set ωn = 0.1, ωp

k = ||pk||. Intuitively, when the sample points are

far from the surface, h̃(x) is numerically close to the point-to-surface distance;
otherwise, when the sample points are getting close to the surface, h̃(x) would
be gradually perturbed by learnable sign indicators.

3.2 Optimizing Mesh-based Implicit Field

Distillation and fine-tuning. We observe that training NeuMesh from scratch
leads to artifacts and converges to sub-optimal results (see Fig. 8 and Tab. 3).
Inspired by Reiser et al . [39], we apply a distillation and fine-tuning training
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Fig. 3. Mesh-guided Geometry editing. By simply deforming the corresponding
mesh, the change will synchronously take effect on the implicit field, and the rendered
object will also be deformed accordingly.

scheme, i.e., we supervise NeuMesh simultaneously with the output from a
coordinate-based teacher model (e.g ., NeuS), and also the images. For a batched
training rays r ∈ R, we defined the distillation loss Ld and photometric fine-
tuning loss Lf as:

Ld =
∑
r∈R

∑
i∈N

||si − sti||+ ||ci − cti||, Lf =
∑
r∈R

||Ĉ(r)− C(r)||22 (4)

where sti and cti are the SDF value and color from the teacher model, and C(r)
is the ground-truth pixel color from images. By leveraging distillation and fine-
tuning, we smoothly transfer a pure MLP-based neural implicit model into a
flexible and editable mesh-based representation, and the final model even pro-
duces better appearance details, as shown in our experiment (Sec. 4.2).
Regularization. As introduced in Sec. 3.1, we dynamically adjust a set of
per-vertex sign indicators during the training process. To ensure a smooth con-
vergence, we empirically apply a regularization to the sign indicator by slightly
encouraging them being close to pre-computed vertex normal nt, as: Lrs =∑

k ||nk−nt
k||22. Besides, as suggested by Gropp et al . [10], we add an Eikonal loss

to regularize the norm of the spatial gradients to 1, as: Lre =
∑

k || ∥∇xk
sk∥−1||22.

The final loss is then defined as:

Ltotal = λdLd + λfLf + λrsLrs + λreLre, (5)

where we set λd = 1.0, λf = 1.0, λrs = 0.01 and λre = 0.01.

3.3 Mesh-guided Geometry Editing

In NeuMesh, since the neural implicit field has been tightly aligned to the mesh
surface, any manipulation on mesh vertices would directly take effect on the field
and the volume rendering results. Therefore, to perform geometry editing with
a NeuMesh-based scene, users are only required to edit the corresponding mesh,
which can be easily accomplished by interactively moving a few vertices with out-
of-box mesh deforming methods (e.g ., as-rigid-as-possible, or ARAP [47]), or 3D
modeling software like Blender. We show an example of the geometry editing in
Fig. 3, where we first deform the microphone by bending its head and lifting
the wire on the corresponding mesh. Then, to maintain the local consistency of
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Fig. 4. Designatable Texture editing. By exchanging texture codes (and decoders),
our representation delivers various texture editing pipelines on neural implicit field. 1

signed distance (Sec 3.1), for each transformed vertex, we also compute a relative
rotation of the surface normal and compensate the rotation according to its sign
indicator (Sec. 3.1). Without any fine-tuning, the microphone’s implicit field has
been deformed in the meantime, and we can easily render the deformed view
(see Fig. 3). Please refer to the supplementary materials for more details.

3.4 Designatable texture editing

Until then, texture editing on the neural implicit model is still an open problem.
Previous methods tend to replace the entire materials by swapping the appear-
ance branch [66,71,48], changing a uniformed color [23], or learning an editable
UV mapping for simple and plump shapes [59]. However, in real texturing of
3D modeling software, artists are used to working with a mesh-based workflow,
which allows them to select a partial region of an object and modify it with
arbitrary colors and material properties. We propose to mimic such pipelines by
introducing a designatable texture editing, where the selection of mesh vertices
can be used to precisely guide the texture editing on the region of interest. The
core step of our texture editing is that we update the latent texture code lt

(‘material properties’) and the binding decoder FR (‘rendering palette’) at the
selected region. As shown in Fig. 4, we deliver three ways of texture editing:

1Icon credit: Flaticon [7]
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1) Texture swapping by exchanging textures between two objects through
3D geometry (e.g ., swapping textures of two apples in Fig. 4). Users are first
asked to mark out the source and target object on the mesh, which can be done
by mature 3D model software, or point-based instance segmentation [58]. Then,
given a putative point matches with interactive annotation [73], we perform
non-rigid 3D alignment to the source and target object with Umeyama [53] and
ARAP [47]. Finally, we transfer texture codes by assigning each target vertex
with code interpolated from nearby source vertices.

2) Texture filling by filling a targeting object area with repeated textures from
a pre-captured model (e.g ., assigning part of Buddha with two furry materials
from a teddy bear as shown in Fig. 4). In real applications, artists might want to
try out some materials from a daily captured scene or pre-built material library,
or want to fill some areas (e.g ., floor and walls) with uniformed materials. There-
fore, we build a compatible workflow for the standard texturing operation, where
we first construct a UV map for the user-interest areas, and then repeatedly fill
the mapped vertices (e.g ., chest and cloth of Buddha) with template textures
from a pre-captured model (e.g ., gray and brown hairs from the teddy bear).

3) Texture painting from a single 2D view to the 3D field. Users paint an
arbitrary pattern or put some text on a captured image, and we can transfer
these paintings into the 3D neural implicit field and freely preview in rendered
novel views (e.g ., painting ECCV logo on a skull in Fig. 4). Compared to Neu-
Tex [59] that might be difficult to edit on the desired position due to distorted
UV-mapping, our method delivers a more natural editing way, i.e., what you
draw and see is what you get. However, it is not trivial to precisely control the
painting transferring with only one image, since the overfitting of a single im-
age might lead to appearance drifting at unconstrained views, which inevitably
introduces artifacts in rendered novel views. To tackle this issue, we propose a
spatial-aware optimization mechanism. Specifically, we first shoot rays through
the painted pixels to obtain the surface points and find the affected texture
codes of nearby vertices around the points. During the fine-tuning stage, we
optimize by minimizing photometric loss of rendered pixels and painted pixels,
and only backward gradient of these codes while detaching the others. Besides,
to improve the training efficiency and the painting consistency across views, we
restrict training rays inside a slightly dilated paint mask, and also augment with
random viewing directions at the input to the radiance decoder.

Please refer to the supplementary materials for more details.

4 Experiments

4.1 Datasets

We evaluate our method on the real captured DTU [14] dataset and NeRF 360◦

Synthetic dataset. For the DTU dataset, we follow the setting of IDR [66] by
using 15 scenes with images of 1600 × 1200 resolution and foreground masks
for experiments. To facilitate the metric evaluation for both rendering and mesh
quality, we randomly select 10% images as test split and use the remaining images
for training. For NeRF 360◦ Synthetic dataset, we follow the official split and
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Fig. 5. We show rendering examples of NeuTex [59], NeuS [55] and our method on
the DTU dataset and the NeRF 360◦ Synthetic dataset.

Methods
DTU NeRF 360◦ Synthetic

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeuTex [59] 26.080 0.893 0.196 25.718 0.914 0.109
NeuS [55] 26.352 0.909 0.176 30.588 0.960 0.058
Ours 28.289 0.921 0.117 30.945 0.951 0.043

Table 1. We compare rendering quality with NeuS [55] and NeuTex [59] on the DTU
dataset and the NeRF 360◦ Synthetic dataset.

choose 4 representative scenes for evaluation, including thin structures (Mic),
complex shapes (Lego) and rich textures (Chair and Hotdog).

4.2 Comparison of Rendering and Mesh Quality

We first compare the rendering and mesh reconstruction quality of our represen-
tation with the baseline method NeuS [55] and the SOTA texture-editable im-
plicit neural rendering method NeuTex [59]. Following previous works [27,55,66],
we use PSNR, SSIM and LPIPS to measure the rendering quality, and use Cham-
fer distance to measure the reconstructed mesh quality. Please note that for mesh
quality comparison, we use a subset (training split) of images, while NeuS takes
all images for training in their paper, so the result is slightly different. As demon-
strated in Fig. 5 and Tab. 1, our method is comparable or even better than NeuS
and NeuTex on rendering quality. To achieve texture editing, NeuTex attempts
to encode all the textures in a single continuous UV space, which works for
plump objects (e.g ., plush toys or Buddah as shown in its paper) but struggles
to reconstruct objects with complex shapes (e.g ., scissors in DTU Scan 37 and
gears in NeRF-Synthetic Lego as shown in Fig. 5). We consider that because
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Fig. 6. We show examples of mesh-guided geometry editing in (a) and also compare
with näıve field warping solution in (b).

DTU Scan ID

Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Avg.

NeuTex [59] 2.078 5.038 3.477 1.039 3.744 2.078 3.201 2.163 5.104 1.828 1.951 4.319 1.177 3.100 1.921 2.815
NeuS* [55] 1.544 1.224 1.065 0.665 1.286 0.825 0.904 1.350 1.320 0.855 0.987 1.328 0.487 0.636 0.678 1.010
Ours 1.112 1.262 0.988 0.674 1.224 0.835 0.878 1.232 1.304 0.741 0.963 1.239 0.558 0.645 0.739 0.960

Table 2. We compare mesh quality (Chamfer distance) with NeuS [55] on the DTU
dataset. Note that we use training split of images instead of full images, so the result
of NeuS [55] is different from the original paper.

NeuTex tries to memorize all textures in the single continuous UV-map by us-
ing a simplified Atlas-Net [11] (i.e., one atlas), which limits its representation
of complex shapes. For NeuS, as it pursues better mesh reconstruction quality
than novel view synthesis, the details of rendered images are slightly blurred and
smoothed. By contrast, our representation not only delivers the capability of ge-
ometry and texture editing, but also shows clear appearance detail (see Fig. 5)
and maintains mesh quality on par with NeuS (see Tab. 2).

4.3 Experiment on Geometry Editing

We now show the result of mesh-guided geometry editing in Fig. 6 (a), where
we simply deform meshes with Blender, and the rendered objects are deformed
simultaneously. Since an implicit field can be trivially deformed with non-rigid
warping, we also compare our editing with a näıve field warping solution that
is directly applied to NeuS, which bends the query points from the deformed
space to the original space by computing interpolated warping with the offsets
from 3 nearest vertices of the extracted mesh. As shown in Fig. 6 (b), the object
boundary of the field warping results is much jaggier than ours, which proves
the necessity of our mesh-based representation on this task.

4.4 Experiment on Texture Editing

To the best of our knowledge, prior to our work, only NeuTex [59] supports
texture editing of the neural implicit field by painting on 2D UV texture. How-
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Fig. 7. We show texture editing examples on the DTU dataset and the NeRF 360◦

Synthetic dataset.
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(a) Different model and training settings (b) Different texture 
painting optimization

Fig. 8. We show the rendering results with different settings in (a) and also show the
effectiveness of spatial-aware optimization for texture painting in (b).

ever, due to the distorted UV mapping, we find NeuTex hard to perform all the
editing operations like ours, so we only compare it on the texture painting task.

Texture swapping. We present 2 examples of texture swapping in Fig. 7 (a),
where the textures of the snowman’s body and the packaging of cans have been
seamlessly swapped, and even the details (e.g ., texts on the cans) have been
clearly transferred into the target object, while the geometry is kept unchanged.
This demonstrates that our representation successfully disentangles geometry
and texture in two spaces, and the disentangled texture representation can be
seamlessly integrated into new shapes.

Texture filling. We show 3 examples of texture filling in Fig. 7 (b), in which
the targeting areas are repeatedly filled with template texture code and decoder
from previously captured source models. It is worth noting that even though the
source template only covers a small area of texture codes, we can still observe
view-dependent effects (e.g ., golden metal naturally exhibits specular reflections
at different views).

Texture painting. In Fig. 7 (c), we exhibit 4 examples of texture painting, and
also conduct similar editing with NeuTex [59] by painting on the unwrapped
UV-map. For NeuTex, as the learned texture mapping is somehow irregular and
distorted (e.g ., the head of the teddy bear is separated in UV-map), we find it
hard to paint at the desired location. In the second row (painting on bricks), we
have to adjust the painting position back and forth to get a reasonable editing
result. Besides, due to the mapping issue explained in Sec. 4.2, NeuTex cannot
picture a clear result when editing on complex shapes (Lego in the second row).
On the contrary, our method offers a user-friendly editing pipeline by directly
painting on 2D images and then transferring the painting into the 3D implicit
field.

4.5 Ablation Studies

Learnable sign indicator. We first inspect the effectiveness of the proposed
learnable sign indicator in each vertex. Specifically, we set sign indicators as con-
stant vertex normal without adjusting during the training process and evaluate
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Config.
DTU 69 NeRF 360◦ Synthetic Lego

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
w/o Optim. Sign Indicator 26.633 0.940 0.119 27.631 0.922 0.053
Only Distillation 26.599 0.936 0.144 25.606 0.901 0.081
Only Fine-Tuning 26.258 0.926 0.132 23.583 0.876 0.135
Full Model 27.254 0.946 0.113 27.881 0.926 0.046

Table 3. We perform ablation studies on the model design and training strategy with
DTU Scan 69 and NeRF 360◦ Synthetic Lego.

the model both qualitatively and quantitatively. As demonstrated in Fig. 8 (a)
and Tab. 3 (first row), online adjusting sign indicators consistently improves the
image quality. By the way, we notice that the PSNR improvement on real data
(DTU Scan 69) is more significant than the synthetic one (Lego). We consider
that the mesh quality (and vertex normal) of real data is worse than the syn-
thetic data due to sensor noises, which degrades the rendering quality, while the
learnable sign indicator helps to mitigate this issue.
Distillation and fine-tuning training scheme. We then study the necessity
of distillation and fine-tuning training scheme by ablating one of them during
model training. As shown in Fig. 8 (a) and Tab. 3 (second and third row), by
enabling distillation only, the rendered image is blurry than the full model ones.
When using fine-tuning without distillation, the rendering result ends up with
noticeable artifacts. These results suggest that both distillation and fine-tuning
are indispensable when training our mesh-based representation.
Spatial-aware optimization in texture painting. We also evaluate the pro-
posed spatial-aware optimization in the texture painting task and visualize the
comparison in Fig. 8 (b). It is clear that when näıvely optimizing painting with a
single image, the model will overfit to the specific viewpoint, and the change to
the texture codes might break the appearance consistency, which results in visual
artifacts when rendering the implicit field from the side view. By introducing a
spatial-aware optimization mechanism, we successfully avoid such artifacts and
obtain the modified field while maintaining other parts untouched.

5 Conclusion

We have proposed a novel mesh-based neural representation, which supports
high-fidelity volume rendering, and flexible geometry and texture editing. Specif-
ically, we encode the neural implicit field into a mesh scaffold, where each mesh
vertex possesses learnable geometry and texture code for its neighboring local
space. One limitation of our method is that we do not model fine-grained lighting
effects such as shadowing and specular reflection of a certain lighting environ-
ment, which can be improved by introducing material and lighting estimation in
future works. Besides, due to the reliance on mesh scaffold, we cannot represent
objects that fails during reconstruction (e.g ., smoke or liquid).
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Supplementary Material

In this supplementary material, we describe more details of our method, in-
cluding model architecture in Sec. A, geometry editing in Sec. B.2, and texture
editing in Sec. B.3. Besides, we also provide more discussions including limita-
tions in Sec. C and experiment results in Sec. D.

A Model Architecture

The detailed model architecture is shown in Fig.I. To begin with, we first extract
a triangle mesh with marching cubes [25] from NeuS’s [55] SDF field, where we
set the voxel resolution as 256 and the spatial range as [−1, 1]. Then, for each
query point x, we find K nearest vertices (with K = 8 in our experiments) and
obtain the interpolated geometry code (32 dimensions), texture code (32 dimen-
sions) and learnable signed distance (scalar) from these vertices. Before feeding
into the network, we apply positional encoding to the signed distances (with 8
frequencies), interpolated codes (with 2 frequencies) and viewing directions (with
4 frequencies). The geometry decoder and the radiance decoder are constructed
with a MLP of 3 / 4 hidden layers and 256 hidden sizes, and we use SoftPlus
/ ReLU activation, respectively. During the rendering stage, we first sample 64
coarse points along the ray and adopt a progressive up-sampling strategy from
Wang et al . [55] to guide the sampling of 64 fine points, which yields 128 sam-
ples for each ray. Besides, to accelerate rendering and training, we pre-compute
near-far bound for each ray by counting the minimum and maximum distances
of ray-to-mesh intersections.
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Fig. I. The model architecture of NeuMesh.
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Fig. J. We show more comparison of rendering quality on the DTU dataset
and the NeRF 360◦ Synthetic dataset. Our rendering results show better ap-
pearance details than NeuS and NeuTex (e.g ., the roof at DTU Scan 37, and the metal
grids at NeRF-Synthetic Mic).

B Implementation Details

B.1 Training Details

As introduced in our main paper, we adopt a distillation and fine-tuning train-
ing scheme. Practically, for each object, we first train a teacher model (i.e.,
NeuS [55]). Then, we optimize codes and decoders with output from the teacher
model and the images. During the training process, we use a batch size of 512
rays on a single Nvidia RTX3090-24G GPU, where the queried color and SDF
value for each sample point will also be supervised with the output from the
teacher model (a.k.a distillation loss in Sec. 3.2 Eq.(4)). We adopt the Adam op-
timizer with an initial learning rate of 0.0005 and a cosine annealing scheduler
with 5000 warm-up steps. The training process takes about 16 hours for each
model. Besides, to train on the DTU dataset that contains unbounded back-
ground, we follow previous works [66,55] by taking foreground masks into the
supervision with a binary cross-entropy loss.

B.2 Details of Geometry Editing

With our mesh-based representation, deforming a neural implicit field is as sim-
ple as deforming the corresponding mesh scaffold. The only thing to note is to
keep the local consistency of the learnable signed distances (Sec. 3.1), i.e., the
interpolated signed distance of the locally deformed or rotated region should
keep the same. To achieve this goal, we simply compensate the rotation of the
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surface normal to the learnable signed indicator h̃(x), as: h̃′(x) = h̃(x) + δhx,
where δhx is the relative difference of vertex normal (averaged from the nearby
surface normal) from the original mesh to the deformed mesh, and h̃′(x) is the
compensated signed indicator.

B.3 Details of Texture Editing

Since our representation disentangles textures into locally bounded texture codes
saved on mesh vertices, texture editing for a neural implicit field can be accom-
plished by updating or optimizing texture codes (and the binding encoders) for
the region of interest.

Texture swapping. We can easily swap textures of two areas by swapping tex-
ture codes on the surface, as long as we find the correspondence from the source
area’s vertices to the target area’s vertices. To this end, we provide a solution to
perform texture swapping on two areas that can be reasonably aligned but with
slightly different shapes (e.g ., two apples in Fig.4 (a) from the main paper). In
practice, we first choose source and target areas by selecting mesh vertices with
Blender, and annotate 4∼9 point correspondences with our scripts between these
two areas. Note that this can also be automated with point cloud or image seg-
mentation tools when deploying to user-friendly applications. Then, we perform
non-rigid mesh alignment by solving scaled transformation with Umeyama [53]
between point correspondences, and then feed the point residual to ARAP [47],
so as to deform the source area to the target area. Finally, we update the texture
codes on the target area by assigning interpolated code (with inverse distance
weighting) from 4 nearest deformed source vertices.

Texture filling. By leveraging NeuMesh, our model supports filling of the user-
selected area on a neural implicit field with a texture template (e.g ., furry hair or
golden metal in Fig. 7 (c)) from a pre-captured object model. First, we need to
obtain the target UV-map of the selected area, i.e., utilizing Blender to unwrap
the UV-map of the selected vertices. Then, we select a texture template from a
pre-trained NeuMesh model, e.g ., a small squared patch with ∼10 vertices, and
repeatedly fill the target UV-map with the template in a sliding-window manner.
Practically, we assign texture codes in the target vertices with interpolated codes
from the template and also bind the radiance decoder to the one from the pre-
trained model, as the target texture code and the template texture code do not
share the same latent radiance space. Besides, to make a smooth transition near
the area boundary (e.g ., naturally transiting from the edited appearance to the
original appearance), for each query point that has texture codes/decoders from
different sources, we fuse the color contribution from different decoders with
inverse distance weighting.

Texture painting. As introduced in our main paper (Sec.3.4), we propose a
spatial-aware optimization to precisely transfer the painting from 2D image to
3D field, while keeping geometry and appearance of other parts unchanged. In
detail, we first shoot probing rays from the painted pixels to the mesh scaffold,
and find the affected texture codes by collecting the vertices of the hit faces.
During optimization, we adopt Adam optimizer with the fixed learning rate of
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Original Source Texture Editing on 3D Textured Mesh Editing on NeuMesh

Fig.K. We show the comparison between textured mesh editing and our NeuMesh
editing on a statue. This proves that direct editing texture meshes with template
patterns without lighting and material property estimation cannot provide satisfactory
results.

0.01, and only allow these codes to be changed. The whole texture painting
optimization takes about ∼1 hours with 8000 iterations.

C More Discussions

Using neural implicit representation instead of traditional textured
mesh. Neural implicit representation merits easy-reconstruction with photo-
realistic volumetric rendering and view-dependent effects (e.g ., shiny golden ma-
terials) on both real-world and synthetic data, and flexibility to accomplish some
fine-grained editing demands (e.g ., material editing or appearance variations) on
the real-world scene with latent space operations. While the rendering quality
of the textured mesh is bounded by the MVS reconstruction and texturing. It is
not feasible for the textured 3D mesh to achieve such effects (see Fig. C) without
BRDF material properties and lighting estimation.
Using learnable signed distance. Unlike voxel-based [20,43] or point-cloud-
based [33] methods that possess spatially scattered features, we only learn a
set of ‘single layer’ features on mesh surfaces as we want to build a surface-
aligned implicit field. Therefore, a bare code interpolation is not sufficient to
coordinate the query relative position for our mesh-based representation, (i.e.,
the inner and outer point queries along the direction perpendicular to the surface
still lack spatial distinguishability). One plausible solution is to use a physically
computed signed distance to the surface as Liu et al . [21] does, but it is not
applicable for general object meshes because the geometry is not always well-
defined (e.g ., watertight or even predefined skinning weights) as a human-body
model (SMPL) [24], which confuses ray-to-mesh intersection counting and the
sign of the distance might be unexpectedly reversed. Therefore, we propose to
use a learnable sign indicator to compute interpolated signed distances for spatial
query points, as described in Sec. 3.1.
Using distillation instead of training from scratch.As explained in Sec. 3.2,
we exploit the teacher NeuS model with distillation and fine-tuning training
scheme instead of training from scratch. The teacher NeuS model serves two
purposes: 1) it provides an SDF field where we could extract a mesh scaffold; 2)
the locally embedded geometry and appearance features in our model facilitate
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Original Texture Swapping Area Result

Fig. L. Texture swapping with different geometry.

region-based editing but may lead the training to fall into a local minimum (as
shown in our ablation studies), and the use of distillation helps to alleviate such
training issue.

Texture swapping with different geometry/topology. Our method can
be applied to objects with a moderate geometry difference (see Fig. C). If there
is a significant topology difference between two objects, we suggest using tex-
ture filling (Sec. 3.4 (2)) that swaps textures in UV spaces regardless of object
geometries.

Limitations for real-world applications. Currently, our rendering speed
(about 30s for each view) is bounded by the intensive network queries and nearest
neighboring searching operations. When deploying to real-world applications, we
might consider accelerating the inference speed to fulfill the real-time rendering
demand with recently proposed coefficient caching techniques [43,9] , multires-
olution hash encoding [28] or MVS priors [4]. Besides, we rely on 3D modeling
software to select vertices for the region of interest, which can be replaced with
some semantic annotation approaches [58] to facilitate broaden users.

Relation to point-based methods. From a high-level perspective, both ours
and point-based methods can be regarded as building upon local feature-based
representations, while the main differences include: 1) Our model encodes fea-
tures on mesh vertices, so we can easily deform objects with a mesh proxy
or modify textures through a UV space. Point-based methods use scattered
point features, so it is non-trivial to perform mesh-based editing like ours, i.e.,
each point that is projected at the pixel (NPBG) or lying nearby ray samples
(Point-NeRF) would contribute to the appearance, making it hard to distinguish
which point features should be edited. 2) We embed surface normal (similar to
IDR/NeuS) to realize view-dependent effects of texture filling, which cannot be
directly inherited by point-based methods.

D More Experiment Results

Rendering quality comparison. We present more results of rendering quality
comparison in Fig. J. It is clear that our method renders more details than other
competitors, especially when reconstructing with complex shapes and textures
(e.g ., the roof at DTU Scan 37, and the metal grids at NeRF-Synthetic Mic in
Fig J).
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Fig.M. We present visual comparison to alternative designs.

Config.
DTU 69 NeRF 360◦ Synthetic Lego

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
w/o Learnable Signed Distance 23.622 0.865 0.210 20.827 0.827 0.240
Uniform Grid 26.931 0.943 0.117 25.866 0.898 0.094
Relative Position 26.308 0.937 0.128 27.270 0.918 0.055
Ours 27.254 0.946 0.113 27.881 0.926 0.046

Table D. We perform more experiments to analyze the model design with DTU Scan
69 and NeRF 360◦ Synthetic Lego.

Ground Truth
(PSNR↑/SSIM↑/LPIPS↓)

Our (10K)
25.04/0.90/0.14

Our (50K)
25.30/0.91/0.12

Our (100K)
27.24/0.92/0.11

NeuS
24.76/0.91/0.20

Fig.N. We analyze the impact of vertex numbers on the rendering quality by training
with 10K / 50K / 100K vertices.

Rendering quality with varying mesh vertex numbers. We analyze the
impact of varying mesh vertex numbers on rendering quality. Specifically, we
train on DTU Scan 114 with 3 sets of mesh vertices (10K, 50K, and 100K).
As shown in Fig. N, the metric quality of rendered images are slightly affected
when decreasing vertex numbers, but still outperform NeuS even with only 10K
vertices, which demonstrate the robustness and advantages of our representation.
Learnable signed distance. We report the training results without learnable
signed distance as network input in Fig. M (first column) and Tab. D (first row),
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(b) Our Texture Code Swapping(a) Radiance Field Warping

Fig.O. We show the comparison of our texture editing to the field warping.

which proves the necessity of this design in our mesh-based representation, as
it complements spatial distinguishability on the direction perpendicular to the
surface (Sec. 3.1).

Mesh-based representation vs. uniform grid-based representation. We
first compare our ‘single layer’ mesh-based representation with a uniform grid-
based representation (i.e., similar to NSVF [20] or Plenoxel [43]). Specifically, we
thicken the mesh vertices to uniform grids, so the interpolated codes can be fully
aware of the spatial coordinates, and the signed distance can be omitted. Note
that this also loses some flexibility for fine-grained editing. As shown in Fig. M
(second column) and Tab. D (second row), even with only a single slice of spatial
features, our method shows on par visual quality with these uniform grid-based
representation, but enables the functionalities of geometry and texture editing.

Learnable signed distance vs. relative position. We then compare the en-
coding of our learnable signed distance with an alternative design, i.e., relative
position encoding from PointNet [38]. Specifically, for each query point, we first
concatenate codes (from nearby vertices) and relative coordinate offsets (from
query to vertex), and encode with a shallow MLP (with 2 hidden layers and 64
hidden sizes). Then, we use the same inverse distance weighting to obtain the
final interpolated embedding for the query. As demonstrated in Fig. M (third
column) and Tab. D (third row), our learnable signed distance encoding shows
better rendering quality when incorporated with such ‘single layer’ surface fea-
tures and is a better choice for mesh-based representation.

Our texture editing vs. radiance field warping. One possible workaround
of texture editing is to warp the radiance field from the original space to the
aligned space according to the non-rigid mesh alignment (Sec. 3.4). So, we com-
pare our code updating based texture editing with such näıve radiance field
warping on DTU Scan 63. As shown in Fig. O, the rendered apple of the näıve
approach contains noticeable artifacts, while our editing result is visually much
more natural. We believe that this is mainly due to the fact that the warped tex-
ture field might not be compatible with the geometry (SDF field), which leads
to spatial misalignment (e.g ., SDF field is close to the surface while radiance
field is not) during the volume rendering process and produces erroneous color.
In contrast, since our method exchanges textures through code swapping, the
edited texture field is tightly fit to the geometry, which yields a better rendering
quality.
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Painting Object with Transferred Painting
and Geometry Deformation

Original Object Texture FillingGeometry Editing

Painting Object with Transferred Painting
and Geometry Deformation

Original Object Texture SwappingGeometry Editing

Swapping 
Area

Fig. P. We show examples of hybrid object editing by combining multiple editing
operations.

Texture Filling on Family Status Texture Painting on Barn

Fig.Q. Texture editing of large-scale scenes on the Tanks&Temple [19] dataset.

361 Vertices (Uneven Triangles)294 Vertices (Sparse Triangles) 50K Vertices 

25.130 / 0.908 / 0.182 25.304 / 0.912 / 0.13024.897 / 0.906 / 0.194
PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS

Fig.R. Rendering quality under sparse and uneven triangulation.

Hybrid object editing. To demonstrate the editing flexibility of our method,
we show examples of hybrid object editing in Fig. P by combining geome-
try/texture editing operations, which sheds light on integrating our represen-
tation into modern 3D modeling workflow.
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Large-scale scenes. The modeling ability of our method depends mainly on
the teacher SDF model. As long as the scaffold mesh is available, our method
can be freely scaled-up thanks to the locally embedded features. For large scenes
with complicated backgrounds, we can adopt NeRF++ [70]’s parameterization
to handle unbounded backgrounds, or use pre-computed segmentation masks
like in NSVF and IDR. Here we show two texture editing examples (see Fig. Q)
on the Tanks&Temple dataset [19] with foreground segmentation provided by
NSVF [20].
Influence of triangle quality. Our method can still deliver reasonable ren-
dering quality with locally sparse/uneven triangulation (see Fig. R). In fact,
as the mesh scaffold is created based on the SDF from teacher NeuS, we can
handily guarantee a uniformed distribution of vertices with off-the-shelf mesh
regularization algorithms (e.g ., isotropic remeshing by Botsch et al . [3]).


