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MOUNT: Learning 6DoF Motion Prediction
based on Uncertainty Estimation

for Delayed AR Rendering
Haoran Chen, Lantian Wei, Haomin Liu, Boxin Shi, Guofeng Zhang, Hongbin Zha

Abstract—The delay of rendering on AR devices requires prediction of head motion using sensor data acquired tens of even one
hundred milliseconds ago to avoid misalignment between the virtual content and the physical world, where the misalignment will lead
to a sense of time latency and dizziness for users. To solve the problem, we propose a method for the 6DoF motion prediction to
compensate for the time latency. Compared with traditional hand-crafted methods, our method is based on deep learning, which has
better motion prediction ability to deal with complex human motion. In particular, we propose a MOtion UNcerTainty encode decode
network (MOUNT) that estimates the uncertainty of input data and predicts the uncertainty of output motion to improve the prediction
accuracy and smoothness. Experiments on the EuRoC and our collected dataset demonstrate that our method significantly
outperforms the traditional method and greatly improves AR visual effects.

Index Terms—Virtual and augmented reality, Learning environments, Learning technologies

✦

1 INTRODUCTION

W ITH the development of computer vision and the gradual
maturity of hardware, augmented reality (AR) technol-

ogy has ushered in rapid development [1]. AR technology can
merge virtual content into the physical world and allow users
to interact with them. Current smartphones can already provide
AR experiences powered by ARKit or ARCore [2], [3], but
undoubtedly AR glasses will provide a more immersive experience
and natural interaction. Many people believe that AR glasses will
replace smartphones as the next generation of intelligent terminals.
However, both hardware and software for AR glasses are currently
not mature enough.

When an AR application is running on the smartphone, virtual
contents are overlaid on the video, which is called video see-
through (VST) AR. The commonly used technique is visual-
inertial SLAM (VI-SLAM) which fuses visual and inertial mea-
surements to estimate the 6DoF motion for each image frame
in order to render the virtual content at the same viewpoint. By
contrast, AR glasses allow virtual content to be blended with the
direct view of the physical world seen by human eyes, called
optical see-through (OST) AR. The OST solution can provide
a more immersive experience but also poses challenges on the
6DoF motion estimation. Before rendering, the 6DoF viewpoint
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at the time human sees the virtual content should be predicted
in advance, as shown in Figure 1. Simply using the latest image
pose as the VST solution will result in misalignment between
virtual content and the physical world. For high-performance
hardware such as HoloLens, where the rendering delay is usually
short, the quality of the prediction algorithm doesn’t make much
difference. However, for hardware with low performance and cost,
the prediction algorithm will play an important role due to the
large rendering latency. The amount of rendering delay depends
not only on the performance of hardware, but also the complexity
of virtual content. The total rendering delay for medium-size
content is typically 30ms, which is tested on the Shadow creator
Action One Pro, based on Qualcomm Snapdragon 835, Adreno
540, and the system of Android, with RAM of 6GB. There is
always a trade-off between the lightweight of device and quality
of content. The trend of cloud-based rendering may be a solution
to break this dilemma, but at the cost of a larger amount of
rendering delay. Considering the delay of network, the total delay
may exceed 100ms before the 5G networks are truly widespread

To compensate delayed rendering, we study the task of 6DoF
motion prediction to reduce the error between the true rendering
viewpoint and the predicted one using sensor data acquired a
period of time ago. Traditionally this is obtained by two phases:
1) Using inertial measurement unit (IMU) measurements to prop-
agate the 6DoF pose from the latest image to the latest IMU mea-
surement and 2) handcrafting a motion model to predict motion
from the latest IMU measurement to the rendering time. Due to
repaid error accumulation, traditional methods do not respond well
to complex human motion patterns and can only perform short-
term prediction. By contrast, learning-based methods are able to
extract the motion pattern better. Previous works on the prediction
and classification of human motion have proved that the learning-
based method is more effective than the hand-crafted method [4].
In this work, we propose a learning based method to improve the
quality of motion prediction for delayed AR rendering.

Due to the widespread noise in real data, there is a degree of
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Fig. 1: Illustration of rendering delay in AR. AR glasses take 30 to 60 milliseconds for sensor data acquisition and transmission, VI-SLAM,
and rendering. During the period, the motion of human will cause the actual viewpoint to change, resulting in the flower rendered in the figure
(green) to be offset from the actual position (red).

uncertainty in input data. Therefore, we design a MOtion UNcer-
Tainty encode decode network (MOUNT) based on quantification
of uncertainty, which can estimate uncertainty of input data and
learn the uncertainty prediction of the output from training data
without supervision. The estimation and prediction of uncertainty
can improve the prediction accuracy and make the prediction
trajectory smoother through post-processing. Experiments show
that MOUNT has more accurate motion prediction ability and
can achieve better compensation effect of delayed rendering,
compared with traditional methods.

In the further experiments, we find that MOUNT can make
long-term motion predictions by anticipating the changes of mo-
tion trends in advance, providing a reasonable explanation for its
strong prediction ability. At the same time, due to MOUNT’s
ability of uncertainty estimation, it can also make a reasonable
prediction at a lower camera frame rate, which opens a potential
to lower the power consumption for lightweight AR devices.

Our contribution can be summarized as:

• We introduce uncertainty to 6DoF motion prediction to
improve the task’s performance by estimating uncertainty
in input data and output prediction.

• We propose a learning framework MOUNT, which has a
reasonable data pre-processing method and architecture,
and can learn uncertainty prediction of the output from
training data without supervision.

• We define the task and evaluation metrics of 6DoF motion
prediction, and conduct experiments on the public dataset
EuRoC [5] and our collected dataset designed explicitly
for the task, which quantitatively proves the effectiveness
of MOUNT and shows immersive AR effect that MOUNT
can bring.

The rest of this paper is organized as follows. In section 2,
related works are reviewed. In section 3, we give the mathematical
definition of the task, the evaluation metric, and the traditional
method as the baseline. Our method is described in detail in
section 4. Experiments and performance of the proposed method
in various situations are shown in section 5. We summarize the
paper in the section 6 and point out future works. The source code
and our collected dataset will be published for the benefit of the
community1.

1. https://github.com/braveryCHR/MOUNT-6DoF-Motion-Prediction

2 RELATED WORK

2.1 Asynchronous Timewarp

Asynchronous Timewarp (ATW) is a technology that warps the
rendered image before sending it to the display to correct the head
movement after the scene is rendered. It is widely used in VR
head-mounted display (HMD) devices in order to reduce latency,
increase frame rate, and reduce judder-caused missed frames [6].
A common approach is to predict head movements such that
stereoscopic images can be rendered from the viewpoint at which
the head is going to be in the near future [7], [8]. Since the pre-
diction inevitably has an error, it has to be further corrected when
the rendered image is displayed, using the incoming head tracking
information to warp images from the predicted viewpoint to the
corrected one. However, image warping can only compensate for
orientation changes, but not the translation [9], [10].

When ATW is applied to AR, the requirement for motion
prediction becomes stricter than VR. Many VR HMD devices
only perform 3DoF orientation head tracking. Even for those
6DoF VR devices like Oculus Quest2, the slight error is hardly
noticed because the user can only see the virtual content without
references. By contrast, for the AR rendering where the virtual
content is blended with the physical world, both orientation
and translation error will result in misalignment, leading to an
uncomfortable experience. The existing methods designed for VR
tend to result in an uncomfortable AR experience, especially for
low-end AR devices. It is necessary to customize ATW algorithms
for delayed AR. Furthermore, a framework based on extended
Kalman filtering (EKF) [11] for AR system is proposed to fuse
information and predict motion. It has certain similarities to our
work. The main difference is that it assumes a certain motion
model to predict motion at the future time, while our method is
data-driven to adapt to complex motion styles and suitable for
long-time prediction.

2.2 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is the technique
of tracking the 6DoF motion in the unknown environment using
inside-out sensors like camera and IMU on the mobile device [12].
Compared to the outside-in solutions such as HTC Vive [13], the
inside-out solution relaxes the requirement of external sensors
in the environment and also achieves better tracking accuracy
[14]. It has been successfully used in the most advanced VR and
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AR devices like Oculus Quest2 and Microsoft HoloLens and is
becoming a standard solution for 6DoF head tracking.

SLAM has been studied for over 30 years. Pioneering works
like MonoSLAM [15] and PTAM [16] are based on pure vision,
suffering from the robustness issue in textureless environments.
ORBSLAM [17], [18] improves accuracy and robustness by using
feature descriptors [19], [20] for loop closure and re-localization.
Other lines of works [21], [22] replace the sparse features with
semi-dense pixels to further improve the robustness. However, the
inherent limitation of the pure vision-based method is still difficult
to be fully overcome until the emergence of VI-SLAM that fuses
the complimentary visual and inertial measurements, achieving the
highest robustness and accuracy [23]. To tightly fuse visual and
inertial measurements, the filter-based methods [24], [25], [26]
use inertial measurement for state propagation and visual mea-
surement for state update, while the optimization-based methods
[27], [28] pre-integrate IMU measurements between consecutive
frame as constraint [29] and solve the optimization problem [30].
The optimization-based methods are generally more accurate than
filter-based methods, at the cost of computational complexity
[23]. Recently, many methods based on deep learning [31], [32]
have emerged, successfully introducing the latest machine learning
methods into the field.

When VI-SLAM is applied on consumer-level mobile devices
with constrained resources, efficiency becomes a critical demand.
iSAM2 [33] and ICE-BA [34] exploit the incremental nature
of SLAM to replace batch optimization with incremental one
without sacrificing accuracy. Other works design customized chip
for feature extraction [35] or visual-inertial fusion [36], [37]. As
the efficiency of VI-SLAM is being optimized to the extreme,
the camera is becoming the main source of power consumption.
Lowering the camera frame rate will reduce the power consump-
tion naturally, but will also result in tracking drift because of the
propagation from an early image frame by IMU measurements.
To the best of our knowledge, this is the first work to open this
possibility by quantifying and encoding IMU propagation noise.

2.3 Inertial-only Odometry
Inertial-only odometry is widely used in the field of pedestrian
dead reckoning (PDR) [38]. Since IMU only provides angular
velocity and acceleration measurements that have to be integrated
into pose estimates, the noise will also be accumulated quickly, re-
sulting in severe drift after a short period of time. Early approaches
rely on the prior knowledge of human walking motion such as
Zero-velocity UPdaTe (ZUPT) [39], Zero Angular Rate Update
(ZARU) [40] or step counting [41] to alleviate the drift. Recently,
the emergence of deep learning provides new possibilities to
extract the style of motion pattern from training data to replace the
hand-crafted priors and has achieved significantly better results for
both 2D [42], [43] and 3D [44] movement estimation.

Compared to the application of PDR, the application of AR re-
quires far more accurate motion estimation. Therefore, the delayed
AR rendering needs the extension of the inertial-only method to
get the motion in the near future without IMU measurements.

3 TASK DEFINITION

3.1 Task
The task of motion prediction is defined as follows. Given a
motion sequence up to time n, we have

I = {I1, I2 · · · In}, P = {P1, P2 · · ·Pn}, (1)

where I, P are IMU measurement sequence and pose sequence
respectively. At each time i,

Ii = (ωi, ai), Pi = (Ri, Ti). (2)

The IMU measurement Ii is comprised of the angular velocity ωi

and the acceleration ai. For simplicity, we assume the IMU bias
has been subtracted. The pose Pi ∈ SE(3) is comprised of the
3× 3 rotation matrix Ri and the translation Ti.

The task is to implement a function F that maps the given
sequences up to current time n to a pose Pm at the future time m:

Pm = F(I,P). (3)

Depending on the hardware capability or cloud transmission, and
the complexity of rendered content, the required prediction time
between n and m is typically about 30 ∼ 100 milliseconds.

It should be noted that typical AR devices are equipped with
6-axis IMU and VI-SLAM system, which will run in parallel with
the 6DoF motion prediction algorithm. Hence the acceleration ω
and angular velocity a in this task are derived from IMU, and the
IMU bias and pose sequence P can be estimated by the VI-SLAM
system. Obviously, the task definition can be adapted to typical
AR devices, which align with the actual situation.

3.2 Metric

To ensure a comfortable AR experience, we find that two metrics
are essential for motion prediction.

Accuracy measures the error between the predicted trajectory
and ground truth. The error will result in misalignment between
virtual content and the physical world. Given two pose trajectories
Ppred and PGT representing the predicted and ground truth
trajectory respectively, the average error (AE) is calculated as

AE(Ppred,PGT ) =
n∑

i=1

|Log(P pred
i ⊖ PGT

i )|
n

, (4)

where ⊖ is the subtraction operator for SE(3), and Log(P ) maps
a pose P ∈ SE(3) to the minimal 6D vector, 3D for rotation and
3D for translation.

Smoothness measures the degree of jitter of the pose trajec-
tory. The jitter of the pose will also cause the jitter of virtual
content, leading to an uncomfortable AR experience. In order to
measure the smoothness, we propose the normalized frequency
(NF) as the criterion of smoothness. It follows a simple principle:
the more severe the trajectory jitters, the more high-frequency
components exist in the error expressed in the frequency domain
[45]. Figure 2 shows the calculation process of NF, which is
formulated as:

Perror = {|Log(P pred
i ⊖ PGT

i )|},
Perror
freq = DFT(Perror) = {P error

freq (i)|i = 1 · · ·N},

NF =
N∑
i=1

w(i) · P error
freq (i)

N
,w(i) =

i

N
,

(5)

where DFT denotes the discrete Fourier transform [46] process,
N is the number of frequency components and P error

freq (i) denotes
the magnitude of response at frequency i. NF is calculated as
the weighted mean over all frequency components. The weighting
function w(i) is selected as the linear function to eliminate the
influence of the trajectory length on numerical results. For exam-
ple, under the above weighting function, assume a1 = {1, 2, 1},
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b1 = {1, 1, 1}, a2 = {1, 2, 1, 1, 2, 1}, b2 = {1, 1, 1, 1, 1, 1},
then NF (a1, b1) is equal to NF (a2, b2), so that the calculation
result NF is only related to the degree of jitter, and has nothing
to do with the trajectory length.

(a) (b) (c) (d)

Fig. 2: The calculation steps of NF. (a) The small but frequent
vibration between the estimated trajectory and ground truth will be
perceived as jitter (abscissa: time, ordinate: value). (b) Calculate the
error between the predicted trajectory and ground truth (abscissa:
time, ordinate: error). (c) Use Discrete Fourier Transform to convert
the error from the time domain to the frequency domain (abscissa: fre-
quency, ordinate: coefficient). (d) Calculate the normalized frequency
by the weighted mean overall frequency components.

3.3 Baselines
Since we are the first to use neural networks in the task of 6DoF
motion prediction, the performance of our model can only be com-
pared with existing traditional methods. Products already on sale,
such as HoloLens, do not provide an interface to obtain the results
of their algorithm, nor provide their rendered images through
predicted poses. Therefore, its algorithm cannot be compared with
our algorithm under fair conditions for the time being.

In the published literature, a sensor fusion framework based on
EKF is proposed [11] to predict motion. In the EKF framework,
the state of pose, velocity and IMU biases are filtered, using
high frequency IMU measurements for state propagation, and low
frequency pose measurements for state update. To predict pose at
the future time without IMU measurements, it assumes a certain
motion model (constant linear and angular velocity) for the pose
propagation. We implement the method as baseline to our method.

Another straightforward method is to extrapolate IMU mea-
surements to the future and predict the 6DoF pose using these
extrapolated IMU measurements. This method is effective for
short-term motion prediction. Precisely, it is calculated as

{In+1, In+2 · · · Im} = SE(I),
Pm = G(Pn, Vn, {In+1, In+2 · · · Im}),

(6)

where SE denotes the spline extrapolation algorithm and G
represents the process of motion propagation from the latest pose
Pn and velocity Vn (calculated by adjacent translation) at time n
to the future time m by IMU integration [29].

Figure 3 shows a typical example. It can be seen that it is
possible to extrapolate reasonable IMU measurements in a short
period of time. As the prediction time increases, the actual motion
gradually goes beyond the prediction ability of extrapolation.

4 OUR APPROACH

Figure 4 shows the overview structure of the MOUNT.

4.1 Encoder
In the VI-SLAM system, the IMU frequency (100-1000Hz) is
much higher than the image frequency (10-60Hz). Although VI-
SLAM can estimate pose at the IMU frequency, the accuracy of
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Fig. 3: A typical IMU extrapolation example. The second-order spline
method is used to fit data before 0ms and extrapolate data after 0ms.

IMU pose depends on how long it is away from its latest image,
as shown in Figure 5. The VI-SLAM algorithm performs IMU
propagation from the latest image pose at IMU rate, accumulating
drift over time, and visual-inertial optimization or filter update at
camera rate to bound the drift. Accordingly, we classify poses into
two categories, vision pose and IMU pose.

Pose sequence preprocess: For the pose sequence, taking into
account limitations of human body and movement speed [47],
the movement of humans wearing AR glasses in a short period is
restricted to a small range. At the same time, the numerical domain
of the absolute translation is too wide, so it is a better choice
to use the relative pose as input. This strategy also eliminates
the influence of the selection of world coordinate, which can be
hardly learned from training data. Specifically, we present each
IMU pose Pi at time i in the coordinate of its latest vision pose Pvi

at time vi. The relative translation component is simply ∆Ti =
Ti − Tvi . For the rotation component, we use the minimal 3D
rotation vector [48] as the presentation, denoted as Log(RT

viRi),
where Log(R) maps a rotation matrix R to its rotation vector
representation. In this way, we preprocess the pose sequence as

P′ = {(Log(∆Ri),∆Ti)},
∆Ri = RT

vi
Ri, ∆Ti = Ti − Tvi .

(7)

IMU sequence preprocess: As in [43], [49], we remove the
influence of gravity by subtracting the gravity component from
acceleration measurement.

I′ = {(ωi, a
′
i)}, a′i = ai −RT

i g, (8)

where Ri represents the rotation from the body coordinate system
to the world coordinate system at time i, and g denotes the gravity
vector in the world coordinate.

Pose uncertainty estimation: Due to differences in the accu-
racy of poses in different positions as shown in Figure 5, we need
a way to tell the model uncertainty of each pose in the sequence
so that it knows which poses are worthy of trust. As proposed
in [29], we assume the true state of (Ri, Vi, Ti) is comprised of
the estimated state (R̂i, V̂i, T̂i) and Gaussian noise (r̃i, ṽi, t̃i)

Ri = Exp(r̃i)R̂i, Vi = V̂i + ṽi, Ti = T̂i + t̃i, (9)

where Exp(v) maps a 3D vector v to a rotation matrix. The true
IMU value is also comprised of the measurement (ω̂i, âi) and
Gaussian noise (ω̃i, ãi)

ωi = ω̂i + ω̃i, ai = âi + ãi. (10)
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Fig. 4: Overview structure of the MOUNT. The encoder part separately encodes the IMU and pose sequences, and merges all representations
to the intermediate vector. The decoder part respectively outputs the predicted pose and the uncertainty of the prediction. After smoothing, the
final pose can be used for rendering.

Fig. 5: Two different types of poses in VI-SLAM. The vision pose
is relatively accurate, while the IMU pose gradually diverges as the
noise error accumulates.

The error of state x̃i = (r̃Ti , ṽ
T
i , t̃

T
i ) can be propagated as

x̃i+1 = Aix̃i +Biñi, (11)

where ñi = (ω̃T
i , ã

T
i ) and

Ai =

 Exp(ω̂i∆t) 0 0

−R̂i[âi]×∆t I 0

− 1
2 R̂i[âi]×∆t2 I∆t I

 ,

Bi =

 Jr(ω̂i∆t)∆t 0

0 R̂i∆t

0 1
2 R̂i∆t2

 ,

(12)

where ∆t is the time interval from i to i + 1, [v]× is the skew
symmetric matrix of vector v, and Jr is the right Jacobian of SO3.
The covariance matrix of x̃i is propagated accordingly as

Ci+1 = AiCiA
T
i +BiQBT

i , (13)

where Q is the pre-defined covariance matrix of ñi. Finally, the
error is propagated from absolute pose to the relative pose defined
in Equation 7

∆x̃i = Dix̃i =

(
J−1
r (Log(∆R̂i))∆R̂i 0 0

0 0 I

)
x̃i.

(14)
The covariance matrix of ∆x̃i is propagated accordingly as

C ′
i = DiCiD

T
i . (15)

In this way, we obtain the covariance sequence

C′ = {c′1, c′2 · · · c′n}, (16)

where c′i is the 6D diagonal vector of C ′
i.

Encoding: We use two independent LSTMs [50] to encode
several sequences.

MI = LSTMI(I′), MP = LSTMP (P′,C′). (17)

4.2 Decoder
Representation: LSTM does well in learning trends and patterns.
However, it is more difficult to use it to perform accurate numeri-
cal regression directly. Therefore, we need to directly provide the
latest l poses and IMU measurements to the neural network.

Pl = (P ′
n−l+1 · · ·P ′

n), Il = (I ′n−l+1 · · · I ′n),
M = (MI ,MP ,Pl, Il).

(18)

The decoding representation vector contains two parts. The
first part (MI ,MP ) is called motion pattern encoding, which
is derived from the LSTM encoding and represents the mode and
trend of the motion. The second part (Pl, Il) is called value en-
coding, which provides a direct numerical reference for decoding.

Decoding: The part of the decoder is comprised of two
sequences of fully connected layers, which will decode the rep-
resentation vector to obtain the predicted pose and the uncertainty
prediction for the output.

Taking into account the numerical stability of the model
output, the output pose predicted by the model is the relative pose
of Pm to Pn.

∆P pred
m = FCP (M), P pred

m = Pn ⊕∆P pred
m , (19)

where ⊕ is the addition operator for SE(3). Uncertainty of the
prediction can be obtained by the following formulas

spred = FCσ(M), σpred = Norm(exp(
1

2
spred)), (20)

where Norm represents the function that normalizes σ to [0,1].

4.3 Loss Function
Obviously, if the model only needs to predict the pose, minimizing
the mean square loss of the predicted pose and the actual pose (L2
loss) is enough.

Lpose = ||Log(PGT
m ⊖ P pred

m )||2

= ||Log(∆PGT
m ⊖ Fθ(I,P))||2,

(21)
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where θ represents the parameters of our proposed model and
∆PGT

m represents the label of relative pose Pm ⊖ Pn.
However, our model not only predicts the pose but also

predicts the uncertainty of the output pose, which will be used
to smooth the trajectory. The smoothing strategy will be described
in section 4.4. We introduce our method for pose prediction with
uncertainty here, which is similar to the method proposed in [51].

The error of the prediction result is assumed to be normally
distributed as N (0, σ2), where σ2 is the variance of prediction
error. The probability is formulated as

Pθ = P(∆PGT
m |Fθ(I,P))

=
1√
2πσ2

exp(−||Log(∆PGT
m ⊖ Fθ(I,P))||2

2σ2
).

(22)

The goal is to make a maximum a posterior (MAP) inference by
optimizing the model parameters, which is formulated as

θ∗ = arg max
θ

Pθ = arg min
θ

(−logPθ)

= arg min
θ

||Log(∆PGT
m ⊖ Fθ(I,P))||2

2σ2
+

1

2
logσ2.

(23)

Consider the numerical stability, our model predicts the logarithm
of the variance s = logσ2. The final loss function is

Lfinal =
1

2

||Log(∆PGT
m ⊖ Fθ(I,P))||2

exp(s)
+

1

2
s. (24)

4.4 Smoothing Strategy
In section 3.2, we propose two metrics to evaluate the quality
of motion prediction, considering accuracy and smoothness. Al-
though LSTM naturally has a certain smoothing ability, we found
that is not enough and the jitter still exists. Our model has the
ability to predict uncertainty. With the help of uncertainty, we
propose a simple smoothing strategy that can improve smoothness.

Let ∆Pmem
m = (∆Tmem

m ,∆Rmem
m ) be the prediction mem-

ory, which contains the previous prediction information. Whenever
a new prediction comes, use the following strategy to update:

∆Tmem
m = (1− σ) ·∆T pred

m + σ ·∆Tmem
m ,

∆Rmem
m = slerp(∆Rmem

m ,∆Rpred
m , 1− σ),

(25)

where slerp represents spherical linear interpolation for rotation.
The less uncertain the prediction ∆P pred

m is, the closer ∆Pmem
m

will be to this prediction. Conversely, ∆Pmem
m will believe more

in historical predictions. The final rendered pose is obtained by

P pred
m = Pn ⊕∆Pmem

m . (26)

5 EXPERIMENTS

5.1 Training Details
5.1.1 Dataset
We first verify MOUNT’s performance on the EuRoC dataset [5],
one of the most influential indoor VI-SLAM benchmark datasets.
It contains 11 motion sequences, including three scenes, Machine
Hall (MH) and two Vicon Room (V1 and V2). Each sequence
contains 20Hz image data, 200Hz IMU measurements, and 200Hz
ground truth poses.

However, EuRoC [5] is a dataset collected by drones, which
is different from human motion in AR application. Therefore, we
use a pair of AR glasses (Shadow Creator Action One Pro) to

collect a dataset of human motion wearing AR glasses. The ground
truth poses are obtained by the method of LSFB [52]. The method
is based on an accurate HD map, visual localization and offline
visual-inertial optimization. Details are referred to [52].

As shown in Table 1, we classify AR motion according to
two dimensions: environment and motion purpose. Environments
are divided into four categories according to their spaciousness:
“narrow”, “near”, “far” and special “stair”. Motion purposes are
divided into five categories: “forward”, “inspect”, “patrol”, “run”,
“focus”. It needs to be further explained that “forward” repre-
sents normal walking forward, “inspect” represents standing still
and observing the surrounding environment, “patrol” represents
exploring the environment around, “focus” represents careful
observation of specific objects, and “run” represents the state of
running forward. It can be seen that the environments and purposes
mentioned above can cover common AR scenarios.

Through a reasonable combination of environment and pur-
pose, we simulate user’s behaviour wearing AR glasses, collect
trajectories and process the raw data into a form suitable for
the task. Some environments and purposes are unsuitable for the
combination and are therefore abandoned. Finally, our collected
dataset is constructed for the validation of the task. It contains 14
motion sequences, including 5 kinds of purposes and 4 kinds of
environments. For each sequence, it contains 30Hz image data,
300Hz IMU measurements, and 300Hz ground truth poses.

TABLE 1: Trajectories in our collected dataset. 14 trajectories are
collected from two dimensions of environment and purpose, which is
designed specifically for human motion scenes in AR.

environment|purpose forward inspect patrol run focus

narrow ✓ ✓ ✓
near ✓ ✓ ✓ ✓
far ✓ ✓ ✓ ✓ ✓

stair ✓ ✓

5.1.2 Train, test, and validation split
For EuRoC [5], we use the MH and V1 sequences as the training
set and V2 sequences as the test set. For our dataset, we use the
first 70% of sequences as the training set, the next 30% as the
test set. During training, the last 20% of the training set is used to
validate the performance of model.

5.1.3 Simulation
In order to simulate the real situation, we use ground truth and
IMU propagation to simulate input data to the model as shown
in Figure 6. For high-frequency ground truth poses, only vision
poses synchronized with image data are retained. The remaining
poses will be replaced by results of the IMU propagation from the
latest vision pose using IMU measurements in between. The above
method ensures that data input to the model contains original
noise. It should be noted that propagated pose sequences with
noise are only used as the model’s input, while ground truth poses
are still used to calculate loss function. At the same time, to further
ensure the universality of the real scene, we add an experiment in
which both state estimation of ORB-SLAM3 [23] and simulated
data are used to train and only estimated states are used to test.

5.1.4 Implementation details
Our model is implemented by PyTorch [53] on an NVIDIA 1080Ti
GPU and Intel Xeon E5-2695 v4 CPUs, using Adam [54] opti-
mizer with β1 =0.9, β2 = 0.99. The hyperparameters of MOUNT
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Fig. 6: Simulation process to meet the real situation. For sequences
input to the model, only ground truth poses synchronized with image
data will be retained, and remaining poses are replaced by IMU
propagation from the latest vision pose using IMU measurements in
between, which is consistent with the real situation.

are obtained by hyperparameter search. The input sequence length
is set to 30, and the input sequences are first passed through
the linear layer to become a 70 dimensions embedding and then
encoded by the LSTM. The amount of parameters is on the order
of 105, and for each input sequence of length 30, FLOPS is on the
order of 106. All parts of the network are initialized with kaiming
uniform [55]. The network is trained with a batch size of 1024,
100 epochs in total. The initial learning rate is set to 3 × 10−4

and drops to 0.3 times if the performance does not increase in 3
epochs. Each group of experiments runs 5 times under different
random seeds, and the average result will be reported.

5.2 Results
In the following series of experiments, two variables will be
further explored: prediction time and camera frame rate.

• The prediction time represents the time difference between
the last input pose and the predicted pose. This variable
can be used to test how the prediction ability changes over
prediction time, which is also helpful to explore the source
of the prediction ability of MOUNT.

• The camera frame rate represents the frame rate of the
camera’s recorded images and is also the frequency of
VI-SLAM. This variable can be used to test the model’s
ability to deal with noisy inputs, which helps us explore
the impact of uncertainty encoding on the model.

Therefore, we first show the performance of our model under
basic settings and then show the performance changes of our
model for the above two variables. Finally, the validity of the
uncertainty prediction and user study will be discussed. In terms
of speed, our model can run at 150fps on the CPU and 400fps on
the GPU, proving its applicability for real-time prediction on AR
devices.

5.2.1 Performance compared with baselines
According to the medium rendering delay time and camera frame
rate, we test the performance of our model at the prediction time
of 60ms and camera frame rate of 20Hz (EuRoC [5]) or 30Hz
(our collected dataset). Specifically, for each pose at time t, we use
IMU measurements and VI-SLAM output from t−0.06−(tn−t1)
s to t − 0.06 s to predict it, where ti represents the time at pose
i. “w/o predict” represents the performance of not using motion
prediction methods and rendering according to the current pose,
which indicates the average motion of during the prediction time.
The other methods are described in section 3.3.

As shown in Table 2, MOUNT can reduce the translation error
by about 95% and the rotation error by 80% compared to “w/o

predict” on the EuRoC [5] dataset. Compared with the best of
other methods, MOUNT’s translation and rotation errors can also
be reduced by about 20% and 30%. At the same time, from the
metric NF, the trajectory predicted by MOUNT is generally better
than other methods in smoothness. Only in a relatively simple
scene “V2 01 easy”, MOUNT is as smooth as the EKF, which is
because the EKF algorithm also has a certain smooth effect.

Since the dataset collected by drones doesn’t obtain general
characteristics of human motion, the performance shown in our
collected dataset is more representative. Experimental results on
our collected dataset are shown in Table 3. It can be seen that in
the real AR motion dataset, MOUNT also has a strong prediction
ability, which can greatly reduce the prediction error. Due to the
unique characteristics of human motion, MOUNT performs better
on our collected dataset than on EuRoC [5], thus bringing a greater
improvement in AR experience. Compared with the best of other
methods, MOUNT can reduce the translation error by about 35%
and the rotation error by 60%, which shows that MOUNT does
learn human motion patterns and applies them to prediction.

We further explore the performance of MOUNT according to
the classification of environment and motion purpose. As shown
in Table 4, under different environments and motion purposes,
characteristics of motion are quite different. For example, motion
in “far” environments is significantly faster than in “near” or
“narrow” environments, because narrow environments are not
conducive to fast motion, while the motion for “inspect” has
slower translation and faster rotation, which is also in line with
characteristics of in situ observation. It can be seen from Table 4
that MOUNT performs better than the methods based on extrap-
olation or EKF in any environment and motion purpose. In the
mean time, MOUNT can at least reduce the translation error by
more than 91% and the rotation error by 75% regardless of envi-
ronments and motion purposes compared with w/o predict, which
shows the generality of the algorithm. Obviously, the traditional
methods including extrapolation and EKF depend on the current
sensor data and certain motion model to obtain motion prediction,
without considering the complex motion characteristics of people
in different AR scenarios, such as the periodicity and tendency of
human motion. With the prior information about characteristic of
human behavior, MOUNT is obviously better than the traditional
methods in the prediction ability.

It should be noted that even with the state estimates of ORB-
SLAM3 [23] as input, MOUNT is still able to make relatively
accurate predictions, with only a 10% increase in error compared
to using simulated data. Compared with traditional methods,
MOUNT still has a great advantage in accuracy. On the one hand,
modern VI-SLAM system can make very accurate state estimation
in a short time, on the other hand, MOUNT can effectively model
the uncertainty, so as to reduce the influence of noisy input.

Figure 7 shows a typical comparison of images rendered with
different prediction methods, the viewpoint in the image is being
rotated, thus causing a significant rotation error in w/o predict
method. Taking the lamp in the background as a reference, the
prediction result of MOUNT is significantly more accurate than
other methods and w/o predict. The full AR effects in different
conditions are shown in the supplementary video.

5.2.2 Accuracy about prediction time
Since the traditional method based on a hand-crafted motion
model can only make predictions in a short time due to its
mathematical principles. Therefore, we should pay attention to our
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TABLE 2: The performance of MOUNT. Prediction time: 60ms,
camera frame rate: 20Hz, dataset: EuRoC [5]. O3 represents using
state estimates of ORB-SLAM3 [23] as input. The other experiments
use simulated data as input.

Sequence method AET (cm) AER(°) NFT NFR

V2 01
easy

w/o predict 1.957 0.8630 7.421 8.359
extrapolation 0.6825 0.3010 24.92 8.520

EKF 0.1225 0.2838 3.310 6.891
MOUNT 0.1087 0.2258 3.428 6.300

MOUNT(O3) 0.1154 0.2527 3.749 7.021

V2 02
medium

w/o predict 4.331 1.975 16.39 15.88
extrapolation 0.5913 0.4866 22.05 13.25

EKF 0.2543 0.5174 3.228 10.98
MOUNT 0.1835 0.3469 2.920 9.162

MOUNT(O3) 0.2021 0.3756 3.012 9.421

V2 03
difficult

w/o predict 4.504 2.222 17.78 17.91
extrapolation 0.5757 0.5727 22.24 14.19

EKF 0.2547 0.5880 3.746 12.10
MOUNT 0.1959 0.4043 3.596 11.24

MOUNT(O3) 0.2212 0.4512 3.723 11.85

whole

w/o predict 3.612 1.694 13.86 13.86
extrapolation 0.6158 0.4547 23.07 11.98

EKF 0.2112 0.4646 3.428 9.993
MOUNT 0.1631 0.3265 3.314 8.903

MOUNT(O3) 0.1775 0.3550 3.343 9.257

(a) ground truth (b) w/o predict

(c) extrapolation (d) EKF (e) MOUNT

Fig. 7: A typical example of an image (454th image in inspect far)
rendered under different prediction methods.

model’s ability to different prediction time. We test performances
of the above models at future 10ms, 30 ms, 60 ms, and 90 ms.

Results are indicated in Table 5. As the prediction time
increases, the error of the no motion prediction increases linearly.
Although the error of the predicted pose of our proposed MOUNT
is also increasing, the improvement of MOUNT relative to the
best of other methods is in an increasing trend, which shows
that MOUNT has the ability to predict the pose after a long
time. Even when the prediction time is 90ms, MOUNT can still
produce prediction results with millimetre accuracy. Compared
with other methods, it can reduce the translation error by 54% and
the rotation error by 45%.

It can also be seen that even the traditional methods perform
well when the prediction time is very short (10ms), and MOUNT
is not able to pull far behind them. This indicates that for
devices with high hardware performance and low latency such
as HoloLens, the prediction algorithm with high performance has
little effect, while for devices with low performance and high
latency and cloud devices, the prediction algorithm will play a
more important role.

The Figure 8 shows two typical examples. The turning point
of the trajectory predicted by MOUNT is significantly earlier than
other methods, which shows that MOUNT has a strong ability
to predict motion tendency in advance. It can be seen from the
above result that MOUNT has learned motion patterns contained

TABLE 3: The performance of MOUNT. Prediction time: 60ms,
camera frame rate: 30Hz, dataset: ours.

Sequence method AET (cm) AER(°) NFT NFR

w/o predict 5.800 1.689 10.25 8.221
focus far extrapolation 0.2665 1.055 5.870 9.241

EKF 0.3327 0.8277 2.012 6.300
MOUNT 0.1752 0.4079 1.551 4.992

w/o predict 4.719 1.182 9.488 4.256
focus near extrapolation 0.1963 0.8179 4.034 5.985

EKF 0.2473 0.6188 1.174 3.832
MOUNT 0.1380 0.3009 0.9353 2.981

w/o predict 5.071 2.142 12.56 11.67
forward far extrapolation 0.2498 0.8996 4.052 8.894

EKF 0.3062 0.7812 1.982 6.601
MOUNT 0.1689 0.3404 1.983 4.938

w/o predict 4.912 1.902 11.29 9.194
forward narrow extrapolation 0.2418 0.9696 7.767 6.894

EKF 0.2743 0.8505 4.542 5.225
MOUNT 0.1514 0.2894 7.480 3.202

w/o predict 4.550 1.257 10.72 5.295
forward near extrapolation 0.1359 0.7364 2.326 5.729

EKF 0.2415 0.5433 1.129 3.849
MOUNT 0.1287 0.2015 0.9437 2.097

w/o predict 4.093 2.479 7.943 10.53
forward stair extrapolation 0.261 1.026 5.382 8.053

EKF 0.4476 0.8830 2.005 5.542
MOUNT 0.2167 0.3894 1.643 4.615

w/o predict 1.068 3.391 2.540 8.821
inspect far extrapolation 0.1468 0.3378 0.7600 2.253

EKF 0.1628 0.4366 0.6892 2.617
MOUNT 0.0946 0.1772 0.6610 1.899

w/o predict 0.6400 1.575 2.546 5.995
inspect narrow extrapolation 0.05891 0.2619 0.4909 2.267

EKF 0.05938 0.3097 0.4885 2.125
MOUNT 0.05890 0.1542 0.3879 1.748

w/o predict 2.211 3.166 6.810 13.79
inspect near extrapolation 0.3489 0.5891 3.734 6.669

EKF 0.3341 0.5807 2.456 5.021
MOUNT 0.1825 0.2688 2.715 4.219

w/o predict 4.710 3.596 10.29 13.64
patrol far extrapolation 0.3517 1.097 9.089 12.24

EKF 0.3576 0.9815 2.557 7.941
MOUNT 0.2167 0.4159 2.852 5.789

w/o predict 5.479 4.397 6.962 18.62
patrol narrow extrapolation 0.2351 1.103 4.977 9.610

EKF 0.3343 1.078 1.730 7.198
MOUNT 0.1750 0.4598 1.808 5.737

w/o predict 5.024 2.285 8.845 8.522
patrol near extrapolation 0.1468 0.5651 3.297 4.659

EKF 0.1928 0.4836 1.289 3.191
MOUNT 0.1034 0.2174 1.018 2.773

w/o predict 4.859 3.533 11.49 15.34
patrol stair extrapolation 0.3104 1.184 7.259 10.08

EKF 0.4157 1.103 2.345 7.424
MOUNT 0.2219 0.4850 2.144 5.951

w/o predict 10.83 3.933 21.58 17.18
run far extrapolation 0.7962 2.364 23.22 19.67

EKF 0.9975 1.924 5.859 12.85
MOUNT 0.4780 0.7158 3.301 7.753

w/o predict 4.557 2.700 9.514 10.78
whole extrapolation 0.2737 0.9235 5.876 8.019

EKF 0.3370 0.8161 2.155 5.693
MOUNT 0.1806 0.3473 2.101 4.192

TABLE 4: The performance of MOUNT in different environments and
motion purposes. Prediction time: 60ms, camera frame rate: 30Hz,
dataset: ours. The ∗ symbol stands for any.

w/o predict extrapolation EKF MOUNT
environment purpose AET (cm) AER (°) AET (cm) AER (°) AET (cm) AER (°) AET (cm) AER (°)

narrow ∗ 3.909 2.813 0.1841 0.8196 0.2365 0.7865 0.1343 0.3191
near ∗ 3.774 2.291 0.2324 0.6421 0.2657 0.5525 0.1445 0.2470
far ∗ 5.615 2.844 0.3561 1.1532 0.4224 0.9871 0.2243 0.4139

stair ∗ 4.523 3.071 0.2888 1.1145 0.4297 1.0067 0.2196 0.4431
∗ forward 4.734 1.984 0.2282 0.9097 0.3153 0.7716 0.1669 0.3118
∗ inspect 1.569 2.781 0.2299 0.4528 0.2273 0.4801 0.1323 0.2204
∗ patrol 5.026 3.450 0.2587 0.9807 0.3221 0.9056 0.1777 0.3917
∗ run 10.83 3.933 0.7962 2.3644 0.9975 1.9237 0.4780 0.7158
∗ focus 5.369 1.486 0.2385 0.9602 0.2986 0.7444 0.1603 0.3652

in training data, which explains to a certain extent the reason why
the model’s predictions are so accurate.

5.2.3 Accuracy about camera frame rate

Since MOUNT quantitatively measures the uncertainty of input
data and output prediction, it should have a certain degree of
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TABLE 5: The accuracy of our model about different prediction
times. Prediction time: changeable, camera frame rate: 30Hz, dataset:
ours. The last row of the table shows our method’s error reduction
percentage relative to the best of other methods.

time 10ms 30ms 60ms 90ms
AET (cm) AER (°) AET (cm) AER (°) AET (cm) AER (°) AET (cm) AER (°)

w/o predict 0.7618 0.4565 2.279 1.3620 4.557 2.700 6.830 4.004
extrapolation 0.03499 0.03181 0.08230 0.3058 0.2737 0.9235 0.7111 1.872

EKF 0.03741 0.07065 0.1117 0.2885 0.3370 0.8161 0.6907 1.525
MOUNT 0.02937 0.03121 0.06947 0.09698 0.1806 0.3473 0.3161 0.8328

ratio 16.06% 1.886% 15.58% 33.61% 34.01% 57.44% 54.23% 45.30%

(a) (b)

Fig. 8: Two partial enlarged views of trajectories after extending
prediction time. Prediction time: 60ms, camera frame rate: 30Hz,
shown sequence: patrol narrow. The dot in the figure represents the
turning point of the trajectory, which illustrates the change in the
motion trend.

ability to deal with noise. Therefore, we investigate the model’s
prediction ability at different camera frame rates.

As mentioned in section 5.1.3, the input of our model is not
ground truth but the simulated VI-SLAM output sequence. In VI-
SLAM, due to the presence of noise in the IMU, as the camera
frame rate drops, the IMU propagation error will be accumulated,
thus causing the increasing error in the input pose sequence. In
this section, we show the robustness of the model to noise by
testing the model’s motion prediction performance under different
camera frame rates.

As shown in Table 6 , when the camera frame rate decreases,
the performance of our model also decreases due to the increase
in the noise of the input sequence, but it is always much more
accurate than no motion prediction and other methods.

TABLE 6: The performance of our model about camera frame rate.
Prediction time: 60ms, camera frame rate: changeable, dataset: ours.
The last row of the table shows the percentage of error reduction of
our method relative to the best of other methods.

camera
frame rate

30Hz 15Hz 10Hz 6Hz
AET (cm) AER (°) AET (cm) AER (°) AET (cm) AER (°) AET (cm) AER (°)

w/o predict 4.557 2.700 4.557 2.700 4.557 2.700 4.557 2.700
extrapolation 0.2737 0.9235 0.2964 0.9246 0.3235 0.9260 0.3910 0.9281

EKF 0.3370 0.8161 0.3541 0.8173 0.3753 0.8184 0.4318 0.8204
MOUNT 0.1806 0.3473 0.1940 0.3614 0.2225 0.3618 0.3044 0.3417

ratio 34.01% 57.44% 34.5% 55.78% 30.44% 55.79% 22.14% 58.34%

Figure 9 shows a typical example when the camera frame rate
is reduced to 10 Hz. It can be seen that the error between the
predicted trajectory and the real trajectory has apparent periodicity,
which is due to the drift of the input pose caused by the noise
contained in the IMU. However, the robustness of our model
makes it possible to produce more accurate poses compared with
other methods.

More surprisingly, we found that 10Hz is a good choice that
balances the prediction accuracy and the power consumption of

AR devices. At this camera frame rate, the error of the motion
prediction will be lower than other methods of 30Hz. However, the
power consumption of the camera and VI-SLAM will be reduced
to about 35% of the latter, which will significantly improve the
AR device’s endurance.

Fig. 9: Partial enlarged view of trajectories after reducing camera
frame rate. Prediction time: 60ms, camera frame rate: 10Hz, shown
sequence: run far. The error of the predicted trajectory has an apparent
periodicity of 100ms because of the periodicity of the noise in the
input pose sequence.

5.2.4 Uncertainty prediction
We test the Bayesian model proposed in section 4.3 to evaluate its
ability for uncertainty prediction of current output.

Figure 10 illustrates the relationship between the uncertainty
prediction of the model’s output and the actual prediction error. It
can be seen from the top half of the two subplots that there is a
visual positive correlation between the two variables, which shows
that the model has a certain uncertainty prediction ability.

To further quantitatively measure the correlation between
uncertainty and error, we use Pearson correlation analysis to
calculate the correlation coefficient between the two time series.
The bottom half of the two subplots show the two series’ cor-
relation within a time window. It can be seen that although the
correlation fluctuates with time, it is positive most of the time.
The overall translation and rotation correlation coefficients of this
scene are 0.486 and 0.661, which shows that there is indeed a
close correlation between the uncertainty of the MOUNT output
and the actual error, which proves the ability of MOUNT to predict
the uncertainty.

It should be noted that a small uncertainty usually means a
small error, while a significant uncertainty does not necessarily
mean a large error. When the uncertainty increases, the expected
value of the prediction error will increase, and the variance will
be more significant.

5.2.5 User Study
We conduct a user study to evaluate the perceptual quality of
our proposed MOUNT in terms of accuracy and smoothness.
More specifically, we conduct an experiment with 30 people who
watch some AR videos produced by various methods and rate
the accuracy of the virtual-real fusion and the smoothness of the
position of virtual objects in the video.

Figure 11 shows the results of the user perceptual experiments.
It can be found that although the result of MOUNT is still far
from that of ground truth, it is obviously superior to the traditional
method and can bring better feelings to users.
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Fig. 10: The Pearson correlation between uncertainties and errors.
Prediction time: 60ms, camera frame rate: 20Hz, shown sequence:
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Fig. 11: Mean ratings from the user perceptual experiments with 95%
comfidence intervals.

5.3 Ablation Study

5.3.1 Ablation study on model components
To study the effectiveness of each part of the model, we divide the
composition of the model into six parts:

• A: value encoding structure, this part of the network
splices the latest poses and IMU measurements values to
form the intermediate vector.

• B: motion pattern encoding structure, this part of the
network is responsible for extracting the motion pattern
information contained in the pose sequence.

• C: uncertainty pattern encoding structure, this part of the
network is responsible for encoding the pose uncertainty
sequence

• D: IMU pattern encoding structure, this part extracts
the motion pattern information contained in the IMU
sequence.

• E: uncertainty decoding structure, this part of the network
is responsible for predicting the uncertainty of this output.
Without this part, the loss function is changed to Equa-
tion 21

• F: smoothing structure, this part represents the smoothing
strategy shown in section 4.4, which takes the responsibil-
ity of making the predicted trajectory smoother.

TABLE 7: Ablation experiment for network structure. Prediction time:
60ms, camera frame rate: 30Hz. dataset: ours

structure Accuracy Smoothness
A B C D E F AET (cm) AER(°) NFT NFE

√
0.2572 0.4221 10.68 13.24√ √
0.2298 0.4059 8.120 10.49√ √ √
0.2047 0.3862 6.176 9.198√ √ √ √
0.1952 0.3612 3.842 6.286√ √ √ √ √
0.1725 0.3340 3.054 5.073√ √ √ √ √ √
0.1806 0.3473 2.101 4.192
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Fig. 12: Two Partial enlarged views of trajectories before and after
smoothing strategy is used. Prediction time: 60ms, camera frame
rate: 20Hz, shown sequence: V1 01 easy. After adding a smoothing
strategy, the smoothness of the trajectory is greatly improved.

Table 7 shows changes in model performance after gradually
adding the above model structure. It can be seen that part A,B,C,D
and E of the model contribute to the final accuracy and smoothness
to a certain extent, which shows the rationality of the model
design.

It should be noted that after adding the smoothing strategy(part
F), the accuracy has slightly declined by about 4%, for the
reason that historical predictions are indeed not as accurate as
this prediction for current prediction in a statistical sense. How-
ever, smoothness is greatly improved due to the addition of the
smoothing strategy. It can be seen from Figure 12 that compared
to the original output, the filtered prediction curve appears much
smoother, which will significantly improve AR visual effects.

5.3.2 Ablation study on data form

To study the effectiveness of the data pre-processing methods in
MOUNT, we experiment the effect of different forms of input and
output data on the final performance. For the rotation component,
it has three forms worth considering: rotation vector, euler angle
and quaternion. At the same time, both rotation and translation can
be processed into absolute and relative quantities. The absolute
quantity represents the value itself. The calculation method of the
relative quantity has been mentioned in Equation 7. For the IMU,
we also try not to eliminate gravity.

The Table 8 shows the model performance under different
data forms. As mentioned above, the relative quantity guarantees
numerical stability and is easier to be learned by the model.
Because of the singularity of euler angle and additional constraints
of quaternion, the rotation vector becomes to be the best choice.
The conclusions in [56] also provide us with strong evidence:
”a rotation vector representation might also be suitable when
restricted to small angles.” The removal of gravity can significantly
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reduce the learning burden of the network, so It can be seen that
the data form we have chosen is reasonable and valid.

TABLE 8: Ablation experiment for data form. Prediction time: 60ms,
camera frame rate: 30Hz, dataset: ours. ABS means absolute, REL
means relative, and RAW means unprocessed form. The

√
indicates

that the data form here is the same as our method.

rotation form translation form IMU form AET (cm) AER(°)

ABS rotation vector
√ √

0.1883 3.354
ABS quaternion

√ √
0.2132 16.27

ABS euler angle
√ √

0.1985 2.628
REL quaternion

√ √
0.1898 1.192

REL euler angle
√ √

0.1867 0.3523√
ABS 3D vector

√
12.97 0.3498√ √

RAW 0.3149 0.3482√ √ √
0.1806 0.3473

6 CONCLUSION AND FUTURE WORK

In this paper, we define a task called 6DoF motion prediction
customized for delayed AR rendering mathematically, and show
effective methods MOUNT for this task. Experiments on EuRoC
[5] and our collected dataset show that MOUNT has the ability
to demonstrate competitive performance on accuracy and smooth-
ness and significantly improve AR visual effects. Furthermore, the
experiments of MOUNT under the condition of low camera frame
rate and long prediction time provide an explanation for its strong
prediction ability to a certain extent.

Currently the prediction time is fixed. It is sufficient to verify
the effectiveness of this method. However in practice, variable
prediction time is required due to the fluctuations of actual delay
time. So we plan to adapt MOUNT to variable prediction time
in the future, and deploy it on the low-end device which has
severe rendering delay, and also deploy it on the cloud to render
the high-quality content. In addition, for the low-end device, we
also plan to simplify the network without sacrificing prediction
accuracy to further improve computational efficiency and reduce
power consumption.

REFERENCES

[1] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, “Mobile augmented
reality survey: From where we are to where we go,” IEEE Access, vol. 5,
pp. 6917–6950, 2017.

[2] Z. Oufqir, A. El Abderrahmani, and K. Satori, “ARKit and ARCore in
serve to augmented reality,” in International Conference on Intelligent
Systems and Computer Vision. IEEE, 2020, pp. 1–7.

[3] P. Nowacki and M. Woda, “Capabilities of ARCore and ARKit platforms
for ar/vr applications,” in International Conference on Dependability and
Complex Systems. Springer, 2019, pp. 358–370.

[4] J. Suto, S. Oniga, and P. P. Sitar, “Feature analysis to human activity
recognition,” International Journal of Computers Communications &
Control, vol. 12, no. 1, pp. 116–130, 2016.

[5] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,”
The International Journal of Robotics Research, vol. 35, no. 10, pp.
1157–1163, 2016.

[6] J. Van Waveren, “The asynchronous time warp for virtual reality on
consumer hardware,” in Proceedings of the 22nd ACM Conference on
Virtual Reality Software and Technology, 2016, pp. 37–46.

[7] U. H. List, “Nonlinear prediction of head movements for helmet-mounted
displays,” AIR FORCE HUMAN RESOURCES LAB BROOKS AFB
TX, Tech. Rep., 1983.

[8] R. Azuma and G. Bishop, “A frequency-domain analysis of head-motion
prediction,” in Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, 1995, pp. 401–408.

[9] R. H. So and M. J. Griffin, “Effects of time delays on head tracking
performance and the benefits of lag compensation by image deflection,”
in Flight Simulation Technologies Conference, New Orleans, Louisiana,
1991.

[10] T. Mazuryk and M. Gervautz, “Two-step prediction and image deflection
for exact head tracking in virtual environments,” in Computer Graphics
Forum, vol. 14, no. 3. Wiley Online Library, 1995, pp. 29–41.

[11] J. Rambach, A. Pagani, S. Lampe, R. Reiser, M. Pancholi, and
D. Stricker, “[poster] fusion of unsynchronized optical tracker and inertial
sensor in ekf framework for in-car augmented reality delay reduction,”
in International Symposium on Mixed and Augmented Reality Adjunct.
IEEE, 2017, pp. 109–114.

[12] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[13] M. Borges, A. Symington, B. Coltin, T. Smith, and R. Ventura, “HTC
vive: Analysis and accuracy improvement,” in Proc. of International
Conference on Intelligent Robots and Systems. IEEE, 2018, pp. 2610–
2615.

[14] E. M. Foxlin, “Generalized architecture for simultaneous localization,
auto-calibration, and map-building,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, vol. 1. IEEE, 2002, pp. 527–
533.

[15] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:
Real-time single camera SLAM,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[16] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 6th IEEE and ACM international symposium on mixed
and augmented reality. IEEE, 2007, pp. 225–234.

[17] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE Transactions on
Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[18] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[19] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in Proc. of Internatoinal Conference on
Computer Vision. IEEE, 2011, pp. 2564–2571.
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