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Figure 1: We present Mirror-NeRF, a novel neural rendering framework that incorporates Whitted Ray Tracing to achieve
photo-realistic novel view synthesis in the scene with the mirror and supports various scene manipulation applications. Given
the posed images with mirror reflection masks, we can learn the correct geometry and reflection of the mirror.

ABSTRACT
Recently, Neural Radiance Fields (NeRF) has exhibited significant
success in novel view synthesis, surface reconstruction, etc. How-
ever, since no physical reflection is considered in its rendering
pipeline, NeRF mistakes the reflection in the mirror as a separate
virtual scene, leading to the inaccurate reconstruction of the mirror
and multi-view inconsistent reflections in the mirror. In this paper,
we present a novel neural rendering framework, named Mirror-
NeRF, which is able to learn accurate geometry and reflection of
the mirror and support various scene manipulation applications
with mirrors, such as adding new objects or mirrors into the scene
and synthesizing the reflections of these new objects in mirrors,
controlling mirror roughness, etc. To achieve this goal, we propose
a unified radiance field by introducing the reflection probability
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and tracing rays following the light transport model of Whitted Ray
Tracing, and also develop several techniques to facilitate the learn-
ing process. Experiments and comparisons on both synthetic and
real datasets demonstrate the superiority of our method. The code
and supplementary material are available on the project webpage:
https://zju3dv.github.io/Mirror-NeRF/.
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1 INTRODUCTION
3D scene reconstruction and rendering is a long-standing problem
in the fields of computer vision and graphics with broad applications
in VR and AR. Although significant progress has been made over
decades, it is still very challenging to reconstruct and re-render
the scenes with mirrors, which exist ubiquitously in the real world.
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The "appearance" of the mirror is not multi-view consistent and
changes considerably with the observer’s perspective due to the
physical reflection phenomenon where the light will be entirely
reflected along the symmetric direction at the mirror.

Recently, Neural Radiance Fields (NeRF) [16] has exhibited signif-
icant success in novel view synthesis and surface reconstruction due
to its capability of modeling view-dependent appearance changes.
However, since the physical reflection is not considered in its ren-
dering pipeline, NeRF mistakes the reflection in the mirror as a
separate virtual scene, leading to the inaccurate reconstruction of
the geometry of the mirror, as illustrated in Fig. 2. The rendered "ap-
pearance" of the mirror also suffers from multi-view inconsistency.
Several techniques [22, 26, 50] decompose the object material and
illuminations to model the reflection effect at the surface, but they
all assume the surfaces with certain diffuse reflection to recover
object surface first and then model the specular component. Thus
they struggle to handle the mirrors with pure specular reflection
due to the incorrect surface estimation of mirrors. NeRFReN [9]
models reflection by separating the reflected and transmitted parts
of a scene as two radiance fields and improves the rendering quality
for the scenes with mirrors, while it still fails to model the physical
specular reflection process. Thus, it cannot render the reflection
that is not observed in the training views as shown in Fig.2, and
cannot synthesize new reflections of the objects or mirrors that are
newly placed in the scene.

In this paper, we propose a novel neural rendering framework,
named Mirror-NeRF, to accomplish high-fidelity novel view syn-
thesis in the scene with mirrors and support multiple scene ma-
nipulation applications. For clarity, we term the ray as the inverse
of light. The rays emitted from the camera are termed as camera
rays and rays reflected at the surface are termed as reflected rays.
Exhaustively conducting ray tracing in a room-scale environment
is prohibitively expensive. With the goal of achieving physically-
accurate rendering of reflections in the mirror, we draw inspiration
from Whitted Ray Tracing [37] where the ray is reflected at the
mirror-like surface and terminates at a diffuse surface. Specifically
speaking, we first define the probability that the ray is reflected
when hitting a spatial point as the reflection probability. The reflec-
tion probability is parameterized as a continuous function in the
spatial space by a Multi-Layer Perceptron (MLP). Then we trace the
ray emitted from the camera. The physical reflection will take place
when the ray hits the surface with a high reflection probability.
We accumulate the density and radiance of the ray by the volume
rendering technique and synthesize the image by blending the color
of camera rays and reflected rays based on the reflection probability.
Instead of taking the specular reflection as separate neural fields,
our neural fields are unified, which is more reasonable to synthesize
new physically sound reflection from novel viewpoints. As shown
in Fig. 1, our representation further supports various types of scene
manipulations, e.g., adding new objects or mirrors into the scene
and synthesizing the reflections of these new objects in mirrors,
controlling the roughness of mirrors and reflection substitution.

However, learning both geometry- and reflection-accuratemirror
with the proposed new representation is not trivial. First, the reflec-
tion at a surface point is related to the surface normal. The analytical
surface normal from the gradient of volume density has significant
noise since the density cannot concentrate precisely on the surface.

NeRFGT

OursNeRFReN

Figure 2: Comparison of the novel views synthesized by dif-
ferent methods. NeRF [16] mistakes the reflection in the mir-
ror as a separate virtual scene, leading to inaccurate depth of
the mirror. NeRFReN [9] uses two radiance fields to learn the
color inside and outside the mirror separately. They synthe-
size the reflection in the mirror by interpolating the memo-
rized reflection and cannot infer the reflection unobserved
in the training views, e.g., the missing ceiling. Instead, we suc-
cessfully synthesize new reflections in the mirror with the
accurate depth of the mirror due to our ray tracing pipeline.

Thus, we exploit an MLP to parameterize a smooth distribution
of surface normal. Second, the reconstruction of mirror surface is
ambiguous and challenging, since the "appearance" of mirror is
from other objects and not consistent from different viewpoints.
Based on the fact that mirrors in real world usually have planar
surfaces, we leverage both plane consistency and forward-facing
normal constraints in a joint optimization manner to guarantee the
smoothness of the mirror geometry and reduce the ambiguity of
the reflection. Moreover, a progressive training strategy is proposed
to stabilize the geometry optimization of the mirror.

Our contributions can be summarized as follows. 1) We pro-
pose a novel neural rendering framework, named Mirror-NeRF,
that resolves the challenge of novel view synthesis in the scene
with mirrors. Different from NeRF [16] and NeRFReN [9] that tend
to learn a separate virtual world in the mirror, Mirror-NeRF can
correctly render the reflection in the mirror in a unified radiance
field by introducing the reflection probability and tracing the rays
following the light transport model of Whitted Ray Tracing [37].
The physically-inspired rendering pipeline facilitates high-fidelity
novel view synthesis with accurate geometry and reflection of the
mirror. 2) To learn both accurate geometry and reflection of the
mirror, we leverage several techniques, including a surface normal
parametrization to acquire smooth distribution of surface normal,
the plane consistency and forward-facing normal constraints with
joint optimization to ensure the accurate geometry of the mirror,
and a progressive training strategy to maintain the stability of train-
ing. 3) The proposed Mirror-NeRF enables a series of new scene
manipulation applications with mirrors as shown in Fig. 1, such
as object placement, mirror roughness control, reflection substi-
tution, etc. Extensive experiments on real and synthetic datasets
demonstrate that Mirror-NeRF can achieve photo-realistic novel
view synthesis. A large number of scene manipulation cases show
the physical correctness and flexibility of the proposed method.
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Figure 3: Framework. We trace the rays physically in the scene and learn a unified radiance field of the scene with the mirror.
The neural field takes as input spatial location x, view direction d, and outputs the volume density �̂� , radiance ĉ, surface normal
n̂ and reflection probability �̂�. The final color is blended by the color of the camera ray and the reflected ray based on the
reflection probability.

2 RELATEDWORK
2.1 Neural Rendering
The goal of neural rendering is to synthesize photorealistic images
or videos by computing the light transport in a 3D scene. Lots of
works [15, 21, 43] have been proposed to push the envelope of
rendering quality in this field. One of the most notable approaches
is NeRF [16], which models the radiance field of a scene using the
MLP. By training on a set of posed images, NeRF learns to infer the
radiance and density of each sampled point and accumulates them
along the ray with volume rendering techniques to render the color.
This enables NeRF to generate photorealistic images of the scene
from a novel viewpoint. Several extensions and improvements have
been proposed to apply NeRF to more challenging problems, such
as scene reconstruction [1, 8, 13, 29, 30, 32, 36, 38, 39, 44, 48], gener-
alization [24, 33], novel view extrapolation [35, 45], scene manipu-
lation [2, 28, 40–42], SLAM [23, 54], segmentation [20, 53], human
body [18, 31] and so on. Furthermore, some NeRF-variants provide
various applications, such as supersampling [29] and controllable
depth-of-field rendering [39]. However, these NeRF-variants strug-
gle to model mirror reflection since they assume that all lights in
the scene are reflected at Lambertain surfaces.

2.2 Neural Rendering With Reflection
Plenty of works [3, 5, 6, 10, 12, 17, 49, 51, 52] have been working on
making NeRF understand physical reflection. PhySG [46] simplifies
light transport by modeling the environment illumination and ma-
terial properties as mixtures of spherical Gaussians and integrating
the incoming light over the hemisphere of the surface. InvRen-
der [50] extends PhySG to model the indirect light by using another
mixture of spherical Gaussians to cache the light that bounces off
from other surfaces. These approaches assume that surfaces are
diffuse with a simple BRDF and environment lighting is far away
from the scene. For a room with the mirror, they cannot handle
the complex reflection and material diversity in the scene. As for
NeRF, it will treat the reflection in mirrors as real geometry, which
reconstructs the inaccurate depth of the mirror. RefNeRF [26] de-
composes the light as diffuse and specular components and learns
the reflection using a radiance field conditioned by the reflected
view direction. NeRFReN [9] employs two radiance fields to learn

the color inside and outside the mirror and depth constraints to
recover the depth of the mirror. However, these methods generate
mirror reflection from new viewpoints by interpolating the previ-
ously learned reflections, and are limited in accurately inferring
reflections that were not observed during training and synthesizing
reflections for newly added objects or mirrors in the scene. By intro-
ducing the physical ray tracing into the neural rendering pipeline,
our method can correctly render the reflection in the mirror and
support multiple scene manipulation applications.

3 MIRROR-NERF
We introduce Mirror-NeRF, a physically inspired neural rendering
framework that supports photo-realistic novel view synthesis of
scenes with mirrors and reconstructs the accurate geometry and
reflection of mirrors. As illustrated in Fig. 3, we leverage unified
neural fields to learn the volume density, normal, reflection proba-
bility and radiance inside and outside the mirror (Sec. 3.1). With the
intention of generating physically-accurate reflections in the mirror,
we employ the light transport model in Whitted Ray Tracing [37]
and trace the volume rendered ray in the scene (Sec. 3.2). Besides,
some regularization constraints for the mirror surface (Sec. 3.3) and
a progressive training strategy (Sec. 3.4) are proposed to improve
the reconstruction quality of the mirror and stabilize the training.

3.1 Unified Neural Fields
We design several neural fields to learn the properties of the scene,
which are unified for parts inside and outside the mirror (Fig. 3).

3.1.1 Geometry and Color. Following the implicit representation
in NeRF [16], we use a geometry MLP F𝑔𝑒𝑜 to encode the geometry
feature 𝑓𝑔𝑒𝑜 at an arbitrary spatial location x. The volume density
field is presented by a volume density MLP F𝜎 which takes 𝑓𝑔𝑒𝑜
as input, and the radiance field is presented by a radiance MLP F𝑐
which takes 𝑓𝑔𝑒𝑜 and view direction d as input:

𝑓𝑔𝑒𝑜 = F𝑔𝑒𝑜 (𝛾𝑥 (x)),
𝜎 = F𝜎 (𝑓𝑔𝑒𝑜 ),
c = F𝑐 (𝑓𝑔𝑒𝑜 , 𝛾𝑑 (d)),

(1)

where 𝛾𝑥 (·) and 𝛾𝑑 (·) are respectively the positional encoding func-
tion of spatial position and view direction. 𝜎 and c are volume
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density and radiance respectively. To render an image from a spe-
cific viewpoint, we follow the volume rendering techniques in NeRF.
The volume-rendered color 𝐶 of a ray 𝒓 is calculated by accumulat-
ing the volume densities 𝜎𝑖 and radiances c𝑖 of sampled points 𝑥𝑖
along the ray:

𝐶 (𝒓) =
𝑁∑︁
𝑖=1

𝑇𝑖𝛼𝑖c𝑖 ,

𝑇𝑖 = exp ©«−
𝑖−1∑︁
𝑗=1

𝜎 𝑗𝛿 𝑗
ª®¬,

𝛼𝑖 = 1 − exp (−𝜎𝑖𝛿𝑖 ),

(2)

where 𝑁 is the number of sampled points on the ray 𝒓 , and 𝛿𝑖 is
the sampling distance between adjacent points along the ray.

3.1.2 Smooth Surface Normal. Prior works [4, 22] have analyzed
the acquisition of surface normal in NeRF that the negative gradient
of volume density w.r.t. x can give a differentiable approximation
of the true normal:

n = − ∇𝜎 (x)
| |∇𝜎 (x) | | . (3)

However, such parametrization tends to produce an unsmooth
surface normal distribution since the volume density cannot con-
centrate precisely on the surface. The noise in the surface normal
will severely hamper tracing the correct direction of the reflected
rays at the mirror. To obtain a smooth distribution of surface nor-
mal, we utilize an MLP F𝑛 that takes 𝑓𝑔𝑒𝑜 as input and predicts the
smoothed surface normal n̂:

n̂ = F𝑛 (𝑓𝑔𝑒𝑜 ). (4)

We supervise the optimization of F𝑛 by the analytical surface nor-
mal n:

L𝑛 = | |n̂ − n| |22 . (5)
To compute the surface normal at the intersection point of a ray 𝒓
and the surface, we follow the Eq. (2) by:

N̂(𝒓) =
𝑁∑︁
𝑖=1

𝑇𝑖𝛼𝑖 n̂𝑖 . (6)

3.1.3 Reflection Probability. To model the reflection and perform
the Whitted-style ray tracing described in Sec. 3.2, we also utilize
an MLP F𝑚 to predict the probability𝑚 that rays will be reflected
at a spatial point:

𝑚 = F𝑚 (𝑓𝑔𝑒𝑜 ), (7)
where𝑚 ranges in [0, 1]. To determine the reflection probability �̂�
of a ray 𝒓 hitting the solid surface, we perform the volume rendering
like Eq. (2):

�̂� (𝒓) =
𝑁∑︁
𝑖=1

𝑇𝑖𝛼𝑖𝑚𝑖 . (8)

3.2 Whitted-Style Ray Tracing
NeRF [16] does not take into account the physical reflection in
the rendering pipeline. When applied to the scene with the mirror,
NeRF cannot reconstruct the geometry of the mirror and treats
the reflection in the mirror as a separate virtual scene. To handle
the reflection at the mirror, we draw inspiration from Whitted Ray

𝑅ay𝑐𝑎𝑚

𝑅ay𝑟𝑒𝑓𝑀𝑖𝑟𝑟𝑜𝑟

(a) Our Ray Sampling Model

𝑁

(c) w/o Forward Sampling 

Strategy for Ref. Rays

(b) Result Using Our 

Ray Sampling Model

Figure 4: Our strategy for sampling points on rays is shown in
(a).We sample points on both the camera ray and the reflected
ray. For the reflected ray, we forward a distance from the
origin to start sampling points to avoid the reflected ray
terminating unexpectedly near the origin due to the "foggy"
geometry. The effectiveness of this design is demonstrated
by the comparison of (b) and (c) where mirror reflection
is corrupted without the forward sampling strategy. The
bottom right images in (b) and (c) show the reflected depth
of the mirror.
Tracing [37] where the ray is reflected at the mirror-like surface
and terminates at the diffuse surface. As shown in Fig. 4, when a
ray is reflected, we first compute the location X̂ of the intersection
point of the ray 𝒓 and the surface by:

X̂(𝒓) = o(𝒓) + �̂� (𝒓)d(𝒓),

�̂� (𝒓) =
𝑁∑︁
𝑖=1

𝑇𝑖𝛼𝑖𝑡𝑖 ,
(9)

where �̂� , o and d are the expected termination depth, origin and
direction of the ray 𝒓 respectively. 𝑇𝑖 and 𝛼𝑖 are the same as Eq. (2).

To trace the reflected ray 𝒓𝑟𝑒 𝑓 of a ray 𝒓 , we set X̂(𝒓) as its origin,
and compute its direction by:

d(𝒓𝑟𝑒 𝑓 ) = d(𝒓) − 2
(
N̂(𝒓) · d(𝒓)

)
N̂(𝒓) . (10)

Here all direction vectors are normalized.
Then, we use the volume rendering technique to compute the

color of the ray 𝒓 and its reflected ray 𝒓𝑟𝑒 𝑓 . The radiances of the
sampled points on 𝒓 and 𝒓𝑟𝑒 𝑓 are attained by querying the same
neural radiance field. Since the density-based representation al-
ways induces a "foggy" geometry, the reflected ray may terminate
unexpectedly near the origin as illustrated in Fig. 4(c). To solve the
problem, we start sampling points on the reflected ray at a distance
from the origin as shown in Fig. 4(a).

We blend the color of the ray 𝒓 and its reflected ray 𝒓𝑟𝑒 𝑓 accord-
ing to the volume-rendered reflection probability of the ray �̂� (𝒓)
as:

𝐶𝑃 (𝒓) = 𝐶 (𝒓)
(
1 − �̂� (𝒓)

)
+𝐶𝑃 (𝒓𝑟𝑒 𝑓 )�̂� (𝒓). (11)

Note that 𝐶𝑃 is defined recursively, and the recursion terminates
when �̂� is zero or the specifiedmaximum recursion depth is reached.

For each pixel, we generate a ray from the camera and trace it
in the scene. The set of these camera rays is denoted as 𝑅𝑐𝑎𝑚 . The
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pixel color is rendered by Eq.(11) with 𝒓 ∈ 𝑅𝑐𝑎𝑚 . We supervise
the rendered pixel color by the ground truth pixel color 𝐶𝐼 with a
photometric loss:

L𝑐 =
∑︁

𝒓∈𝑅𝑐𝑎𝑚
| |𝐶𝑃 (𝒓) −𝐶𝐼 (𝒓) | |22 . (12)

To guide the optimization of reflection probability �̂� , we calcu-
late the binary cross entropy loss between the rendered reflection
probability �̂� and the mirror reflection mask𝑀 :

L𝑚 =
∑︁

𝑟 ∈𝑅𝑐𝑎𝑚
−
(
𝑀 (𝒓) log �̂� (𝒓) + (1 −𝑀 (𝒓)) log

(
1 − �̂� (𝒓)

))
,

(13)

where𝑀 is obtained by using the off-the-shelf segmentation tools
like [11] on the ground-truth images.

3.3 Regularization
We design a novel rendering pipeline based onWhitted Ray Tracing
for the mirror, while a naïve training without regularization always
leads to unstable convergence at the mirror where the "appearance"
of themirror is blurred.We find that the bumpy surface of themirror
will greatly affect the quality of reflection due to underconstrained
density at the mirror. Thus, we introduce several regularization
terms into our optimization process.

3.3.1 Plane Consistency Constraint. As far as we observe, mirrors
typically have planar surfaces in the real world. To make full use of
this property, we apply the plane consistency constraint proposed
by [7] to the surface of the mirror. Specifically, we randomly sample
four points 𝐴, 𝐵, 𝐶 , 𝐷 on the surface of the mirror and enforce the
normal vector of the plane 𝐴𝐵𝐶 to be perpendicular to the vector
®𝐴𝐷 :

L𝑝𝑐 =
1
𝑁𝑝

𝑁𝑝∑︁
𝑖=1

| ®𝐴𝑖𝐵𝑖 × ®𝐴𝑖𝐶𝑖 · ®𝐴𝑖𝐷𝑖 |, (14)

where 𝑁𝑝 denotes the number of the 4-point sets randomly selected
from the planes.

3.3.2 Forward-facing Normal Constraint. With regard to the reflec-
tion equation Eq. (10), we find that it still holds when the surface
normal rotates 180 degrees and points to the inside of the surface.
This ambiguity will incur the incorrect depth of the mirror. To
tackle this issue, we follow [26] to enforce that the analytical sur-
face normal n̂ of sampled points makes an obtuse angle with the
direction d of the camera ray 𝒓 , i.e., the surface normal should be
forward-facing to the camera.

L𝑛𝑟𝑒𝑔 = max(0, n̂ · d(𝒓))2 . (15)

3.3.3 Joint Optimization. In practice, we jointly optimize all net-
works with the aforementioned losses. In other words, each loss
will eventually have an impact on the volume density field and
radiance field:

L = 𝜆𝑐L𝑐 + 𝜆𝑚L𝑚 + 𝜆𝑝𝑐L𝑝𝑐

+ 𝜆𝑛L𝑛 + 𝜆𝑛𝑟𝑒𝑔L𝑛𝑟𝑒𝑔 ,
(16)

where 𝜆 is the coefficient of each loss term. Joint optimization will
bring three main advantages. First, the surface normal loss L𝑛

not only influences the F𝑛 but also encourages F𝑔𝑒𝑜 to produce

a smooth feature distribution, which makes the volume density
uniformly concentrate on the surface to strengthen the flatness of
the surface. Second, the reflection probability loss L𝑚 will promote
the volume density field to reach a peak at the mirror, thereby
producing an unbiased depth for the mirror. Both of the losses
regulate the F𝑔𝑒𝑜 through 𝑓𝑔𝑒𝑜 . Third, in spite of the employment
of plane and normal constraints, any tiny error of the surface normal
will be amplified during the reflection. Through joint optimization,
these errors will be iteratively refined since the photometric lossL𝑐

will implicitly adjust the surface normal N̂ to the desired direction
through the differentiable reflection equation.

3.4 Progressive Training Strategy
In the early stage of training, the neural field is unstable and easily
falls into the local optimum. We conclude the degeneration situa-
tions as two cases: 1) The reflection in the mirror might be learned
as a separate scene with inaccurate depth just like NeRF in the case
the color converges faster than the geometry. 2) The color may be
stuck in a local optimum and blurry if strong geometric regular-
ization is enabled at the beginning. To make training stable, we
progressively train the image area inside and outside the mirror and
schedule the coefficients of losses at different stages of training. In
the initial stage, we enable 𝜆𝑐 and disable the remaining coefficients
to maintain the stability of the neural field and avoid the geometry
of the mirror being ruined. Furthermore, we replace the L𝑐 with
masked photometric loss L𝑐𝑚 :

L𝑐𝑚 =
∑︁

𝒓∈𝑅𝑐𝑎𝑚
⋂
𝑅𝑀

| |𝐶𝑃 (𝒓)−𝐶𝐼 (𝒓) | |22+
∑︁

𝒓∈𝑅𝑐𝑎𝑚
⋂
𝑅𝑀

| |𝐶𝑃 (𝒓)−𝐾 | |22,

(17)
where 𝑅𝑀 is the set of rays hitting the mirror-like surface and 𝑅𝑀
is the complementary set of 𝑅𝑀 . 𝐾 is a constant vector, which we
use (0, 0, 0) in our experiments. The use of 𝐾 for the image region
inside the mirror is to learn an initial rough shape of the mirror
without learning its reflection, which will be discussed in Sec. 4.3.2.
L𝑐𝑚 is used until the last stage. After a few epochs, we activate
the 𝜆𝑚 , 𝜆𝑝𝑐 , 𝜆𝑛 , 𝜆𝑛𝑟𝑒𝑔 to regularize the location and geometry of
the mirror. After this stage, the accurate depth of the mirror is
expected to have been learned by the neural fields. At last, we use
L𝑐 instead of L𝑐𝑚 to jointly optimize the reflection part and refine
the geometry of the mirror.

4 EXPERIMENTS
4.1 Datasets
To the best of our knowledge, there is no room-level dataset contain-
ing mirrors publicly available for the task of novel view synthesis.
Therefore, we create 5 synthetic datasets and capture 4 real datasets
with mirrors. Each synthetic dataset is an indoor room downloaded
from the BlendSwap [14], including living room, meeting room,
washroom, bedroom, and office. Real datasets are captured in real
indoor scenes using IPad Pro, including clothing store, lounge, mar-
ket and discussion room. In each dataset, images are captured 360
degrees around the scene. We split the images as training and test
sets to perform the quantitative and qualitative comparison. We
use the off-the-shelf segmentation tool [11] to segment the mirror
reflection mask in the image.
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Figure 5: Qualitative comparison of novel view synthesis on synthetic and real scenes with mirrors.

4.2 Comparisons
We compare our method with NeRF [16] and the state-of-the-art
neural rendering methods dealing with the reflection, i.e., Ref-
NeRF [26] and NeRFReN [9]. The same mirror masks are provided
for our method and NeRFReN.

We perform the quantitative comparisons of novel view synthesis
on the metrics PSNR, SSIM [34], and LPIPS [47]. As demonstrated in
Tab. 1, on the regular test viewpoints, our method outperforms the
SOTAmethods handling the reflection (i.e., Ref-NeRF andNeRFReN)
on both synthetic and real datasets, and is comparable with NeRF.
Note that NeRF does not reconstruct the physically sound geometry
of the mirror and just interpolates the memorized reflection when
performing novel view synthesis, while our method recovers the
correct depth of the mirror and enables synthesizing reflections
unobserved in training views and multiple applications due to the
physical ray-tracing pipeline. Since the above test viewpoints are

close to the distribution of training viewpoints, NeRF can generate
visually reasonable reflection by interpolating the reflection of
nearby views. To compare the correctness ofmodeling reflection, we
capture a set of more challenging test images with more reflections
unobserved in the training views. We quantitatively compare the
reflection in the mirror, as shown in Tab. 2. Our method surpasses
all the compared methods since we can faithfully synthesize the
reflection by tracing the reflected ray in the scene. Please refer to
the supplementary material for more details.

Qualitative comparisons on the synthetic and real datasets are
shown in Fig. 5. NeRF models the scene as a volume of particles
that block and emit light [25], and conditions the view-dependent
reflection by view direction input. The assumption is suitable well
for the Lambertian surface but fails in resolving the reflection in
the mirror. The multi-view inconsistent reflection in the mirror will
mislead NeRF to learn a separate virtual scene in the mirror, e.g.,
the inaccurate depth results shown in Fig. 5, since NeRF does not
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Methods
Synthetic Datasets Real Datasets

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 28.501 0.903 0.066 25.399 0.788 0.209
Ref-NeRF 28.703 0.905 0.079 24.544 0.730 0.294
NeRFReN 28.483 0.902 0.080 23.191 0.686 0.367
Ours 29.243 0.907 0.077 25.173 0.785 0.205

Table 1: Quantitative comparison of novel views at regular
test viewpoints on synthetic and real scenes with mirrors.
The best ismarked in red and the second ismarked in orange.

Methods
Synthetic Datasets Real Datasets

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 23.326 0.964 0.027 19.749 0.886 0.117
Ref-NeRF 22.828 0.964 0.028 20.188 0.897 0.122
NeRFReN 23.542 0.966 0.030 19.174 0.871 0.148
Ours 25.677 0.975 0.021 22.705 0.912 0.085

Table 2: Quantitative comparison of reflections inside the
mirror from challenging novel viewpoints out of the training
set distribution on synthetic and real scenes.

Settings PSNR ↑ SSIM ↑ LPIPS ↓
w/o Surface Normal Param. 20.464 0.720 0.349
w/o L𝑐𝑚 28.331 0.878 0.103
w/o Plane Consistency 30.687 0.916 0.058
w/o Forward. Normal Reg. 31.108 0.923 0.052
w/o Joint Optimization 27.691 0.875 0.106
Full Model 32.422 0.933 0.047

Table 3: We quantitatively analyze our model design and
training schemes on the synthetic bedroom.

consider the physical reflection in the rendering pipeline. Despite
Ref-NeRF’s attempt to reproduce reflections by reparameterizing
the radiance field using the reflected ray direction and surface ma-
terials, it encounters the same limitation as NeRF in reconstructing
the mirror’s geometry. NeRFReN takes two neural radiance fields
to model the scene inside and outside the mirror respectively and
can produce the smooth depth of the mirror. However, the above
methods synthesize the reflection by interpolating the memorized
reflection. The common drawback of these methods is that they
cannot synthesize the reflections unobserved in the training set
from new viewpoints, e.g., the missing statue in the mirror of the
living room, the vanishing ceiling in the mirror of the washroom,
and broken cabinet in the mirror of the discussion room in Fig.5.
With our neural rendering framework based on physical ray tracing,
we can synthesize the reflection of any objects in the scene from
arbitrary viewpoints. Moreover, NeRF, Ref-NeRF, and NeRFReN
struggle to produce the reflection of the objects whose reflection
has high-frequency variations in color, e.g., the distorted hanging
picture in the mirror of the meeting room, the blurry curtain in
the mirror of the office and the lounge, and the "fogged" clothes in
the mirror of the clothing store in Fig.5. By contrast, our method
renders detailed reflections of objects by tracing the reflected rays.
Compared to NeRFReN, our method can also recover smoother
depth of the mirror, e.g., the depth of the mirror from NeRFReN is
damaged by the reflection of distant light on the office while our
method recovers the mirror depth accurately.

(a) Full Model

(f) w/o Surface Normal 

Parametrization

(c) w/o Plane Consistency 

Constraint

(e) w/o Forward-Facing 

Normal Constraint

(b) w/o Masked 

Photometric Loss

(d) w/o Joint Optimization

Figure 6: Ablation studies. We qualitatively analyze our
model design and training schemes. The top right and bottom
right images in each subfigure show the depth and normal
map respectively.

4.3 Ablation Studies
We qualitatively and quantitatively analyze our model design and
training schemes on the synthetic bedroom in this section, as shown
in Fig. 6 and Tab. 3. For more ablation studies, please refer to the
supplementary material.

4.3.1 Smooth Surface Normal Parametrization. We first inspect the
effectiveness of our surface normal parametrization (Sec.3.1) by
using the analytical surface normal from Eq. (3) to calculate the
direction of the reflected ray. As depicted in Fig. 6(f) and Tab. 3, the
reflection in the mirror is collapsed due to the inevitable noise in the
analytical surface normal of themirror. Instead, our parametrization
provides a smooth surface normal with less noise to guide the
optimization of the reflection in the mirror.

4.3.2 Masked Photometric Loss L𝑐𝑚 . Without the usage of L𝑐𝑚

in the early stage (Sec. 3.4), the depth of the mirror is incorrectly
recovered as depicted in Fig. 6(b). The reason for this is that color
supervision inside the mirror may lead to the optimization of mirror
geometry getting stuck in a local optimum during the initial stages
while the mirror geometry has not yet converged.

4.3.3 Regularization. We then analyze the efficacy of each regular-
ization term (Sec.3.3) by turning it off during training. As demon-
strated in Fig. 6(c) and Tab. 3, without plane consistency constraint,
the discontinuities occur in the depth of the mirror which decreases
the image quality. A similar effect happens for the forward-facing
normal constraint as shown in Fig. 6 (e). This normal regularization
can improve the image quality by correctly orienting the surface
normal to the room. Without the joint optimization strategy, the
reflection in the mirror is blurred due to the imprecise geometry of
the mirror as shown in Fig. 6 (d). When all regularization terms are
enabled, we successfully learn the precise reflection in the mirror
with the highest image quality.

4.4 Applications
Due to the physical modeling of the mirror reflection, the proposed
Mirror-NeRF supports various new scenemanipulation applications
with mirrors as shown in Fig. 7.
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Figure 7: Applications on synthetic and real scenes with mirrors.

4.4.1 Placing New Mirrors. By tracing the reflected rays at the
mirror recursively, it is feasible for our method to integrate new
mirrors into the original scene. As shown in Fig. 7(a), we enable
the synthesis of novel views involving inter-reflection between
the newly placed mirror and the original mirror, e.g., the endless
reflection of the room in the new and original mirrors in the first
two rows, and the new reflection of the ground in the last row.

4.4.2 Reflecting Newly Placed Objects. We support the composition
of multiple neural radiance fields and synthesize new reflections
of the composite scenes in the mirror. Specifically, for each traced
ray, we detect occlusion by comparing the volume-rendered depth
from the radiance fields that have a collision with the ray. The ray
will hit the surface with the minimum depth, and terminate or be
reflected at the surface. Here we show the composite results of
dynamic radiance field D-NeRF [19] with the scene modeled by
our method in Fig. 7(b). The reflection of objects from D-NeRF is
precisely synthesized in the mirror. This application might be of
great use in VR and AR. Please refer to the supplementary video
for the vivid dynamic composite results.

4.4.3 Reflection Substitution. In the film and gaming industries,
artists may desire to create some magical visual effects, for example,
substituting the reflections in the mirror with a different scene.
Since we learn the precise geometry of the mirror, it can be easily
implemented by transforming the reflected rays at the mirror into
another scene and rendering the results of the reflected ray. As
shown in Fig. 7(c), we can synthesize the photo-realistic view of
the new scene in the mirror with multi-view consistency. Note

that in consequence of tracing reflected rays in the new scene, the
appearance in the mirror is flipped compared to the new scene.

4.4.4 Controlling the Roughness of Mirrors. According to the mi-
crofacet theory [27], the reason why a surface looks rough is that it
consists of a multitude of microfacets facing various directions. We
support modifying the roughness of the mirror by simulating the
microfacet theory. Specifically, we trace the camera ray multiple
times following Eq.10 with different random noises added on the
surface normal and average the volume-rendered colors to get the
final color of this ray. The roughness of the mirror is controlled
by the magnitude of noise and the number of tracing times. With
this design, we can generate reasonable reflections with different
roughness as shown in Fig. 7(d).

5 CONCLUSION
We have proposed a novel neural rendering framework following
Whitted Ray Tracing, which synthesizes photo-realistic novel views
in the scene with the mirror and learns the accurate geometry and
reflection of the mirror. Besides, we support various scene manipu-
lation applications with mirrors. As a limitation, our method does
not explicitly estimate the location of the light source in the room,
which prevents us from relighting the room. The refraction is also
not modeled in our framework since we focus on mirrors currently,
and it is naturally compatible with our ray tracing pipeline and
considered as future work.
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