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(Sec. C.1) and pose tracking results (Sec. C.2), and intro-
duce the experiment of shape swapping and pose animation
in Sec. C.3.

A. Training Details
A.l. Data Preparation

As mentioned in Sec. 3.3, we sample M = 4000 surface
samples directly from posed SMPL meshes. We use the as-
sociated skinning weights to assign each vertex and face of
the ground truth mesh a unique label corresponding to the
joint with the highest skinning weight. This allows us to
draw more surface samples from body parts containing fine
details like facial features and fingers at hands. Specifically
speaking, we use the sampling weights shown in Table A.
We use this part-based sampling strategy in all our exper-
iments except for the pose tracking experiment where we
perform a uniform sampling of points.

In order to generate M = 4000 near-surface samples,
we compute a random offset with a standard deviation of
o = 0.01 and add it to each sampled surface point. For
the computation of ( = 800 random off-surface points,
we first compute tight bounding boxes for each body part,
determined by the labeled and sampled surface points. We
then randomly sample points within those bounding boxes.
In practice we enlarge the part bounding boxes by a factor
of 2 before sampling.

For a fair comparison, we also train NASA and LEAP
with the same SMPL model. Even though LEAP relies on
the SMPL-H model we didn’t observe a noticeable perfor-
mance difference as LEAP’s reconstructed hands usually do
not show significant articulation.

Table A: Sampling weights. During training, we increase
the weights of sampled query points for body parts which
require high-frequency details, e.g., head, hands and feet,
while decreasing the weight for others, e.g., the body, arms
and legs.

Data Preparation for Model Fitting Experiment. For
the model fitting experiment of Sec. 4.4, we create a dataset
where SMPL pose parameters are taken from AMASS [6]
DFaust subsets while SMPL shape parameters are provided
by the SURREAL [!1] dataset. Those parameters are then
combined and the SMPL model is used to generate ground
truth meshes. As mentioned in Sec. 4.1, the training split
consists of 10 subjects and uses all except 1 randomly with-
hold sequence per subject. For the shape parameters, we use
50 randomly selected male and female shapes respectively.

Data Preparation for Fine-tuning Experiment. In our
experiment of Sec. 4.6, we fine-tune our model on raw
DFaust [1] body scans and scans from the CAPE [5, 9]
clothed human dataset. Since the scanned meshes from the
CAPE dataset tend to contain large clutter, especially on the
ground, we follow Saito et al. [ 1 0] and manually remove all
mesh faces and associated vertices below a preset ground
plane, located at Ygroung = —0.562. As the mesh scans from
the CAPE and the DFaust dataset are by default not aligned
with the coordinate system used by the SMPL model, we
need to transform them in order to maintain the same data
processing steps as in the other experiment setups. To this
end, both datasets provide transformations which map and
align each respective scan to the SMPL-based coordinate
system. After applying those transformations, we follow



the same steps as outlined in the beginning of this section
for obtaining query locations.

For our supplementary video, we follow Saito et al. [10]
and replace the feet of CAPE scans with the surface from
the SMPL mesh since the accessible training poses are
severely limited and don’t include poses which lift the feet,
e.g., walking and jumping motions.

A.2. Losses

As mentioned in Sec. 3.3, we rely on several loss func-
tions with different weights. We add the loss functions men-
tioned in Eq. 4 to both, the part-specific SDF predictions
and the combined overall SDF predictions. Specifically, we
use Ay = 70, Aom = 35, Ay = 7, Ae = 17.5 for overall
losses and Agyai.m = 30, Agm = 15, Ay = 3, Ae = 0 for part-
specific losses, i.e., in practice we omit the eikonal loss for
part-specific outputs. For the part-specific one-sided non-
manifold loss, we use Aosnm = 15 while for the latent loss,
a weight of A\, = 0.001 is applied. Note that for two-sided
non-manifold losses, we use a hyper parameter of & = 5
while for the one-sided non-manifold loss, we use a trunca-
tion distance of § = 0.01.

A.3. Progressive training

We adopt the progressive training scheme (a.k.a an-
nealed positional encoding) from Park et al. [ 7], and rewrite
the positional encoding v, (x) as:

Ya(Xx) = (x,- -, wi(a) sin (287x), wy, () cos (28 7mx),- - ) ,
(D

wi(0) = (1 —cos(m - cla;np(a -k, 0, 1))7 )
at) = t% with ¢ € [0,1], 3)

where k € {1,---, K} with K = 10 denotes the k-th fre-
quency order of the positional encoding. wy () is the an-
nealed weight for the k-th order item in ~,(x) and «(t)
is the annealing hyper parameter, determining the speed at
which the network switches from a low-frequency bias to
a high-frequency bias. t is the training progress, i.e., cur-
rent number of iteration divided by the total number of it-
erations. Finally, P = 0.2 controls when « reaches the
maximum number of frequencies, i.e., the network’s largest
bias towards high frequencies is reached after the training
progress achieves 20%.

B. Details of VJointer

As mentioned in Sec. 3.1, we use a variational autoen-
coder (VAE) [4] named VJointer to learn a human skeleton
joint prior.
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Figure A: Architecture of VJointer. J € R?***3 denotes
the input canonical skeleton joints, .J, € R?**3 represents
the reconstructed canonical skeleton joints, and BN denotes
the batch normalization.

B.1. Model Architecture

Inspired by VPoser [8], we design the architecture of
VlJointer as shown in Fig. A, where we set the hidden di-
mension of linear layers to 512, use a LeakyReLU activa-
tion with negative slope 0.1 and apply a Dropout layer with
probability 0.1.

B.2. Training

We train VJointer with 3830 human bodies from the
SURREAL dataset [1 1], as it possesses better shape vari-
ety than the AMASS dataset. Specifically, we construct
the SMPL body models with the shape parameters of the
dataset, and compute the canonical skeleton joints with the
SMPL joint regressor, which yields 24 joints for each hu-
man body. We then flatten these joints to obtain a 72-
dimensional vector, which will be served as the training in-
put of VJointer. During the training process, we use a L1-
loss for the joint regression error £, and a KL-divergence
loss Ly, to supervise the model. The total loss function
L joint can be formulated as:

Cjoint =LK1+ )\locﬁlocu “4)
['loc:|J_Jr‘7 (6)

where L € R3? denotes the latent code of the autoencoder
and A\, = 400 determines the weighting of the individ-
ual loss terms. J € R?**3 and J, € R?***3 represent the
ground-truth and the estimated canonical skeleton joints re-
spectively. We use the Adam optimizer [3] with a learning
rate of 0.0001.



C. More Experiment Results

In addition to the results presented in the paper, we pro-
vide more qualitative results and one additional experiment.

C.1. Representation Comparison

Fig. B and Fig. C provide additional qualitative recon-
struction results for the AMASS / DFaust and the AMASS
/ MoVi dataset. In contrast to ours, the reconstructed results
from NASA [2] miss high-frequency details like facial ex-
pressions and fingers highlighted by the dashed rectangles.
In the case of LEAP, the results show comparable levels
of detail, but LEAP introduces visual artifacts or contains
missing surface areas. The same experiment setup as ex-
plained in Sec. 4.2 was used.

C.2. Pose Tracking

We provide more pose tracking and retargeting results in
Fig. D. The experimental setup from Sec. 4.5 was used. We
can see that our pose tracking works well and the recovered
poses can be retargeted to cartoon characters as our model
is designed based on the kinematic model.

C.3. Shape Swapping and Pose Animation

In this section, we introduce how we conduct the shape
swapping and pose animation in Fig. | of our main paper,
and demonstrate the effectiveness of LatentHuman in learn-
ing shape-and-pose disentangled representation. Specifi-
cally speaking, we take the shape and pose representations
of one subject and replace one of them with the corre-
sponding representation of another subject while keeping
the other fixed. In Fig. E, the first two rows show the re-
sult of swapping the shape of one subject with 3 other sub-
jects, visualized in different poses. Analogously, the last
two rows show the result of animating one subject with the
poses taken from another subject. One can observe that the
poses are not influenced by an exchanged shape code and
vice versa which indicates that the two spaces are well dis-
entangled. Please refer to the supplementary video for a
vivid animation of this experiment.

C.4. Model fitting with different number of points.

We visualize the model fitting results with different num-
ber of points in Fig. F. Even with only 500 points, the shape
and pose can be successfully recovered, demonstrating the
efficacy of the proposed method.



Figure B: More qualitative comparisons on AMASS / DFaust.



Figure C: More qualitative comparisons on AMASS / MoVi.
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Figure D: More pose tracking results. The first row of each example shows the tracked input point cloud. The reconstructed
tracked shapes are shown in the 2" row. Finally the 3™ row shows the cartoon characters animated with the tracked pose.
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Figure E: Shape swapping and pose animation. The first two rows show the shape swapping of one subject (gray) with 3
other subjects (red, green and blue), and the last two rows show the animation of one subject (green) with the poses from
another subject (gray).



250 500 750 1000 GT Mesh

Figure F: Model fitting with different number of points. We fit our representation to 250 ~ 1000 input points (top row
in the left four columns) of human bodies in a casual A-pose by jointly optimizing the shape and pose. The reconstructed
human bodies are visualized in yellow meshes (bottom row in the left four columns), and the ground-truth human bodies are
visualized in blue meshes (right column).
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