
Supplementary Material for EGG-Fusion
XIAOKUN PAN, State Key Lab of CAD&CG, Zhejiang University, China
ZHENZHE LI, State Key Lab of CAD&CG, Zhejiang University, China
ZHICHAO YE∗, SenseTime Research, China
HONGJIA ZHAI, State Key Lab of CAD&CG, Zhejiang University, China
GUOFENG ZHANG∗, State Key Lab of CAD&CG, Zhejiang University, China

A.1 Implementation Details
Our system mainly consists of two modules: the tracking module
and the dense mapping module. The tracking module is respon-
sible for preprocessing the input RGB-D frame and performing
tracking optimization, including pose estimation based on sparse-
correspondences and dense alignment. The dense mapping module
handles the initialization of Gaussian surfels, surfel fusion based on
information filtering, and end-to-end optimization of geometry and
appearance through rasterization.
To achieve overall system efficiency, we employ different imple-

mentation strategies tailored to each module. In the data preprocess-
ing stage, we utilize CUDA to efficiently process the input RGB-D
data stream, including filtering and the computation of vertex and
normal maps. For pose initialization based on sparse correspon-
dences, we adopt the frontendmodule fromORB-SLAM2 [Mur-Artal
and Tardós 2017], which leverages ORB [Rublee et al. 2011] features
to perform both 2D-2D and 2D-3D matching. This component is im-
plemented in C++ and invoked from the main program via a Python
interface. After pose initialization, dense alignment is further ap-
plied for pose refinement. This process employs PyTorch-based
tensor computations to leverage GPU acceleration for per-pixel
matching, local linearization, and reduction. For the differentiable
optimization of Gaussian surfels, we build upon the CUDA imple-
mentations of [Dai et al. 2024; Kerbl et al. 2023], within which we
integrate the functionality of surfel fusion based on information fil-
tering. The main structure of the program is implemented in Python
to orchestrate and connect the different modules.

All experiments were conducted on a machine equipped with an
RTX 4090 GPU with 24GB of memory and an Intel i9-14900KF CPU
with 32 threads.

A.2 Camera Pose Estimation
In the dense alignment stage, we employ PyTorch-based tensor com-
putation to leverage GPU acceleration for per-pixel matching, local
linearization, and reduction. To solve Eq.(15), we adopt a coarse-to-
fine pyramid strategy. Specifically, both the rendered global model
surface and the current frame image are downsampled into a multi-
scale image pyramid with 𝐿pyr levels, and each level is optimized for
𝑁pyr iterations. Starting from the coarsest level, we perform dense
alignment using a least-squares method and progressively refine
the solution to the original image resolution.
We compute the Jacobian matrix J for both the ICP and photo-

metric residuals, and at each iteration, the update step is computed

∗Guofeng Zhang and Zhichao Ye are Corresponding Authors

.

as:

𝛿𝝃 (𝑛) = −(J⊤J + 𝜆I)−1J⊤𝑟 (𝝃𝑛) . (1)

The current estimate is then updated by:

𝝃𝑛+1 ←− 𝝃𝑛 ◦ 𝛿𝝃 (𝑛) . (2)

The optimization terminates once the total number of iterations
reaches 𝑁pyr · 𝐿pyr. In our default setting, we use 𝑁pyr = 2 and
𝐿pyr = 3.

A.3 KeyFrame Selection
During the tracking process, we determine keyframes to serve as
target images for both local and global optimization of the Gaussian
surfels map. They also act as optimization targets in the sliding
window optimization. The first input frame is set as a keyframe, and
subsequent frames are determined as keyframes based on whether
the translation 𝑡 or rotation angle 𝜃 relative to the previous keyframe
exceeds a predefined threshold 𝑡𝑘 and 𝜃𝑘 . The default setting is
𝑡𝑘 = 0.3𝑚 and 𝜃𝑘 = 20◦.

A.4 Surfels Selection for Fusion
To determine the set of visible surfels within the current camera
frustum, we define visibility in a geometric sense, without consider-
ing occlusion. Two criteria are used: 1) The projection of the surfel
𝑆𝑖 onto the image plane falls within the valid image region. 2) The
normal of the surfel is oriented towards the camera. Formally, the
visible surfel set is defined as:

Svis =
{
𝑆𝑖 ∈ S

�� Π(p′𝑖 ) ∈ Ω ∧ n𝑖 · R𝑧
𝑡 < 0

}
, (3)

Here, p′𝑖 is the center of surfel 𝑆𝑖 in the current frame’s coordinate
system. Ω = {(𝑢, 𝑣) ∈ R2 | 0 ≤ 𝑢 < 𝑊, ; 0 ≤ 𝑣 < 𝐻 } denotes
the image coordinate domain, and R𝑧

𝑡 refers to the 𝑧-axis of the
rotation component of the current camera pose.For each 𝑆𝑖 ∈ Svis,
we define the set of surface surfels from the current viewpoint using
the following criterion:

Ssurf =
{
𝑆𝑖 ∈ Svis �� �� [p′𝑖 ]𝑧 − 𝐷̄𝑡 (u𝑖 )

�� < 𝛿𝑠
}
, (4)

where 𝐷̄𝑡 is the rendered depth from the current viewpoint, and 𝛿𝑠
denotes the surface thickness threshold, p′𝑖 and u𝑖 have been define
in Sec. 3.2.2. Then we check the 𝐷̄𝑡 with depth value under current
view to identify whether it is re-measured.

A.5 Detail of Rotation Matrix Update
Regarding the details of Eq.(8), we omit the explicit form of the rota-
tion matrix conversion from a rotation vector, denoted as ΔR(n, 𝜃 ).

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://orcid.org/0000-0002-7438-1665
https://orcid.org/0009-0000-4008-4665
https://orcid.org/0000-0001-7304-5646
https://orcid.org/0000-0002-7729-8787
https://orcid.org/0000-0001-5661-8430


2 • Xiaokun Pan, Zhenzhe Li, Zhichao Ye, Hongjia Zhai, and Guofeng Zhang

surface

occlusion emptyfusion area

current view

(c) Visible Surfels Set (d) Surface Surfels Set with Re-Measured

(a) Current View (b) Space Division

Fig. 1. Surfels Selection for Fusion

In our implementation, we adopt the cross-product form of the
Rodrigues’ rotation formula:

ΔR(n, 𝜃 ) = cos𝜃 · I + (1 − cos𝜃 ) · nn⊤ + sin𝜃 · [n]× (5)

Here, [n]× denotes the skew-symmetric matrix of a vector n:

[n]× =


0 −𝑛𝑧 𝑛𝑦
𝑛𝑧 0 −𝑛𝑥
−𝑛𝑦 𝑛𝑥 0

 (6)

A.6 Running Time on Replica

Surfel Creation/FusionDense Alignment Surfel OptimizationPreprocess FrameSparse Init.

Fig. 2. Runtime of our system. We plotted the time consumption of the
main modules of the system on Replica office0.

We report the time consumption for each frame in the major
modules on the office0, as shown in the Fig. 2.We provide statistics
for the camera tracking, which includes sparse-correspondence-
based pose initialization and dense alignment. Each frame undergoes
preprocessing to prepare data for the mapping stage. In the mapping
stage, each frame contributes to adding new surfels to the global
map and fusing them with existing surfels. Finally, we optimize the
Gaussian surfels using frame batches at a certain frequency. This
part is comparatively more time-consuming than the other modules
but the is still significantly less than that of other methods.

Occupied Voxel

Dilated Voxel
Surface Point

Erroneous Point

Empty Voxel

Gaussian Surfel

w. Voxel Masking w/o Voxel Masking 

Fig. 3. Meshing the Gaussian Surfel based Scene Map with Voxel Masking

A.7 Meshing with Voxel Masking
As emphasized in [Dai et al. 2024], the alpha decay property based
on surfel ellipsoid centers leads to erroneous depth estimates in
regions with depth discontinuities. Consequently, when meshing
the Gaussian surfel based map, the edges often contain noisy or
scattered triangles. [Dai et al. 2024] addresses this issue using a
volumetric cutting strategy to prevent such artifacts during screened
Poisson surface reconstruction. Similarly, when we follow the TSDF-
based meshing approaches in [Yang et al. 2022; Zhu et al. 2022], we
encounter the same problem. Therefore, we adopt a voxel masking
strategy suitable for voxel-based surface extraction.
As illustrated in Fig. 3, we construct an occupancy grid of the

scene based on the surfel centers, and then determinewhether points
from the rendered depth map should contribute to TSDF integration
by checking if they fall within the occupied voxels. This is based
on the fact that the scene surfaces generally lie within the spatial
vicinity of the surfels.

To mitigate the quantization errors introduced by voxelization
where points may be near surfels but still fall into empty voxels, we
further apply voxel dilation. This ensures more accurate selection
of surface points for TSDF-based meshing.

A.8 Rendering Results on Replica
The quality of view synthesis under training views across 8 scenes
in the Replica dataset is shown in Tab. 1. Among NeRF-based and
GS-based methods, our method achieved the best average rendering
quality and the best rendering quality in most scenes. We believe
this is due to the Gaussian surfel tightly fitting the scene surface
with the geometric regularization while end-to-end optimization.

A.9 Detail of Reconstruction Results on ScanNet++
Due to space constraints in the article, we only presented the average
rendering metrics on ScanNet++ [Yeshwanth et al. 2023]. As shown
in Tab. 2, we provide the complete results for a more comprehensive
analysis.

A.10 More Results
Wepresent the completemesh reconstruction results on Replica [Straub
et al. 2019] and ScanNet++ [Yeshwanth et al. 2023] to demonstrate
the superiority of our method in both reconstruction detail and
overall accuracy, as shown as in Fig. 5 and Fig. 4.

, Vol. 1, No. 1, Article . Publication date: December 2025.



Supplementary Material for EGG-Fusion • 3
Sc

en
e1

Sc
en

e2
Sc

en
e3

Sc
en

e4

GTSplaTAMRTG-SLAM OursPoint-SLAM

s1
s2

s3
s4

x Point-SLAM [2023] RTG-SLAM [2024] SplaTAM [2024] EGG-Fusion(Ours) GT x

Fig. 4. Reconstruction results on ScanNet++ dataset.

Table 1. Comparison of train view synthesis on Replica. ∗ indicates that the result is taken from [Zhu et al. 2023]

Method Metric Rm 0 Rm 1 Rm 2 Off 0 Off 1 Off 2 Off 3 Off 4 Avg.

NICE-SLAM∗ [2022]
PSNR↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42
SSIM↑ 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856 0.809
LPIPS↓ 0.330 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Vox-Fusion [2022]
PSNR↑ 26.16 28.16 28.03 32.49 32.45 26.86 27.27 29.61 28.88
SSIM↑ 0.898 0.904 0.918 0.942 0.952 0.934 0.941 0.946 0.929
LPIPS↓ 0.293 0.271 0.232 0.216 0.207 0.227 0.187 0.199 0.229

Point-SLAM [2023]
PSNR↑ 32.40 34.08 35.50 38.26 39.16 33.99 33.48 33.49 35.17
SSIM↑ 0.974 0.977 0.982 0.983 0.986 0.960 0.960 0.979 0.975
LPIPS↓ 0.113 0.116 0.111 0.100 0.118 0.156 0.132 0.142 0.124

SplaTAM [2024]
PSNR↑ 32.09 33.62 35.00 38.16 39.04 31.88 30.14 31.69 33.95
SSIM↑ 0.972 0.970 0.982 0.982 0.982 0.965 0.950 0.947 0.969
LPIPS↓ 0.077 0.097 0.074 0.086 0.092 0.099 0.118 0.155 0.100

RTG-SLAM [2024]
PSNR↑ 30.91 33.41 34.49 39.02 39.24 32.78 32.73 35.56 34.76
SSIM↑ 0.962 0.976 0.981 0.989 0.989 0.980 0.981 0.984 0.980
LPIPS↓ 0.147 0.116 0.120 0.082 0.099 0.144 0.138 0.123 0.121

Ours
PSNR↑ 31.21 34.14 34.94 39.75 39.69 32.98 33.14 35.95 35.23
SSIM↑ 0.966 0.979 0.983 0.990 0.991 0.983 0.980 0.988 0.983
LPIPS↓ 0.131 0.089 0.098 0.058 0.065 0.111 0.106 0.108 0.096

References
Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu, Huamin Wang, and Weiwei Xu.

2024. High-Quality Surface Reconstruction Using Gaussian Surfels. arXiv:2404.17774
Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian

Scherer, Deva Ramanan, and Jonathon Luiten. 2024. SplaTAM: Splat, Track & Map
3D Gaussians for Dense RGB-D SLAM. arXiv:2312.02126 [cs]

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.
3D Gaussian Splatting for Real-Time Radiance Field Rendering. arXiv:2308.04079

Raul Mur-Artal and Juan D Tardós. 2017. Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33, 5 (2017),
1255–1262.

Zhexi Peng, Tianjia Shao, Yong Liu, Jingke Zhou, Yin Yang, Jingdong Wang, and
Kun Zhou. 2024. RTG-SLAM: Real-time 3d reconstruction at scale using gaussian
splatting. In ACM SIGGRAPH 2024 Conference Papers. 1–11.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An efficient
alternative to SIFT or SURF. In 2011 International conference on computer vision. Ieee,
2564–2571.

Erik Sandström, Yue Li, Luc Van Gool, and Martin R. Oswald. 2023. Point-SLAM: Dense
Neural Point Cloud-based SLAM. arXiv:2304.04278 [cs]

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green,
Jakob J. Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei

Yan, Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kimberly Leon,
Nigel Carter, Jesus Briales, Tyler Gillingham, Elias Mueggler, Luis Pesqueira, Manolis
Savva, Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi, Michael Goesele, Steven
Lovegrove, and Richard Newcombe. 2019. The Replica Dataset: A Digital Replica of
Indoor Spaces. arXiv:1906.05797

Xingrui Yang, Hai Li, Hongjia Zhai, Yuhang Ming, Yuqian Liu, and Guofeng Zhang.
2022. Vox-Fusion: Dense Tracking and Mapping with Voxel-based Neural Implicit
Representation. In 2022 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR). 499–507. arXiv:2210.15858 [cs] doi:10.1109/ISMAR55827.2022.00066

Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. 2023. Scan-
net++: A high-fidelity dataset of 3d indoor scenes. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 12–22.

Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui, Martin R. Oswald, Andreas
Geiger, and Marc Pollefeys. 2023. NICER-SLAM: Neural Implicit Scene Encoding
for RGB SLAM. arXiv:2302.03594

Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng Cui,
Martin R. Oswald, and Marc Pollefeys. 2022. NICE-SLAM: Neural Implicit Scal-
able Encoding for SLAM. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, New Orleans, LA, USA, 12776–12786. doi:10.1109/
CVPR52688.2022.01245

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://arxiv.org/abs/2404.17774
https://arxiv.org/abs/2312.02126
https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/2304.04278
https://arxiv.org/abs/1906.05797
https://arxiv.org/abs/2210.15858
https://doi.org/10.1109/ISMAR55827.2022.00066
https://arxiv.org/abs/2302.03594
https://doi.org/10.1109/CVPR52688.2022.01245
https://doi.org/10.1109/CVPR52688.2022.01245


4 • Xiaokun Pan, Zhenzhe Li, Zhichao Ye, Hongjia Zhai, and Guofeng Zhang

Table 2. Comparison of rendering capabilities on ScanNet++, including both training views and test views (views not seen during training).

Methods Metrics
Novel View Training View

Avg. S1 S2 S3 S4 Avg. S1 S2 S3 S4

Point-SLAM [2023]
PSNR ↑ 17.68 15.00 21.63 15.87 18.21 24.35 24.71 23.13 24.77 24.79
SSIM ↑ 0.623 0.611 0.702 0.560 0.618 0.800 0.805 0.783 0.813 0.800
LPIPS ↓ 0.548 0.558 0.480 0.614 0.539 0.373 0.367 0.383 0.375 0.366

SplaTAM [2024]
PSNR ↑ 24.75 24.08 26.41 25.19 23.33 27.30 27.82 25.42 28.22 27.75
SSIM ↑ 0.900 0.886 0.930 0.888 0.897 0.940 0.946 0.924 0.943 0.947
LPIPS ↓ 0.208 0.211 0.175 0.253 0.195 0.130 0.119 0.158 0.130 0.112

RTG-SLAM [2024]
PSNR ↑ 24.77 24.27 25.44 26.09 23.28 27.54 28.22 24.69 29.29 27.96
SSIM ↑ 0.882 0.876 0.886 0.883 0.882 0.925 0.936 0.889 0.937 0.936
LPIPS ↓ 0.255 0.249 0.261 0.285 0.225 0.184 0.165 0.238 0.176 0.155

Ours
PSNR ↑ 25.70 25.50 26.55 26.72 23.96 29.06 29.97 26.08 30.59 29.45
SSIM ↑ 0.907 0.906 0.901 0.900 0.903 0.944 0.953 0.922 0.950 0.943
LPIPS ↓ 0.212 0.196 0.231 0.250 0.190 0.141 0.121 0.178 0.145 0.116

Of
fi

ce
0

Of
fi

ce
1

Of
fi

ce
2

Of
fi

ce
3

Of
fi

ce
4

Ro
om

1
Ro

om
2

of
fic
e0

of
fic
e3

of
fic
e4

of
fic
e1

of
fic
e2

ro
om

1
ro
om

2

GTSplaTAMRTG-SLAM OursPoint-SLAMx Point-SLAM [2023] RTG-SLAM [2024] SplaTAM [2024] EGG-Fusion(Ours) GT x

Fig. 5. Reconstruction results on Replica dataset.

, Vol. 1, No. 1, Article . Publication date: December 2025.


	A.1 Implementation Details
	A.2 Camera Pose Estimation
	A.3 KeyFrame Selection
	A.4 Surfels Selection for Fusion
	A.5 Detail of Rotation Matrix Update
	A.6 Running Time on Replica
	A.7 Meshing with Voxel Masking
	A.8 Rendering Results on Replica
	A.9 Detail of Reconstruction Results on ScanNet++
	A.10 More Results
	References

