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Fig. 1. Qualitative comparison on three real-world scenes reconstructed by our system and the state-of-the-art Gaussian Splatting based SLAM methods
(RTG-SLAM[Peng et al. 2024a], SplaTAM[Keetha et al. 2024]). Leveraging Gaussian surface representation and surface fusion with information filter, our
approach achieves higher geometric accuracy and rendering fidelity (yellow bar). Moreover, our method supports the extraction of high-confidence scene
surfaces by maintaining the information matrix of scene primitives (green bar).

Real-time 3D reconstruction is a fundamental task in computer graphics.
Recently, differentiable-rendering-based SLAM system has demonstrated sig-
nificant potential, enabling photorealistic scene rendering through learnable
scene representations such as Neural Radiance Fields (NeRF) and 3D Gauss-
ian Splatting (3DGS). Current differentiable rendering methods face dual
challenges in real-time computation and sensor noise sensitivity, leading to
degraded geometric fidelity in scene reconstruction and limited practicality.
To address these challenges, we propose a novel real-time system EGG-
Fusion, featuring robust sparse-to-dense camera tracking and a geometry-
aware Gaussian surfel mapping module, introducing an information filter-
based fusion method that explicitly accounts for sensor noise to achieve
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high-precision surface reconstruction. The proposed differentiable Gauss-
ian surfel mapping effectively models multi-view consistent surfaces while
enabling efficient parameter optimization. Extensive experimental results
demonstrate that the proposed system achieves a surface reconstruction
error of 0.6cm on standardized benchmark datasets including Replica and
ScanNet++, representing over 20% improvement in accuracy compared to
state-of-the-art (SOTA) GS-based methods. Notably, the system maintains
real-time processing capabilities at 24 FPS, establishing it as one of the most
accurate differentiable-rendering-based real-time reconstruction systems.
Project Page: https://zju3dv.github.io/eggfusion/.
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1 Introduction
Real-time 3D reconstruction technology aims to generate high-
precision 3Dmodels by efficiently processing real-world data, which
has been extensively studied in the fields of computer graphics and
has demonstrated broad application prospects in fields such asmixed
reality, autonomous driving, and robotics.
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Over the past decades, significant progress has been made in
RGBD-based Simultaneous Localization and Mapping (SLAM) [Dai
et al. 2017; Kerl et al. 2013; Newcombe et al. 2011a, 2015, 2011b; Whe-
lan et al. 2015; Xu et al. 2022; Zhou and Koltun 2013]. Meanwhile,
researchers have proposed various scene representations to better
model scenes and improve reconstruction efficiency, such as point
clouds [Keller et al. 2013; Kerl et al. 2013; Zhou and Koltun 2013],
surfels [Whelan et al. 2015; Xu et al. 2022], and Truncated Signed
Distance Fields (TSDF) [Dai et al. 2017; Newcombe et al. 2011a, 2015].
However, these map representations have limited expressive capac-
ity and struggle to handle complex scenes, resulting in limitations
in representing precise geometric details and scalability.

In recent years, the rapid development of differentiable rendering
techniques has significantly enhanced the realism and visual quality
of 3D reconstruction, with notable advancements in technologies
such as NeRF [Mildenhall et al. 2020] and 3DGS [Kerbl et al. 2023].
Existing studies [Lu et al. 2024; Yu et al. 2024; Zhai et al. 2024, 2025b]
have demonstrated that differentiable rendering techniques can be
effectively integrated into SLAM frameworks [Chen et al. 2025; Li
et al. 2024; Pan et al. 2024, 2025; Qin et al. 2018]. In particular, real-
time reconstruction methods based on 3DGS [Keetha et al. 2024;
Peng et al. 2024a] have shown great promise due to their efficient
differentiable rasterization capabilities. However, the high degree
of freedom in the parameterization of 3DGS primitive introduces
geometric ambiguities, which can degrade reconstruction accuracy.
This issue is further exacerbated in some complex scenes by factors
such as limited viewpoint coverage and sensor noise [Cao et al.
2018; Fontan et al. 2020, 2023], leading to significant reconstruction
errors or even complete failure. These challenges pose serious lim-
itations to the reliability and scalability of 3DGS-based real-time
reconstruction methods in practical applications.
To address these issues, we propose EGG-Fusion, a novel frame-

work for high-quality and real-time 3D reconstruction in real-world
environments. Our approach begins by adopting Gaussian sur-
fels [Dai et al. 2024; Huang et al. 2024b] as the scene representa-
tion, enabling consistent multi-view geometric modeling. However,
Gaussian surfels alone are insufficient to improve reconstruction
quality, as sensor noise remains a pervasive challenge. To address
this, we introduce a novel surfel fusion strategy with information
filter [Maybeck 1982; Thrun et al. 2004], which incrementally up-
dates the geometric attributes of surfels using depth observations
from each frame. This incremental fusion process jointly refines
the surfel geometry and its associated information matrix, effec-
tively enhancing the stability and fidelity of the reconstruction.
The information matrix also facilitates confidence estimation for
each primitive, allowing the system to extract highly reliable recon-
struction results. Thanks to frame-wise geometric updates, the scene
maintains high-precision geometry throughout reconstruction. Con-
sequently, during map optimization, only minor refinements are
required, leading to rapid convergence with significantly reduced
computational overhead. To enable robust camera pose estimation,
we design a sparse-to-dense tracking strategy that combines the
robustness of sparse features with the precision of dense alignment.
Additionally, we propose a geometry-aware surfel initialization
method, which adaptively determines the density of scene primi-
tives based on depth observations. This strategy ensures accurate

surface alignment while producing a compact and efficient scene
representation. Experimental results demonstrate that EGG-Fusion
operates in real time at 24 FPS, and consistently outperforms SOTA
methods in terms of tracking accuracy, reconstruction quality, and
rendering fidelity. As shown in Fig. 1, our method maintains high
geometric precision and visual quality, even when tested under
challenging, unseen viewpoints.

In summary, the main contributions of our work are as follows:
• We propose EGG-Fusion, a Gaussian surfel-based real-time 3D
reconstruction system for high-quality scene modeling in real-
world environments. We release the source code to facilitate
research reproducibility and community advancement.

• We propose an information-filter-based surfel fusion method
that achieves stable high-precision reconstruction by dynami-
cally updating geometric information matrices, while signifi-
cantly accelerating optimization convergence.

• Extensive experimental results demonstrate that the proposed
method outperforms current GS-based SOTA methods in track-
ing accuracy, reconstruction quality, and rendering quality,
while running in real-time at 24 FPS.

2 Related Work

2.1 Dense Visual SLAM
In classical dense visual SLAM frameworks, DTAM [Newcombe et al.
2011b] pioneered the dense 3D model reconstruction of an indoor
scene from monocular video by directly tracking the camera to the
model using photometric error, making it robust to rapid camera
movement and defocus blur. [Newcombe et al. 2011a, 2015] utilizes
consumer-grade RGB-D cameras (Microsoft Kinect) to accomplish
featureless camera tracking by optimizing the transformation of
depth information to the TSDF target. [Keller et al. 2013] proposed
a global map representation scheme based on point with radius (sur-
fels), enabling reconstruction in dynamic scenes. BundleFusion [Dai
et al. 2017] achieves robust pose estimation through an efficient hier-
archical approach and attains high-quality real-time reconstruction
results using a parallel optimization framework. With the assistance
of neural networks, hand-crafted components in classic frameworks
are replaced by end-to-end network architectures. [Koestler et al.
2021; Min et al. 2020; Teed and Deng 2021] employ prior-based dense
depth or optical flow to perform direct image alignment, making
photometric/geometric bundle adjustment (BA) within a keyframe
sliding window feasible. Compared to traditional approaches, end-
to-end architectures [Bloesch et al. 2019; Matsuki et al. 2021; Zhi
et al. 2019] simplify the problem’s modeling complexity but demand
significantly higher computational resources. In addition, these ap-
proaches are still constrained by traditional scene representations,
lacking flexibility and scalability.

2.2 Differentiable-based Scene Representation
Since the introduction of NeRF [Mildenhall et al. 2020], neural-
based differentiable rendering has emerged as a promising approach
for scene representation. A series of studies have explored im-
provements in rendering quality [Barron et al. 2021, 2022], joint
pose optimization [Lin et al. 2021; Wang et al. 2022], rendering
speed [Fridovich-Keil et al. 2022; Müller et al. 2022; Sun et al. 2022],
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Fig. 2. Framework of EGG-Fusion. Our framework is divided into two integral components. In the scene mapping module (Sec. 3.2), Gaussian surfels are
utilized as the fundamental primitives for scene representation and can achieve high-quality real-time reconstruction The camera tracking module (Sec. 3.3)
employs a sparse-to-dense strategy to ensure robust estimation of camera poses.

and reconstruction quality [Li et al. 2023; Wang et al. 2023a]. How-
ever, challenges remain in terms of slow optimization convergence
for scene appearance/geometry and bottlenecks in rendering speed.
3DGS represents a scene using a set of ellipsoids, significantly en-
hancing the rendering performance of differentiable scene repre-
sentations by rasterizing these 3D ellipsoids directly in 2D image
space. Subsequent works have extended its capabilities, achieving
advancements in rendering quality [Lu et al. 2024; Yu et al. 2024],
geometry reconstruction [Guédon and Lepetit 2024], and perfor-
mance on large-scale scenes [Kerbl et al. 2024; Liu et al. 2025]. The
variant 2D Gaussian surfels [Dai et al. 2024; Huang et al. 2024b]
constrains the z-axis of 3D ellipsoids to enable precise geometric
reconstruction of the scene.

2.3 Differentiable Rendering based SLAM
The differentiable property in system-level was first discussed in
▽SLAM [Jatavallabhula et al. 2020], which framed the entire system
as a differentiable computation graph. However, it retained tradi-
tional 3D representations. iMap [Sucar et al. 2021] was the first
to employ differentiable scene representations for SLAM system,
leading to a series of subsequent works, including those utilizing
hierarchical grids [Zhu et al. 2022], voxels [Yang et al. 2022], hybrid
implicit parameters and grids [Wang et al. 2023b], and point-based
features [Sandström et al. 2023]. These methods leverage differen-
tiable scene representations for online mapping but suffer from
significant efficiency issues, impacting their real-time performance
and scalability. More recently, SLAM systems [Keetha et al. 2024;
Matsuki et al. 2023; Peng et al. 2024a; Yan et al. 2024] based on 3DGS
have demonstrated impressive performance in novel view synthesis
and rendering speed, thanks to the efficiency of the scene represen-
tation. However, this discrete primitive-based representation has
potential limitations in terms of parameter efficiency.

3 Methodology
As illustrated in Fig. 2, the system is composed of two modules: cam-
era tracking and scene mapping. This section first introduces the

definition of Gaussian surfels and the associated notation (Sec. 3.1).
Subsequently, the proposed scene mapping module is elaborated,
and the approach to achieving high-quality scene surface reconstruc-
tion using Gaussian surfels as the scene representation is discussed
(Sec. 3.2). Finally, a sparse-to-dense camera tracking strategy is
proposed (Sec. 3.3) to achieve robust and efficient real-time pose
estimation.

3.1 Preliminary
3.1.1 2D Gaussian Surfels. The Gaussian surfel is a primitive for
learnable scene representation, with a spatial distribution approx-
imated by a disk. Each 2D Gaussian surfel can be represented by
the attributes consisting of its center p𝑖 ∈ R3, the scales of its two
orthogonal Gaussian ellipse axes s𝑖 ∈ R2, its rotation in quaternion
form r𝑖 ∈ R4 (in the global coordinate system), its opacity 𝑜𝑖 ∈ R,
and its color c𝑖 ∈ R𝑘 . The color attribute is explicitly encoded as
coefficients of spherical harmonic basis functions, where the dimen-
sion 𝑘 depends on the defined order, enabling the modeling of non-
Lambertian surfaces. In our system, the scene can be represented
as a collection of Gaussian surfels, which can be parameterized as
S =

{
𝑆𝑖 : (p𝑖 , s𝑖 , r𝑖 , 𝑜𝑖 , c𝑖 )

}𝑛
𝑖=0 .

3.1.2 Differentiable Gaussian Splatting. In the differentiable ren-
dering pipeline, each Gaussian surfel 𝑆𝑖 is transformed into image
space based on the camera pose, and its 2D covariance Σ2𝐷

𝑖 in image
space are computed. After sorting by depth, alpha compositing is
used for blending to obtain the final color𝐶 with the alpha blending
weight 𝛼𝑖 = 𝑆

′
𝑖 (𝑢;𝑢𝑖 , Σ2𝐷

𝑖 )𝑜𝑖 :

𝑇𝑖 =

𝑖−1∏
𝑗=0

(1 − 𝛼 𝑗 ), 𝐶 =

𝑛∑︁
𝑖=0

𝑇𝑖 · 𝛼𝑖 · c𝑖 . (1)

Similarly, the depth map 𝐷̂ and normal map 𝑁̂ are rendered by:

𝐴 =
1

1 −𝑇𝑛+1

𝑛∑︁
𝑖=0

𝑇𝑖 · 𝛼𝑖 · 𝑎𝑖 (𝑢), (2)
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where 𝐴 is the rendered 2D information (e.g., depth 𝐷 or normal 𝑁 ),
and 𝑎 is the 3D property.

3.2 Scene Mapping with Gaussian Surfels
Given the current frame 𝐼𝑡 = {𝐶𝑡 , 𝐷𝑡 }, which includes a RGB image
𝐶𝑡 ∈ R𝐻×𝑊 ×3 and its corresponding depth map 𝐷𝑡 ∈ R𝐻×𝑊 , we
pre-process the data using the intrinsic parameters of the camera
{𝑓𝑥 , 𝑓𝑦, 𝑐𝑥 , 𝑐𝑦} to obtain the normal map 𝑁𝑡 ∈ R𝐻×𝑊 ×3 and the
vertex map 𝑉𝑡 ∈ R𝐻×𝑊 ×3 in the camera coordinate system:

𝑉𝑡 (u) = 𝐷𝑡 (u) · K−1 · [u, 1]⊤ , 𝑁𝑡 =
∇𝑥𝑉𝑡 × ∇𝑦𝑉𝑡��∇𝑥𝑉𝑡 × ∇𝑦𝑉𝑡

�� , (3)

where K ∈ R3×3 is the intrinsic matrix and u ∈ R2 is the pixel coor-
dinate. Through the camera tracking strategy (Sec. 3.3 ), we acquire
the camera-to-world pose T𝑖 ∈ R4×4, enabling us to transform the
vertex map and the normal map into the global coordinate system
as 𝑉𝑤

𝑡 and 𝑁𝑤
𝑡 .

3.2.1 Geometry-aware Surfel Initialization. The proposed system
incrementally expands the map by adaptively integrating Gauss-
ian surfels from incoming RGB-D frames. Departing from previous
works [Keetha et al. 2024; Matsuki et al. 2023] that uniformly sample
new primitives in image space, we introduce a rendering-aware strat-
egy that selectively activates surfels only in geometrically salient
regions: (1) low-opacity zones, revealing reconstruction deficien-
cies, and (2) areas with positive depth disparity, indicating newly
observed foreground geometry. This targeted placement ensures
high-fidelity reconstruction while inherently suppressing the redun-
dancy of uniform sampling paradigms. Each newly added Gaussian
surfel is initialized by sampling geometric properties from the input
depth map, including the surfel center position p = 𝑉𝑤

𝑡 (u) and
surfel normal n = 𝑁𝑤

𝑡 (u).
Regarding surfel scale initialization s, previous methods [Matsuki

et al. 2023; Peng et al. 2024a] employ a fixed value in 3D space. For
someGaussian ellipsoids located far from the camera, their projected
area in image space becomes significantly small, necessitating dense
sampling to adequately cover the corresponding image patch. To
address this, we propose an adaptive scale initialization strategy:
surfels located at the camera’s far plane are assigned larger scales ,
determined by the following principle:

s = [𝛼𝑠 · 𝑑/𝑓𝑥 , 𝛼𝑠 · 𝑑/𝑓𝑦], (4)

where 𝛼𝑠 is a pixel scaling factor used to regulate the absolute
scale across different sampling rates. The intuitive outcome is that
surfels farther from the camera have larger scales, while their pro-
jections in the image space maintain a consistent distribution. This
is similar to the analysis of sampling rate in [Yu et al. 2024]. Ex-
periments demonstrate that this compact surfel initialization can
achieve higher rendering quality.

3.2.2 Surfel Fusion with Information Filter. To mitigate the im-
pact of depth noise from consumer-grade sensors, we propose an
information-filter-based surface fusion method. The surfel state
estimation is formulated as a Markov process, where the current
state x𝑡 depends solely on its previous state x𝑡−1 and the latest
sensor observation 𝐼𝑡 . For each input RGB-D frame, we perform

Fig. 3. Gaussian surfels fusion. We ensure that surfels can be explicitly and
continuously updated with new observations, enabling them to adhere to
the scene surface (left), while new observations are utilized to update normal
information (right), thereby achieving more accurate surface reconstruction.

recursive Bayesian updates on reobserved surfels to refine their geo-
metric properties. Each surface element’s geometric state is defined
as x𝑡 = [p, n]⊤ ∈ R6 and is associated with a covariance matrix
Σ𝑡 ∈ R6×6 to quantify measurement uncertainty, enabling progres-
sive confidence accumulation through sequential observations. This
probabilistic framework ensures continuous improvement in recon-
struction quality, ultimately yielding high-fidelity surfaces.

Specifically, we can obtain the vertex and normal measurements
z𝑡 = [𝑉𝑡 (u), 𝑁𝑡 (u)]⊤ ∈ R6 based on the image location u of the
surfel. We construct the relationship between observation and state
based on the state observation equation:

z𝑡 = Hx𝑡 + t̄ + 𝝐, 𝝐 ∼ N(0,Σ𝑡
z),

H =

[
R 0
0 R

]
∈ R6×6, t̄ =

[
t
0

]
∈ R6 .

(5)

Here H denotes the observation matrix, which transforms the state
variables from the global coordinate system into the camera coor-
dinate system with current camera transformation [R, t]. 𝝐 is the
measurement noise, and Σ𝑡

z corresponds to the associated covari-
ance. To ensure real-time computational efficiency, Σ𝑡

z is simpli-
fied to a diagonal matrix represented in vector form as diag(Σ𝑡

z) =
[𝜎𝑝 , 𝜎𝑝 , 𝜎𝑝 , 𝜎𝑛, 𝜎𝑛, 𝜎𝑛] that 𝜎𝑝 and 𝜎𝑛 correspond to the position and
normal respectively. In practice, owing to the inherent character-
istics of the sensor, the noise intensity correlates with depth, and
thus 𝜎𝑝 and 𝜎𝑛 are proportional to the square of the depth.

We update the information matrix 𝚲 and corresponding informa-
tion vector matrix 𝜼 using the following equations:

𝚲
𝑡 = 𝚲

𝑡−1 + H⊤
𝚲
𝑡
zH, 𝜼𝑡 = 𝜼𝑡−1 + 𝜼𝑡z,

𝚲
𝑡−1 = (Σ𝑡−1)−1, 𝜼𝑡−1 = 𝚲

𝑡−1 · x𝑡−1,

Λ𝑡
z = (Σ𝑡

z)−1, 𝜼𝑡z = H⊤ · Λ𝑡
z · z𝑡 ,

(6)

In fact, due to the diagonal nature of the covariance matrix, the
solution based on Eq. 6 can be greatly simplified, enabling efficient
computation of the update. Finally, the updated geometric state of
gaussian surfels and corresponding covariance are computed by

x̂𝑡 = (𝚲𝑡 )−1𝜼𝑡 , Σ̂𝑡 = (𝚲𝑡 )−1 . (7)

Ultimately, the updated position and normal from states x𝑡 are ap-
plied to the attributes p𝑖 and r𝑖 of surfel 𝑆𝑖 . However, the estimation
of relative rotation based on normal updates is underconstrained. To
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address this issue, we introduce an additional rotational constraint
based on the normal update, resulting in a well-defined 3D rotation.
As illustrated in Fig. 3, we define n𝑡𝑔 = n𝑔 × n𝑡 where n𝑔 is the
original normal before update and n𝑡 is the updated normal. So the
vector n𝑡𝑔 represents the normal to the plane spanned by the two
normals. The angle between them is 𝜃 = cos−1 (n𝑔 · n𝑡 ). Based on
this, we define a unique rotation represented by the rotation vector
ΔR(n𝑡𝑔, 𝜃 ). Therefore, for the rotation r𝑖 of surfel 𝑆𝑖 , whose matrix
representation is R𝑖 , the update is performed as follows:

R̂𝑖 = ΔR(n𝑡𝑔, 𝜃 ) · R𝑖 . (8)

3.2.3 Differentiable Surfels Optimization. After the explicit Gauss-
ian surfel fusion based on upcoming measurements, we implement
end-to-end optimization of the surfels using the rasterization-based
rendering pipeline [Kerbl et al. 2023].

Reconstruction Loss. We utilize frame batches to optimize the
local map through differentiable rendering, avoiding overfitting to
the current frame. Specifically, we maintain a local map composed
of the most recent 𝑁batch frames. After tracking a certain number
of frames, we perform batch optimizations, where each iteration
randomly selects a frame from the local map. For thorough opti-
mization, we perform a total of𝑚 · 𝑁batch iterations to ensure that
each frame is iteratively optimized an average of𝑚 times. The ren-
dered color map, depth map, and normal map are constrained by
the ground truth, resulting in the following loss terms:

L𝑐 =
��𝐶𝑘 −𝐶𝑘

�� ,L𝑑 =
��𝐷𝑘 − 𝐷̂𝑘

�� ,L𝑛 = |1 − 𝛾 | , (9)

where 𝛾 = 𝑁𝑘 · 𝑁̂𝑘 represents the cosine of these two unit normal
vector. Eq. (9) utilizes image-space rendering to optimize Gaussian
surfels through per-pixel supervision but lacks global consistency.
Leveraging the geometric constraints of Gaussian surfels, we intro-
duce per-surfel regularization constraints.

Geometric Regularization: We aim to ensure that the geomet-
ric properties of Gaussian surfels remain as consistent as possible
during the current iterative optimization (avoiding deviations from
the surface), while allowing for appearance changes introduced by
new depth map. Therefore, we introduce the following geometric
regularization term:

L𝑟𝑒𝑔 =

���p − p𝑓

��� +𝑤𝑛
𝑟𝑒𝑔 ·

��1 − n · n𝑓

�� , (10)

where p𝑓 and n𝑓 are derived from explicit Gaussian surfel fusion
and𝑤𝑛

reg is the weighting coefficient for the normal loss of the pre-
surfel. Considering this per-surfel explicit geometric constraints in
the end-to-end manner, the overall optimization loss is formulated
as

L𝑡𝑜𝑡𝑎𝑙 = L𝑐 +𝑤𝑑 · L𝑑 +𝑤𝑛 · L𝑛 +𝑤𝑟𝑒𝑔 . · L𝑟𝑒𝑔 . (11)

It is important to note that such regularization are not applicable to
3DGS-based methods [Keetha et al. 2024; Matsuki et al. 2023; Yan
et al. 2024]. This is because 3DGS relies on a volumetric representa-
tion scheme that lacks explicit constraints with the scene geometry.
Additionally, the inconsistency of inferred depths across multiple
viewpoints contributes to the instability in its convergence. Addi-
tionally, the proposed surfel initialization and fusion facilitate the
state of the surfels to be optimized to be near convergence, thereby

Table 1. Tracking performance (ATE RMSE[𝑐𝑚]) on Replica.

Method Rm0 Rm1 Rm2 Off0 Off1 Off2 Off3 Off4 Avg.
MASt3R [2024] 1.07 0.99 0.87 0.90 4.90 1.21 1.77 1.63 1.67
SLAM3R [2024] 4.56 5.88 5.72 11.17 6.32 6.15 4.95 8.09 6.61
NICE-SLAM [2022] 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13 1.06
Vox-Fusion [2022] 0.41 0.50 0.52 0.47 0.61 0.67 0.47 0.47 0.52
Point-SLAM [2023] 0.54 0.43 0.34 0.36 0.45 0.44 0.63 0.72 0.49
SplaTAM [2024] 0.47 0.42 0.32 0.46 0.24 0.28 0.39 0.56 0.39
RTG-SLAM [2024a] 0.20 0.18 0.13 0.22 0.12 0.22 0.20 0.19 0.18
Ours 0.18 0.18 0.11 0.15 0.12 0.19 0.17 0.20 0.17

ensuring that this differentiable surfel optimization can achieve
convergence performance of the map state within a few iterations.

3.3 Camera Tracking
Given the current frame 𝐼𝑡 and the global model S, camera tracking
module aims to estimate the current camera pose T𝑡 . In optimization
problems, we adopt the more compact and structure-preserving
Lie algebra representation of camera poses as 𝝃 𝑡 ∈ 𝔰𝔢(3). For the
robustness and accuracy of camera tracking, we propose a sparse-
to-dense strategy.

3.3.1 Sparse-Correspondence-based Pose Initialization. Existing real-
time reconstructionmethods typically estimate camera poses through
dense alignment between the current depth frame and global scene
map. While achieving precise pose estimation, these methods are
highly initial-value-dependent and prone to tracking failure during
rapid camera motions. To address this issue, we introduce a sparse
feature correspondence-based pose estimation strategy for pose
initialization. On one hand, it provides a stable initialization for the
subsequent dense alignment; on the other hand, a good initialization
significantly reduces the convergence time during the refinement
stage.

Given a set of 2D-3D correspondencesM = {(u𝑖 ,X𝑤
𝑖
)}𝑚𝑖=0, where

u𝑖 ∈ R2 denotes a 2D point in the current frame and X𝑤
𝑖

∈ R3 is
the corresponding 3D point in the sparse map, we formulate the
pose estimation as a reprojection error minimization problem. The
initial camera pose 𝝃 (0)

𝑡 is estimated via Levenberg–Marquardt (LM)
optimization:

𝝃 (0)
𝑡 = arg min

𝝃 𝑡

∑︁
M

𝜌

(��u𝑖 − Π
(
exp(𝝃 𝑡 ) · X𝑤

𝑖

) ��2) , (12)

Here, exp(·) is the exponential map from the Lie algebra to the
Lie group and 𝜌 (·) is a robust loss function used to mitigate the
influence of outliers. A similar approach is also adopted in [Huang
et al. 2024a]

3.3.2 Refine with Dense Alignment. After obtaining the initial pose,
we perform dense alignment for pose refinement, which formulates
a nonlinear least-squares problem to jointly optimize the camera
pose based on geometric and photometric measurements. Consistent
with previous work [Dai et al. 2017; Whelan et al. 2015], we align
the vertex map of the current frame 𝑉𝑡 with the vertex map 𝑉G and
normal map 𝑁G of the global model to construct the geometric error
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Fig. 4. TSDF-based Reconstruction Result on Replica and ScanNet++. In terms of scene reconstruction mesh details on Replica [Straub et al. 2019] and
ScanNet++ [Yeshwanth et al. 2023], we outperform other methods with the overall quality and detail accuracy of the reconstructed mesh.

term, where (·)G denote the global model:

𝐸 (𝝃 𝑡 )icp =
∑︁
N

�� (𝑉G
(
u′
𝑖

)
− exp

(
𝝃 𝑡
)
𝑉𝑡 (u𝑖 )

)
· 𝑁G

(
u′
𝑖

) ��2
2 , (13)

Where u′
𝑖 = Π

(
exp(𝝃 ) · Π−1 (u𝑖 ) · 𝑑𝑖

)
, and N is the set of geometri-

cally matched points after filtering. Subsequently, by comparing the
rendered image with the RGB observation, the photometric error is
defined as:

𝐸 (𝝃 𝑡 )photo =
∑︁
N

��𝐶G
(
u′
𝑖

)
−𝐶𝑡 (u𝑖 )

��2
2 , (14)

Finally, we adopt a joint optimization strategy to minimize:

𝐸 (𝝃 𝑡 )dense = 𝐸icp + 𝜆photo · 𝐸photo . (15)

We use 𝜆photo to balance the influence of photometric constraints on
pose optimization. To mitigate potential degeneration in extreme
cases, we further evaluate the convergence behavior of the dense
alignment stage to determine whether its result should be adopted.

4 Experiments

4.1 Experimental Setup
Datasets.We conduct experiments on Replica [Straub et al. 2019],
TUM-RGBD [Sturm et al. 2012a] and ScanNet++ [Yeshwanth et al.
2023]. Replica provides camera trajectories and scene depth, which
we use to assess localization accuracy, reconstruction quality, and
rendering performance. TUM-RGBD offers ground truth trajectories
captured by external motion capture devices, serving as the bench-
mark for evaluating tracking accuracy. ScanNet++ provides high-
quality images and accurate depth maps, which we use to evaluate
reconstruction and rendering quality. For the selection of evaluation
sequences, we maintain consistency with previous works [Peng
et al. 2024a; Sandström et al. 2023]. Furthermore, we captured three
real-world sequences using the consumer-grade Azure Kinect sen-
sor, enabling qualitative evaluation and comparison. This dataset
contains three scenes: Bag, Hydrant, and Stone, as shown in Fig. 1.
The motion pattern involves slow movements around objects within
the scenes. The challenges include: 1) missing depth data in certain
regions (due to exceeding the sensor range or measurement failures
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Table 2. Tracking performance (ATE RMSE[𝑐𝑚]) on TUM-RGBD. ✗ repre-
sents tracking failure. ∗ indicates that the result is taken from the original
paper. † denotes the offline variants.

Method fr1/desk fr1/desk2 fr1/room fr2/xyz fr3/office Avg.

C
la
ss
ic
al ElasticFusion [2015] 2.53 6.83 21.49 1.17 2.52 6.91

ORB-SLAM2 [2017] 2.16 2.99 16.14 0.50 1.56 4.68
BAD-SLAM [2019] 1.70 ✗ ✗ 1.10 1.70 ✗

D
iff
er
en
tia

bl
e NICE-SLAM∗ [2022] 4.26 4.99 34.49 31.73 3.87 15.87

Vox-Fusion [2022] 2.54 3.95 12.51 1.40 26.01 9.28
Point-SLAM∗ [2023] 4.34 4.54 30.92 1.31 3.48 8.92
SplaTAM∗ [2024] 3.35 6.54 11.13 1.24 5.16 5.48
RTG-SLAM [2024a] 2.30 2.77 17.43 1.15 1.41 5.12
Ours 2.21 3.09 14.68 0.98 1.41 4.47

offl
in
e ORB-SLAM2† [2017] 1.53 2.21 5.38 0.40 0.91 2.09

RTG-SLAM† [2024a] 1.61 2.61 4.18 0.38 1.31 2.02
Ours† 1.56 2.45 4.34 0.43 1.13 1.98

caused by surface reflection and transmission), 2) realistic scene
lighting, and 3) continuous orbiting motion.
Metric. To evaluate the accuracy of camera tracking, we use ATE
RMSE [Sturm et al. 2012b] as the metric. For reconstruction quality,
we adopt the following metrics: accuracy, accuracy ratio [<3cm],
completeness, and completeness ratio [<3cm], following [Peng et al.
2024a; Zhu et al. 2022]. Regarding rendering performance, we gen-
erate full-resolution rendered images and utilize three metrics for
evaluation: PSNR [Hore and Ziou 2010], SSIM [Wang et al. 2004],
and LPIPS [Zhang et al. 2018].
Baseline. The compared methods include differentiable rendering-
based SLAM: NICE-SLAM [Zhu et al. 2022], Vox-Fusion [Yang et al.
2022], Point-SLAM [Sandström et al. 2023], SplaTAM [Keetha et al.
2024], and RTG-SLAM [Peng et al. 2024a], and dense visual SLAM:
ElasticFusion [Whelan et al. 2015], ORB-SLAM2 [Mur-Artal and
Tardós 2017], and BAD-SLAM [Schops et al. 2019]. At the same time,
we also include partial comparisons with the latest feed-forward
model-based methods including MASt3R [Leroy et al. 2024] and
SLAM3R [Liu et al. 2024]. All these methods provide open-source
implementations for reproducibility and comparison.

4.2 Main Experiments
Evaluation of Tracking. The tracking accuracy results on Replica
dataset are shown in Tab. 1. All the results of other methods ex-
cept Vox-Fusion are from [Peng et al. 2024a]. Compared to other
methods, our method achieves the highest average accuracy and
attains the best trajectory precision in most scenarios. The superi-
ority of the proposed method in tracking accuracy stems from its
sparse-to-dense tracking strategy, as well as the geometry-aware
differentiable scene representation. Tab. 2 presents the tracking ac-
curacy comparison of different methods on the TUM-RGBD dataset.
We categorize the existing approaches into three groups: (1) Classi-
cal methods, (2) Differentiable scene representation based methods,
and (3) Offline variants. For the Classical methods, we adopted the
results from [Sandström et al. 2023; Zhu et al. 2022], which have
also been widely used by the following works [Keetha et al. 2024;
Matsuki et al. 2023; Peng et al. 2024a; Yang et al. 2022]. The inclusion
of offline variants is motivated by the fact that the official imple-
mentations of both RTG-SLAM and ORB-SLAM2 produce globally

Table 3. Reconstruction performance on Replica/ScanNet++. N/A indicates
missing data. ∗ indicates that the result is taken from the original paper
or [Peng et al. 2024a].

Method Acc.↓ Acc. Ratio↑ Comp.↓ Comp. Ratio↑
MASt3R∗ [2024] 4.71 / N/A 78.12 / N/A 3.36 / N/A 79.32 / N/A
SLAM3R∗ [2024] 3.57 / N/A 82.23 / N/A 2.62 / N/A 81.29 / N/A

TS
D
F

NICE-SLAM∗ [2022] 2.84/4.45 84.44/74.49 2.31 /2.04 84.97/86.63
Vox-Fusion [2022] 2.03/N/A 89.04/N/A 2.58/N/A 86.93/N/A
Point-SLAM [2023] 0.76 / 0.67 99.80 / 99.12 2.42/ 0.68 87.46 / 98.94
SplaTAM [2024] 1.12 / 1.70 96.31 / 90.87 2.49/ 0.83 87.52 /98.51
RTG-SLAM [2024a] 1.30/1.86 91.96/82.09 2.37 /1.00 86.81/ 98.72
Ours 0.90 / 1.51 97.60 / 94.20 2.25 / 0.76 87.73 / 99.20

Po
in
ts

ElasticFusion[2015] 1.38/N/A 91.72/N/A 7.38/N/A 65.50/N/A
SplaTAM [2024] 2.87/1.71 74.27/89.15 3.58/1.60 71.72/92.64
RTG-SLAM [2024a] 0.80/1.06 98.52/95.34 2.88/1.22 81.92/95.78
Ours 0.60 / 0.67 99.99 / 99.98 2.67 / 0.91 84.88 / 99.04

Table 4. Rendering performance on ScanNet++.

Methods Novel View Training View
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Point-SLAM [2023] 17.68 0.623 0.548 24.35 0.800 0.373
SplaTAM [2024] 24.75 0.900 0.208 27.30 0.940 0.130
RTG-SLAM [2024a] 24.77 0.882 0.255 27.54 0.925 0.184
Ours 25.70 0.907 0.212 29.06 0.944 0.141

optimized trajectories (i.e., in offline mode). To ensure fair com-
parison, we recorded their online output while also developing an
offline version of EGG-Fusion as reference, which is implemented
similarly to RTG-SLAM’s official release, both of which are based on
the ORB-SLAM2 backend. After tracking, both perform a global op-
timization and then output the final trajectory. Experimental results
demonstrate that our method achieves the highest average tracking
accuracy compared to all real-time SLAM systems in real-world
scenarios.
Evaluation of Reconstruction. Different systems employ diverse
scene representations, leading to significant variations in the for-
mat of reconstruction results. For a fair comparison across different
methods, we adopt two evaluation schemes following the approach
in [Peng et al. 2024a; Sandström et al. 2023]. For explicit reconstruc-
tion results, we uniformly sample a fixed number (1 × 106) of points
from the final reconstructed Gaussian primitives for evaluation. For
implicit reconstruction result, we utilize depth maps with ground
truth camera poses to perform TSDF fusion, followed by mesh ex-
traction via the marching cubes to assess the final reconstruction
accuracy [Zhu et al. 2022]. The reconstruction accuracy of different
methods on Replica and ScanNet++ is shown in Tab. 3. Under both
evaluation methods, our reconstruction accuracy surpasses that of
other methods, with the exception of Point-SLAM. It is noteworthy
that the high precision of Point-SLAM from its reliance on ground
truth depth to determine rendering sampling positions, which grants
it an unfair advantage in depth evaluation. In both datasets, our
average Acc. Ratio approaches 100%, indicating that nearly all re-
constructed surfels lie within 3cm of the true scene surface. The
qualitative comparison of reconstruction results is shown in Fig. 4
and Fig. 5.
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Fig. 6. Rendering Results on Replica and ScanNet++. We present a comparison of novel view synthesis results on Replica [Straub et al. 2019] and Scan-
Net++ [Yeshwanth et al. 2023]. Our method demonstrates superior rendering details in both training views (Replica, left) and testing views (ScanNet++, right).

Evaluation of Novel View Synthesis. We report the rendering
results on the ScanNet++ dataset. As shown in Tab. 4, we achieve
the best rendering quality on both the training views and unseen
test views. This demonstrates the generalization capability of our
Gaussian surfel based scene representation for novel view synthesis.
This success can be attributed to the proposed method’s ability
to tightly adhere Gaussian surfels to the scene surface, ensuring
excellent geometric consistency across different viewpoints. The
qualitative comparison of rendering results is shown in the Fig. 6.
System Performance. We evaluated and reported the system per-
formance of several methods. To ensure a relatively fair comparison,
we used the default configuration for each method and conducted
time and memory consumption statistics on the Replica office0.
Specifically, we measured the time taken for each frame in the main
tracking and mapping modules, reporting the average values. We
also recorded the number of iterations in tracking and mapping, as
well as the average time per iteration. Then we can derive the theo-
retical FPS for the system under a single-threaded mode. As shown
in the Tab. 5, our method outperforms the current SOTA methods
in tracking, mapping and overall system FPS. It is worth noting

Table 5. Comparison of time and memory performance on Replica Off0. ∗

denote the average cost time of sparse correspondence based pose estima-
tion and dense alignment, respectively.

Method Tracking
[ms × it]↓

Mapping
[ms × it]↓

Mapping
/Frame[s]↓

Model Size
[MB]↓

Mem.
[GB]↓ FPS↑

NICE-SLAM[2022] 6.6 × 10 28.6× 60 1.717 48.48 9.8 2.91
Vox-Fusion[2022] 16.5 × 30 34.8 × 15 0.675 1.49 7.8 0.75
Point-SLAM[2023] 10.1 × 40 31.18 × 300 9.892 15431 9.8 0.40
SplaTAM[2024] 45.2 × 40 54.7 × 60 3.283 310 9.1 0.19
RTG-SLAM[2024a] 29.1 × 1 3.5 × 50 0.207 51 2.7 15.73
Ours (14.2 + 9.4)∗ 7.5 × 9 0.071 150 1.8 24.21

that, thanks to the carefully designed system, scene primitives con-
verge rapidly with minimal updates per optimization, resulting in
significantly lower average mapping time per frame compared to
other methods. Moreover, our online memory consumption is also
significantly lower than that of other approaches.
Qualitative Comparison. As shown in Fig. 1, we collected three
outdoor object-centric RGB-D sequences using Azure Kinect for
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Fig. 7. Ablation of Surfel Fusion with Information Filter. The strategy of surfel fusion with information filter demonstrates robustness against noise, effectively
enhancing the accuracy of surface reconstruction on the both scenes (fr1/desk, fr3/office) in TUM-RGBD [Sturm et al. 2012b] dataset.

Table 6. Ablation study of sparse-to-dense tracking.

Method fr1/desk fr1/desk2 fr1/room fr2/xyz fr3/office Avg.
w/o. sparse 6.39 9.29 ✗ 1.43 ✗ ✗

full 2.21 3.09 14.68 0.98 1.41 4.47

Table 7. Ablation study of surfel fusion on ScanNet++.

Metric TSDF Points
w/o fusion full w/o fusion full

ACC./Acc. Ratio 1.59 / 93.42 1.51 / 94.20 0.73 / 99.28 0.67 / 99.98
Comp./Comp. Ratio 0.80 / 98.73 0.76 / 99.20 1.01 / 98.93 0.91 / 99.04

qualitative demonstration of our method’s performance and compar-
ison with other approaches. Our method enables real-time, online,
high-quality object-level reconstruction, while also generating a
surface representation based on Gaussian surfels with confidence.
Additionally, we render the scene from novel viewpoints. Even un-
der large viewpoint changes compared to the training views, our
geometry-aware Gaussian surfel representation achieves signifi-
cantly higher rendering quality than other methods.

4.3 Ablation Study

PS
N

R
/d

B

# of Gaussian Surfels / 103

PS
N

R
/d

B

Fig. 8. Depth-aware vs. Fixed scale initialization. The relationship between
the number of surfels and rendering quality under different scale initial-
ization strategies (left). the impact of different scale scaling factors on the
number of surfels and rendering quality (right).

Sparse-to-Dense Tracking. We evaluate the impact of the sparse-
to-dense strategy on tracking accuracy on the TUM-RGBD dataset.
The results are shown in Tab. 6. The proposed sparse-to-dense track-
ing strategy benefits from the high-quality initialization provided
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Fig. 9. Confidence Update with Incremental Mapping. We use the trace of
information matrix tr(Λ) as the surfel’s confidence and visualize it during
incremental mapping on the Hydrant scene. The surfels in central part of
the scene gradually gain higher confidence as observations accumulate,
while peripheral surfels remain low.

by sparse tracking, allowing dense tracking to require minimal opti-
mization. As a result, the poor performance of the w/o sparse variant
in complex scenes (e.g., fr1/room, fr3/office) is understandable
due to the lack of proper initialization.
Depth-Aware Scale Initialization.We compare different surfel
scale initialization strategies on the Replica off0/off1 in terms of
appearance reconstruction quality. For the fixed scale initialization
strategy, we initialize the size of each surfel ranging from 0.002 to
0.010 with an interval of 0.002 (uint: cm). For the proposed depth-
aware scale initialization strategy, we adjust the scaling factor by
tuning 𝛼𝑠 ranging from 1.0 to 3.0 with an interval of 0.5. As shown in
Fig. 8, we report the number of surfels and the corresponding PSNR
of the final rendered results. The proposed initialization strategy
significantly improves rendering quality with the same number of
surfels. To balance efficiency and accuracy, We set 𝛼𝑠 = 2.0.
Surfel Fusion with Information Filter.We conducted an ablation
study on the surfel fusion strategy. As shown in Fig. 7, we performed
qualitative analysis on the TUM-RGBD dataset, the proposed fu-
sion strategy integrates multi-view depth observations, effectively
mitigating sensor noise and achieving smoother and more consis-
tent scene reconstruction, such as the smooth surfaces of the cup
and mouse. For distant objects (e.g., the teddy bear) where depth
measurements are more noise-prone, the proposed fusion method
demonstrates particularly notable improvements. Then we evalu-
ated its effectiveness in reconstruction tasks on ScanNet++ using the
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Table 8. Ablation study of geometric regularization.

Method ATE↓ PSNR↑ SSIM↑ LPIPS↓ Acc.↓ Comp.↓
w/o. reg 0.166 39.46 0.988 0.061 0.513 1.389
w. reg 0.158 39.75 0.991 0.058 0.509 1.384

same configuration as in Tab. 3. The results shown in Tab. 7, demon-
strate that the proposed fusion strategy significantly improves the
average geometric reconstruction metrics on ScanNet++ scenes. In
addition, we qualitatively visualized the geometric confidence of
the Hydrant scene from the Azure dataset in Fig. 9. Here, we use
the trace of the information matrix tr(Λ), as a proxy for overall con-
fidence, since larger values correspond to lower uncertainty across
dimensions. As expected, regions that are continuously observed
exhibit higher geometric confidence.
Geometric Regularization.We conducted an ablation study on
the geometric regularization on Replica office0 and report metrics
such as trajectory accuracy, rendering quality, and reconstruction
quality. As shown in Tab. 8, it demonstrates that using the geometric
regularization term significantly improves camera tracking accuracy
as well as the appearance and geometry reconstruction of the scene.

5 Limitations

(a) Rapid Camera Motion (b) Dynamic Scene

Camera Input Rendered Image Camera Input Rendered Image

Fig. 10. Failure case of EGG-Fusion. We present the reconstruction scene
and rendered images obtained with EGG-Fusion under (a) rapid camera
motion and (b) the presence of dynamic objects in the scene.

Although EGG-Fusion demonstrates efficient and stable real-time
performance, it still has some limitations. First, real-time mapping
using RGB sensors has broader practical applications, but the ab-
sence of depth measurements imposes higher demands on the ro-
bust estimation of surfel geometry positions and normal attributes.
Second, artifacts caused by certain extreme motion patterns (e.g.,
wide-baseline localization due to rapid motion or rolling shutter
effects) may even lead to tracking failure. Finally, our method as-
sumes a static environment, and the presence of dynamic objects or
people during scanning may affect reconstruction quality.
As shown in Fig. 10, we present two failure cases. Under rapid

camera motion, tracking is highly prone to loss, resulting in signif-
icant discrepancies between the rendered image and the current
frame. In addition, motion blur in such cases leads to the failure of
reconstructing details, making it a critical problem to address the

degradation of system performance under extreme motion condi-
tions [Lu et al. 2025; Peng et al. 2024b; Seiskari et al. 2024]. In dy-
namic scenes, hand movements introduce ghosting artifacts, which
severely affect the rendered image quality. Therefore, an important
future direction is to develop robust tracking and reconstruction
capabilities for dynamic environments [Dai et al. 2025; Huang et al.
2025; Lei et al. 2025; Wu et al. 2024; Zhai et al. 2025a].

6 Conclusion
We propose EGG-Fusion, a robust real-time RGB-D SLAM system
that utilizes Gaussian surfels as the map representation, achieving
accurate camera tracking and high-quality Gaussian map recon-
struction at 24 FPS. This system excels in delivering high geometric
precision, superior map rendering quality, and a more compact
map representation. Beyond surpassing existing methods on public
benchmarks, our system demonstrates exceptional performance in
real-world scenarios with live data. By enabling efficient object- and
scene-level map reconstruction, the proposed real-time 3D recon-
struction system offering significant potential for applications in
robotics, augmented reality, and autonomous driving.
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