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EC-SfM: Efficient Covisibility-based
Structure-from-Motion for Both Sequential and

Unordered Images
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Abstract—Structure-from-Motion is a technology used to ob-
tain scene structure through image collection, which is a fun-
damental problem in computer vision. For unordered Internet
images, SfM is very slow due to the lack of prior knowledge
about image overlap. For sequential images, knowing the large
overlap between adjacent frames, SfM can adopt a variety of
acceleration strategies, which are only applicable to sequential
data. To further improve the reconstruction efficiency and
break the gap of strategies between these two kinds of data,
this paper presents an efficient covisibility-based incremental
SfM. Different from previous methods, we exploit covisibility
and registration dependency to describe the image connection
which is suitable to any kind of data. Based on this general
image connection, we propose a unified framework to efficiently
reconstruct sequential images, unordered images, and the mixture
of these two. Experiments on the unordered images and mixed
data verify the effectiveness of the proposed method, which is
three times faster than the state-of-the-art on feature matching,
and an order of magnitude faster on reconstruction without
sacrificing the accuracy. The source code is publicly available
at https://github.com/openxrlab/xrsfm.

Index Terms—structure from motion, covisibility, epipolar
geometry, keyframe.

I. INTRODUCTION

OVER the past decades, Structure-from-Motion (SfM)
has been an important topic in the field of 3D vision.

Thanks to the robustness of SfM, accurate camera poses
and a point cloud model of the scene can be estimated by
merely photo collections. This kind of demand is common
in autonomous driving, augmented reality, and other diverse
3D vision applications. Traditional SfM systems [1]–[5] can
reconstruct the scene from the unordered Internet images, but
is slow and requires a lot of computing resources. The common
acceleration methods [6], [7] leverage the image order to save
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Fig. 1. The reconstruction result of Roman Forum with the proposed SfM
system. Different colors distinguish different input data, including multiple
image sequences and Internet images.

calculation, so that a large amount of data can be processed
efficiently. But these methods are only suitable for sequential
images as input.

At present, an increasing number of applications require
reconstruction algorithms that support various types of data
as input. For example, city-level crowdsourced reconstruction
always faces various data including vehicle-mounted video,
Unmanned Aerial Vehicle (UAV) imagery, and street view pic-
tures. Another example is the use of Internet data to reconstruct
famous landmarks. In the past, landmark reconstruction often
used Internet photo collections. Now, with the development
of video websites, rich Internet videos can also be used. The
mixture of unordered and sequential images brings new chal-
lenges to SfM. Dealing with large-scale mixed data, existing
unordered strategies bear the huge computational burden, and
the sequential strategies are not suitable for unordered data,
requiring a new SfM method that can reconstruct from mixed
data accurately, efficiently, and completely.

We find that the essence of the sequential strategies is to
reduce the redundant matching and optimization with knowing
the large overlap of adjacent frames in sequential data. Inspired
by this, we extract covisibility relations and registration depen-
dencies from images to better describe the internal relationship
in various data. By utilizing these internal relationship, much
time wasted in redundant calculations is saved, and the internal
relationship is suitable for both sequential and unordered im-
ages. In this paper, we propose a covisibility-based incremental
SfM system, which uses a unified framework to efficiently
process sequential images, unordered images, and mixed data.
The proposed SfM system is much faster than the traditional
SfM systems for unordered images and mixed data. As shown
in Fig. 1, the Roman Forum was completely reconstructed in
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half an hour with three video sequences and an Internet photo
collection using the proposed SfM system.

The preliminary conference version [8] of this work only
focused on accelerating the matching process of SfM by lever-
aging the covisibility information of unordered images. In this
paper, we extend it with an image clustering strategy to ensure
that the algorithm can also run efficiently on sequential images.
Besides, we design a complete SfM system by proposing a
novelty reconstruction framework that can efficiently process
the mixture of sequential and unordered images. Reviewing
the reconstruction stage of traditional incremental SfM, we
note that the robustness of most systems [1]–[3] depends on
frequent bundling adjustments to suppress cumulative errors,
but it brings a heavy computational burden. Moreover, due
to the accumulated error, some correct 2D-3D matching may
be considered as outliers, so that the loop cannot be closed.
In SLAM systems, keyframe selection [9], [10] and loop
closure [11], [12] are common modules, which can solve
the above problems, but they are only suitable for sequential
images. In order to adapt to mixed data, we propose a
keyframe selection method based on registration dependency
and a new geometric verification algorithm for covisible image
pairs. This greatly improves the reconstruction speed and is
suitable for sequential images and unordered images.

To sum up, our major contributions are as follows:
• We propose a powerful SfM system that can handle

various data types in a unified framework, including
sequential images, Internet photo collection, and mixed
data.

• We propose a covisibility-based matching strategy that
discovers covisible image pairs and iteratively extends the
feature matches from the potential registration images.

• We proposed a hierarchy-based keyframe selection
method to speed up reconstruction and an error detection
method to close loops. The proposed method is not
limited to sequential images, and can process well on
unordered images and mixed data.

• Experiments on the Internet photo collection and mixed
data verify the effectiveness of the proposed method,
which is three times faster than the state-of-the-art on
feature matching, and an order of magnitude faster on
reconstruction, without sacrificing the accuracy.

II. RELATED WORK

The SfM technique has achieved great success in the
past decades [1]–[3], [6], [13]–[16]. The general pipeline of
SfM contains two major stages: the matching stage and the
reconstruction stage. The matching stage mainly carries out
feature extraction and matching. The reconstruction phase is
responsible for estimating the camera poses and map points
from the feature matches. We review the two stages in this
section.

A. Matching Stage

To find feature correspondences among the whole image
set, the most straightforward strategy is performing feature
matching between each image pair, which is infeasible for a

large image set. Image retrieval techniques [17] can be used
to find candidate image pairs for further feature matching.
Vocabulary tree [18] is a representative image retrieval method,
which is widely used in various SLAM and SfM systems [19],
[20]. This method clusters features to build a visual dictionary,
and uses the distribution of words to compute similarities
between images. Other kinds of image retrieval methods use
global descriptors instead of local descriptor sets to represent
images, such as GIST [21]. With the great success of deep
learning in computer vision, image retrieval methods based on
Convolutional Neural Networks (CNNs) [22] have emerged.
These learning-based methods have a stronger image repre-
senting ability, that are more robust to changes in illumination
and view point.

After image retrieval, the common strategy is matching
the NR most similar image for each image. However, it is
difficult to decide the fixed number of NR before actually
performing feature matching. Depending on the capture den-
sity, camera field of view, scene distance, and many other
factors, some images would have many overlapping pairs and
others would have few. Using a fixed number of NR easily
leads to a lack of feature matches resulting in incomplete
reconstruction or waste of computation for matching image
pairs without any common features. A simple improvement
method [23] uses query expansion, which matches the query
results of neighbor frames. This method can obtain some
missing matches, but costs a lot for images with rich matching
relations. Another method is MatchMiner [24], which is based
on the vocabulary tree, using weights to distinguish valuable
vocabularies from noisy vocabularies to achieve better perfor-
mance. VocMatch [25] improves the vocabulary tree algorithm
by considering features indexed to the same visual word as
potential matches to skip the descriptor matching. ENFT [6]
proposes to construct a matching matrix and select frame
pairs with the maximum overlapping confidence for feature
matching, and use the matching result to update the matching
matrix iteratively. Finally, a vote-and-verify strategy [26] of
vocabulary tree was proposed for fast spatial verification.

The covisibility graph is the data structure to represent the
image matching relationship. In the covisibility graph, images
are represented as nodes, and the edge between two nodes
indicates there are common features between the image pair.
ORB-SLAM [19] builds a covisibility graph to efficiently find
candidate keyframes to be matched with the current frame on
sequential images. Mei et al. [27] use a similar idea to handle
place recognition and loop closure. In our previous work [8],
we used image retrieval with a small NR to get initial feature
matches and construct the covisibility graph for unordered
image set, and leveraged the transitivity of covisibility to
predict overlapping images and extend feature matches in the
iterative manner. In this paper, we extend this method to the
mixture of sequential and unordered images.

With the development of deep learning, many learning-
based retrieval [22] and feature methods [28]–[30] have been
proposed. These learning-based methods can be easily inte-
grated with the proposed matching method which use only the
covisibility and do not limit the use of features and retrieval
methods.
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B. Reconstruction Stage

After years of development, the reconstruction stage of SfM
has made great progress. Currently, reconstruction methods
can be categorized into incremental SfM and global SfM.

Incremental SfM builds the initial map using two-view
reconstruction [31]. And then, the poses of cameras that ob-
served enough map points in the initial map can be estimated.
After a camera pose is registered, the map is extended through
triangulation. The complete scene structure is constructed by
iteratively estimating camera poses and extending the map.
The first incremental system for Internet photo collection
is proposed by Snavely et al. [32] with exhaustive image
pair matching and frequent call for bundle adjustment (BA).
As an attempt to scale to a large photo collection, [33]
exploited the skeleton graph of the scene, and [34], [35]
highlighted the iconic image representing the main structure
of the scene graph. Wu proposed a linear-time SfM [2], which
introduces the preconditioned conjugate gradient and adjusts
the optimization frequency to make the optimization time
linear. The current state-of-the-art SfM system COLMAP [3]
developed several well-designed strategies to further improve
the reconstruction quality, such as the multi-model geometric
verification to enhance robustness, visibility pyramid to select
next best view, and an iterative BA, re-triangulation and outlier
filtering to enhance the robustness of the system. In addition,
OpenMVG [4] and OpenMVS [5] are two well-known open-
source frameworks. In recent years, many deep learning-based
reconstruction methods [36]–[44] have emerged. Among them,
SfM-Net [36] and GeoNet [38] use neural networks to simulta-
neously predict image depth, camera motion, and optical flow,
which introduce more observational information and optimize
it through geometric constraints. Wang et al. [41] adopt a
similar approach, but focus on alleviating the ill-posedness
problem in two-view reconstruction. Other researchers make
efforts to improve the robustness of geometric estimation
under extreme or special circumstances [42], [43]. In addition,
Sarlin et al. [44] focus on utilizing multi-view information
and geometric constraints to improve the detection accuracy
of feature points through inverse optimization.

Different from incremental SfM, global SfM recovers all
camera poses in the batch manner. All camera poses are initial-
ized by motion averaging and refined by global optimization.
As the core of global SfM, the majority of motion averaging
methods estimate rotation and translation separately. The early
works of rotation averaging [45] solve the problem by linear
least squares. In order to reduce the influence of outliers,
researchers adopt Iteratively Reweighted Least Squares [46]
and regularization terms [47] to enhance the robustness. Gao
et al. [48], [49] estimate absolute rotations in an incremental
manner to obtain accurate camera orientations. Besides, [50]
adopted a hybrid method that combines a global optimizer
and local optimizer to gain outlier resistance. The translation
estimation methods can be roughly divided into essential
matrix based methods [51]–[53] and Trifocal tensor based
methods [54]–[56]. In order to further improve the efficiency
of global SfM, [14] proposes a divide-and-conquer framework
to realize city-level reconstruction. [57] propose a pose-only

Fig. 2. The framework of the proposed method.

reconstruction method that gives a linear global translation
solution and represents 3D points by camera parameters in
the optimization so that the efficiency is greatly improved.

Compared with incremental SfM, global SfM avoids fre-
quent calls for the time-consuming BA and also alleviates
the risk of error accumulation, but is still very sensitive to
outliers. There are hybrid methods [58], [59] that adopt the
compromise scheme, utilizing the global rotation averaging
and the incremental translation estimation to balance the
efficiency and robustness.

However, due to the superior robustness, incremental SfM
is still the mainstream of the reconstruction system, and our
method also falls into this category. Based on the traditional in-
cremental reconstruction systems, we proposed the hierarchy-
based keyframe selection and error correction module, which
greatly improves the reconstruction speed and is suitable for
any type of data.

III. OVERVIEW

The framework of the proposed method is shown in Fig. 2,
which is comprised of the matching stage and the reconstruc-
tion stage. In the matching stage, we first extract features for
each image and construct an initial covisibility graph. Then,
based on the covisibility graph, we select the covisible image
pairs as the candidates for feature matching. The whole match-
ing process is iterative, the results of each round of feature
matching are used to update the covisibility graph to search
for new covisible image pairs and more feature matches. In
the reconstruction stage, similar to the traditional incremental
SfM, we have an initialization module and iteratively perform
image registration and triangulation. To handle the mixed data
of sequential and unordered images, we propose an error
correction method to solve the loop closure problem and a
keyframe-based BA strategy to improve efficiency.

IV. MATCHING STAGE

This section introduces the proposed matching method.
Different from previous methods, we propose the region-based
covisibility graph and leverage the transitivity of covisibility
to find potential overlapping image pairs. In addition, we
adopt the iterative matching strategy that extends matches from
high-quality images (potential registration frames) to avoid
matching between low-quality images.
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Fig. 3. The pipeline of our iterative matching strategy.

A. Region-based Covisibility Graph

The matching stage searches image correspondences among
the input image set U = {Ii | i = 1...NI}. A set of features
are extracted from each image i, denoted as Fi = {fki |
k = 1...NFi

}, where fki denotes the k-th feature in the i-th
image, and NFi

is the number of features. Next, the features
correspondence is established by feature matching. If we have
a part of feature matches in hand, we can predict the potential
covisibility of other images. For example, given matched im-
age pairs (Ia, Ib) and (Ib, Ic), if Ia and Ic share some feature
tracks, (Ia, Ic) is also a covisible image pair. Unfortunately,
there are inevitably some mismatches in the feature matching
result even after the geometric verification, which makes some
covisibility predictions unreliable. In addition, the projections
of 3D scene points sometimes are not detected so that some
covisible image pairs would be missed. Predicting covisibility
directly from feature matches is greatly affected by missing
matches and mismatches.

We propose a region-based covisibility prediction method to
address the problems of missing matches and mismatches. Due
to the existence of mismatches, covisibility prediction using
feature points is not reliable. Instead, we use the local region
where the feature is located to construct a flexible covisibility
of regions. Through region-based covisibility, covisible image
pairs that do not share the feature track due to missing matches
may also be found. As shown in Fig. 4, there is no feature
track shared by ri1 and ri3 due to missing matches, but the
potential covisible relation between ri1 and ri3 can be found
by the transitivity of region-based covisibility, because both
(rk1i1 , r

k2
i2
) and (rk2i2 , r

k3
i3
) are covisible region pairs. Moreover,

in order to prevent the false-positive detection of covisible
region pairs supported by very few feature tracks, we use the
number of shared feature tracks to measure the confidence of
covisibility. The covisibility of the region pairs, e.g., (rk1i1 , r

k2
i2
)

and (rk2i2 , r
k3
i3
), are relatively reliable because there are sup-

ported by sufficient feature tracks. By contrast, the region pair
(r
k′1
i1
, rk2i2 ) shares only one feature track, so this pair is not

considered as a covisible pair.
For characterize region-based covisibility efficiently, we

uniformly divide each image Ii into Np ×Np patches (Pi =
{pki |k = 1...N2

p}) as a region approximation. A patch pair
(pk1i , p

k2
j ) is considered covisible if they share at least T com-

mon feature tracks. And we form a region-based covisibility
graph with patches as nodes and covisible patch pairs as edges.

correct match false match missing match

Fig. 4. The top row contains three covisible images; the second row shows
the correct transitive covisibility (rk1i1 , rk3i3 ); In the third row, (rk1

′
i1 , rk3i3 )

shares a feature track, but it is not a covisible region pair.

For two images Ii and Ij , if there is a chain (p1, p2, ...pn) in
the region-based covisibility graph, where p1 belongs to Ii
and pn belongs to Ij , then these two images are potentially
covisible. However, for a long chain (p1, p2, ...pn), there is a
large overlap between every pi, pi+1, but with the increase of
chain length, the overlap between p1 and pn becomes small or
even completely disappeared, and the predicted covisibility is
unreliable. Therefore, to avoid this situation, we set a length
threshold σ for the maximum allowed chain length.

Specifically, we define the distance between an image pair
from the covisibility of patches by

dist(Ii, Ij) = min{dist(pk1i , p
k2
j )|k1 ∈ [1, N2

P ], k2 ∈ [1, N2
P ]},
(1)

where dist(pk1i , p
k2
j ) is the distance between pk1i and pk2j in

the region-based covisibility graph. If there is no path con-
necting the two patches, dist(pk1i , p

k2
j ) is defined as infinite.

dist(Ii, Ij) is the minimum distance between patches in Ii
and in Ij . We detect the covisibility between Ii and Ij by the
following equation:

covisible(Ii, Ij) =

{
True dist(Ii, Ij) < σ

False dist(Ii, Ij) ≥ σ
, (2)

here, Ii and Ij are regarded as covisible if dist(Ii, Ij) does
not exceed the threshold σ. In our implementation, σ is set to
3 for reliable covisibility prediction.
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Fig. 5. Iteratively extending the registered images.

B. Iterative Matching Strategy

We propose an iterative algorithm that make full use of
existing feature matches to extends feature matches, as il-
lustrated in Fig. 3. Firstly, we use image retrieval for each
image and perform feature matching on the Ninit most similar
images, Ninit is set to 5 in our implementation. The set
of the initial feature matches is denoted as Minit, and a
region-based covisibility graph is built with Minit. At each
iteration, we select and match all the covisible image pairs
based on Equation (2) to obtain more feature matches. The
newly matched features are used to update the region-based
covisibility graph. In this way, most of the feature matches
can be found after several iterations.

In addition, we observe there are many poor quality or
irrelevant images in Internet photo collections. These im-
ages cannot be registered successfully even if all the feature
matches have been established. LetMall denote all the feature
matches, Areg denote the set of images that can be registered
with the support of Mall, and Arest denotes the rest. To
further reduce invalid matches, we want to avoid selecting
candidate image pairs composed of elements in Arest. How-
ever, Areg is impossible to be obtained untilMall is obtained
and reconstruction is implemented. In each iteration of the
proposed method, we have partial feature matches Minlier (a
subset of Mall), so partial images Apart can be registered.

For obtaining Apart, a naive method is running the re-
construction with existing feature matches Minlier, but it
causes a strong coupling between the reconstruction process
and matching process. Therefore, we propose a fast algorithm
that simulates the registration process to obtain an approxi-
mation of Apart. Before diving into details, we explain some
definitions.

Tri(Ii, Ij) =
{
fai , f

b
j |(fai , f bj ) ∈Minlier} (3)

Match(Ii,F) =
{
(fai , f

b
j )|(fai , f bj ) ∈Minlier, f

b
j ∈ F}

(4)
The matched features fai and f bj between image pair (Ii, Ij)

make up the point set Tri(Ii, Ij) for simulating the progress
of triangulation in reconstruction. Given a feature set F ,
Match(Ii,F) is the set of feature matches between features
of Ii and F , which is used to detect the number of points in F
observed by Ii for simulating the process of pose estimation.

In order to obtain the potential registration frame set, we
select two frames as initial potential registration frames, and
then iterate the extended feature set F and the potential
registration frame set Aappr. Aappr is an approximation of

Algorithm 1: Registration approximation algorithm
Input: inlier matches Minlier, threshold t
Output: Aappr

1 Aappr = ∅, F = ∅;
2 Select a matched image pair (Ii, Ij).
3 Aappr = Aappr ∪ {Ii, Ij};
4 F = F ∪ Tri(Ii, Ij);
5 found← True;
6 while found do
7 found← False;
8 for Ii ∈ U −Aappr do
9 if |Match(Ii,F)| > t then

10 Aappr ← Aappr ∪ {Ii};
11 found← True;
12 for Ij ∈ Aappr do
13 F ← F ∪ Tri(Ii, Ij);
14 end
15 end
16 end
17 end

Algorithm 2: Iterative matching strategy
Input: initial inlier matches Minit, retrieval param

Nmax
Output: inlier matches Minlier

1 Minlier = Minit;
2 C = ∅;
3 Compute Aappr from Minlier by Algorithm 1.
4 for Ii ∈ Aappr do
5 for Ij ∈ Retrieval(Ii, Nmax) do
6 if covisible(Ii,Ij) then
7 C ← C ∪ (Ii, Ij);
8 end
9 end

10 end
11 Verify the candidate pairs in C and update Minlier.
12 Repeat from line 2 until the maximum number of

iterations is reached.

Apart. As shown in Algorithm 1, our registration approxima-
tion algorithm includes an initial stage (step 1 to 4) and an
iteration extending stage (step 5 to 17), which is similar to the
reconstruction stage of SfM.

Combining region-based covisibility graph and the registra-
tion approximation algorithm, the final matching algorithm is
shown in Algorithm 2. Firstly, we build the region-based cov-
isibility graph Gcov and obtain the potential registration frames
Aappr with the initial inlier matches. Then, we iteratively
select the candidate image pairs to match with Gcov and Aappr,
and update Aappr and Gcov with the matching results. To limit
the matching time, the image pairs that need to be tested
by covisibility are selected only from retrieval results(step
5). Retrieval(Ii, Nmax) denotes the retrieval results of Ii
with the retrieval number Nmax. Because Ij is limited in
Retrieval(Ii, Nmax), in the worst case, the proposed method
will match each image with its Nmax closest neighbors. In our
implementation, Nmax is set to 50. We use NetVLAD [22] to
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get retrieval results, and there is no limitation to using other
image retrieval methods.

When there are too few initial feature matches, it is difficult
to find enough candidate pairs for sufficient expansion. To
alleviate the deficiency of the initial connection, we add extra
candidates according to the vote of the retrieval results. If an
image has many similar images in the registered image set,
it is more likely to be registered. Based on this, we perform
feature matching on the images whose retrieval results contain
many images in Aappr.

On the other hand, the initial retrieval results of sequential
images are often to be limited to adjacent images, which
sometimes leads to ignoring the loop. In order to solve this
problem, we use the initial feature matches to cluster the
images, and select a representative frame from each cluster
to form a representative image set. In the iterative matching
process, only the representative image set participates in
the calculation. The other images are matched between the
associated clusters after the iterative matching. The overlap of
adjacent representative images is small, so the retrieval results
are not concentrated in adjacent images, which makes the loop
easier to be found. Moreover, using representative images for
iterative matching also improves the speed of the algorithm.

The proposed iterative matching method improves speed but
requires constructing a covisibility graph to describe image
association, which incurs additional memory overhead. We
store the covisibility graph in adjacency list form, with space
complexity O(|V | + |E|), which is linearly related to the
number of vertices and edges. Assuming the number of input
image is NI , the number of vertices in the covisibility graph
is NI ∗ N2

p , where Np is a constant. We denote the average
number of covisible images per image as Nc. The number of
edges is proportional to NI ∗Nc. In the worst case, Nc = NI
and the space complexity is O(N2

I ) but this rarely occurs
which requires all image pairs to be covisible. In general, Nc
is independent of the size of the scene and depends on the
density of the camera distribution. Based on our observations,
Nc ranges from 100 to 400 in most datasets, allowing us to
achieve linear space complexity.

V. RECONSTRUCTION STAGE

This section presents the reconstruction stage of the pro-
posed SfM system. The traditional reconstruction stage has
two main modules: the estimation module and the optimization
module. The estimation module performs the registration of
frames and generates map points from feature tracks. The
optimization module performs local BA and low-frequency
global BA to jointly optimize cameras and map points by
minimizing the reprojection error. We make the following
improvements. First, a novel error correction method detects
the geometric error after each image registration and tries to
correct the large error to enhance the robustness and keep the
global consistency of the scene reconstruction result. Second,
the hierarchical structure is used to represent the registration
dependency for both sequential and unordered images, and a
keyframe selection scheme based on the hierarchical structure
is proposed. In the following content, we describe these two
improvements in detail.

Fig. 6. Two-view geometry. The ray r1 from the center of the camera center
O1 and the ray r2 from the center of the camera center O2 are compared to
a 3D point X .

A. Error Correction

In traditional incremental SfM, the estimation error will in-
evitably accumulate due to the symbiotic relationship between
points and camera poses. Many incremental reconstruction
systems rely on frequent global optimization to alleviate error
accumulation, but this approach has a defect. Once most 2D-
3D correspondences are considered as outliers during frame
registration, the bundle adjustment method may not eliminate
errors effectively in the absence of sufficient observation. This
situation is common in sequential image sequences with loops,
where the accumulated error prevents the loop from being
closed. SLAM systems solve this problem by explicitly closing
loops [11], [12], but rely on known image order. In order to
process arbitrary data, we propose a geometric error detection
method and error correction module that explicitly closes loops
without relying on image order.
Error detection. Measuring the geometric error of reg-
istration is an important part in maintaining the accuracy
of registration. The traditional SfM systems [1]–[3] evaluate
the quality of registration by the reprojection error, but the
reprojection error relies on good 2D-3D correspondences.
When the 2D-3D correspondences are considered as outliers
due to accumulated error, the reprojection error becomes too
unreliable to evaluate the quality of frame registration. ENFT-
SfM [6] employs the gradient direction of reprojection error
to reduce cumulative error with a coarse-to-fine optimization,
which also relies on good initial correspondences. The rel-
ative motion estimation between frames by decomposing the
essential matrix is another way to measure registration quality.
It doesn’t rely on 3D points but is easily affected by feature
matching noise and dynamic targets. And beyond that, when
the camera is in pure rotation or the scene is a planar struc-
ture, the decomposition of the essential matrix will degrade.
Epipolar error is an effective indicator to evaluate the quality
of two-view reconstruction, which measures the distance from
a point to the epipolar line. However, the epipolar error is
defined in the image domain, measured in pixels. It is not
straightforward to deduce the 6DoF registration error from
the epipolar error, such as how many meters of translation
error or how many degrees of rotation error. Therefore, we re-
formulate the epipolar geometry and deduce the registration
error.

In order to better illustrate the derivation process, we now
turn to a simple case that two images I1 and I2 observe
the same 3D point X , and x1,x2 are the corresponding
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Fig. 7. The geometry of the errors in unit vector r1. r∗1 is the actual estimated
value. θn1 is the angle of the r∗1 and the plane O1O2X .

observations in normalized coordinates. The pose of I1 is
(R1, t1) and the pose of I2 is (R2, t2). Without considering the
noise, the equation of xT1 Ex2 = 0 should be satisfied, where
E is the essential matrix derived from the two poses. In our
method, we also start from the classic two-view geometry but
considering the influence of each error term. As Fig. 6 shows

t1 + d1r1 = t2 + d2r2 (5)

where di means the length between the camera center Oi and
X , ri means the unit vector in line X −Oi. To remove depth
factors, we cross product (5) by r2 and dot by r1.

((t2− t1)× r2) · r1 = (d1r1× r2)r1− (d2r2× r2)r1 = 0 (6)

The above derivation is very common in the work related
to the essential matrix. Actually, this equation is another
representation of xT1 Ex2 = 0, because ri = Ri

xi

|xi| . In order
to better explore the physical meaning, then we rewrite the
formula (6) to

t× r2
|t× r2|

· r1 = 0 (7)

where t = t2−t1
|t2−t1| . From a geometric point of view, t×r2

|t×r2|
represents the normal of the plane O1O2X and the value of
t×r2
|t×r2| · r1 is equal to sin(θ) that θ is the angle of the ray
r1 and the plane O1O2X . Without registered error and noise,
this value is equal to 0.

Next, we consider the effect of the various error on (7).
For simplicity, we consider the case where noise is added
to the coordinates of the first image only. In order to better
understand the influence of each error, first of all, we only
consider the error of r1. we denote r∗1 is the estimated value
that r∗1 = r1 + n1,

t× r2
|t× r2|

· r∗1 =
t× r2
|t× r2|

· n1

= sin(θn1) · |n1| ≤ |n1|
(8)

As shown in Fig. 7, θnt is the angle of the r∗1 and the plane
O1O2X . Then we consider the error of t, and denote t∗ as
the estimated value that t∗ = (t+ nt).

t∗ × r2
|t∗ × r2|

· r1 =
t× r2 + nt × r2
|t∗ × r2|

· r1

=
nt × r2 · r1
|t∗ × r2|

=
nt × r2 · r1
sin(θnt

)
≤ |nt|
sin(θnt

)

(9)

where θn1
is the angle of the t∗ and the r2. Comprehensive

consider the error of r∗1 and t∗, we have

t∗ × r2
|t∗ × r2|

· r∗1 =
t× r2 + nt × r2
|t∗ × r2|

· (r1 + n1)

=
nt × r2 · r1
|t∗ × r2|

+
t∗ × r2 · n1
|t∗ × r2|

≤ λ|nt|+ |n1|

(10)

here λ = 1
sin(θnt )

. For convenience, we denote Verror as the

value of t∗×r2
|t∗×r2| ·r

∗
1 . We prove that Verror has a clear geometry

significance and reflects the deviation of a relative pose. By
evaluating Verror, we can find the pairs of cameras with large
relative position errors. Similar to the essential matrix, Verror
does not encapsulate the scale. We introduce estimated depth
to alleviate this problem. For a given relative pose, the point
depth can be estimated from feature matching. If the estimated
depth has a large error with the existing 3D points or exceeds
a reasonable value, it reflects the potential poor relative pose.

In the actual reconstruction process, when the frame Ii
is registered, we detect the geometric relationship between
Ii and elements in Si. Si is a set of registered frames that
has a matching relationship with Ii. For each frame pair in
(Ii, Ij)|Ij ∈ Si, we compute Verror of every feature matches.
Assuming that a good registration satisfies |nt| < a and
|n1| < b, then Verror >

a
λ + b will reflect a potential bad

registration. Considering there are some mismatches and small
dynamic objects, only if the proportion of bad feature matches
is large, we think there is a structure error.
Error correction. When we detect large geometric errors,
it usually means that 2D-3D correspondences are not good.
The most significant situation is that, due to the cumulative
error, the newly registered frame is hardly associated with the
other end of the loop, and the same region of the scene is re-
constructed into two parts. SLAM systems solve this problem
by specially processing the loops to establish sufficient 2D-
3D correspondences, but they rely on sequential images. In
previous SfM systems, merging 3D points and re-triangulation
can alleviate this problem to a certain extent, but still can not
deal with excessive cumulative errors. We propose an error
correction method that can deal without relying on the image
order.

After each registration, we first detect geometric errors.
Specifically, for a newly registered frame Ii, we refer to the
set of all registered frames that have a matching relationship
with Ii as Si. Then, for every image pair consisting of Ii
and one frame in Si, we apply the above error detection and
divide Si into two parts S1

i and S2
i that S1

i includes the part
with the correct geometry and S2

i includes the rest. In most
cases, S2

i is an empty set, which means that the local map
near Ii is consistent. In other cases, the local map has two
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Fig. 8. Steps in the calculation hierarchy process. The yellow nodes
represent cameras and the gray nodes represent the landmarks. Starting with
two initial cameras in (a), the level of one landmark is set to zero, because
it observed two cameras whose levels are zero in (b). Then the level of a
camera is set to one in (c) (N is 1 in this simple example). Finally, all the
levels of nodes are set.

Fig. 9. Visualization of the hierarchical structure. It is the reconstruction
result of Roman Forum. Cameras were colored from low level (green) to
high level (red). The reconstruction is initialized from the left, so the level of
frames gradually increases from left to right.

separate parts, S1
i and S2

i . Similar to the loop closure strategy
in the SLAM system, we register the current frame with the
part local map of S1

i and S2
i respectively, and get two camera

poses and the inlier 2D-3D correspondences. Generally, bundle
adjustment can eliminate these errors with all correspondence.
When starting from bad initial values, the optimization method
will fall into the local optimum. In this case, we use pose graph
optimization to get a better initial value.

B. Hierarchy-based Keyframe Selection

In order to improve the reconstruction speed, we propose a
hierarchy-based keyframe selection method. Keyframe strat-
egy is widely employed in SLAM systems, and skeleton
graphs [33] and icon images [34], [35] are similar methods
in the field of SfM. The core idea of these methods is to
reduce the amount of computation by reducing the number
of images actually involved in the reconstruction. Specifically,
a keyframe set that can express the whole scene is extracted
from all images for reconstruction. In this way, the complexity
of the reconstruction is reduced to the complexity of the scene
itself rather than the number of images.

The selection of keyframes is relatively easy in sequential
images. It only needs to ensure sufficient matches between two
adjacent keyframes, so that deleting the intermediate image
between the two keyframes will not affect the registration
of other frames. For unordered data, the image association
is complex, so the selection of keyframes becomes difficult.
Therefore, we judge deleting which images will not affect

the registration of other frames instead of directly judging
which images are keyframes. The images that do not affect
the registration of other images after being deleted are called
redundant frames. For finding redundant frames, it is very
important to recover the registration dependency between
frames. We propose a novel hierarchical structure, which can
effectively represent the frame registration dependencies in
an arbitrary scene. The hierarchy of previous reconstruction
methods [49], [60] are mainly used to divide images into
several clusters, and then reconstruct and merge them layer
by layer to obtain complete reconstruction results efficiently.
Unlike them, the hierarchy we propose is only used to describe
the image correlation in any data, and only affects the selection
of key frames, without affecting other reconstruction modules.
Hierarchical structure. We propose a simple hierarchical
generation method. The hierarchical levels of the initial two
frames are set to 0. The points which are observed by at least
two frames of level (0 ∼ n) are set to level n. This ensures
that the points of level n can be triangulated with the frames of
level (0 ∼ n). Similarly, the frames which observe at least 50
points of level (0 ∼ n) are set to level n+1. This ensures that
the frames of level n+ 1 can be registered with the points of
level (0 ∼ n). In this way, all frames and points are assigned
to different levels. In order to better illustrate the generation
of the hierarchy, we show a simple example in Fig. 8. On the
one hand, this hierarchical structure reflects the registration
dependency. The estimation of SfM variables (camera poses
and map points) at a high level depends on the variables at
low levels. On the other hand, the hierarchical relationship
also implies the ”distance” from the initial two frames. The
estimation of a high-level variable often has higher uncertainty,
because they are farther from the initial frames. Fig. 9 shows
the visualization of the hierarchical structure on a real dataset.
Keyframe selection. Through the registration dependency
described by a hierarchical structure, we design a convenient
and fast redundant frame detection method. For each frame I ,
we compute the level nI of frame I and record the number mI

of points of level (0 ∼ nI ) that frame I can observe. Assuming
that Ii is deleted, we first calculate the new hierarchical level
of points that Ii can observe. Then, we calculate a new mIj for
each matched frame Ij of Ii. Once the new mIj is smaller than
50, it indicates that deleting Ii will change the hierarchical
level of Ij , and in this case, Ii is considered to be a keyframe.
Otherwise, I is considered as a redundant frame. Even if
we delete all redundant frames, each keyframe can observe
at least 50 3D points, which ensures that they can still be
registered. Moreover, these remaining keyframes maintain the
same hierarchical level as the original, which means that they
are not farther away from the initial frames.

Back to the implementation of the keyframe algorithm, a list
of keyframes was maintained in the reconstruction stage. In
the beginning, all newly registered frames will be added to this
keyframe list. And before each global optimization, we will
check the keyframe list and remove redundant frames. In the
optimization process, we only adjust the poses of keyframes
and the 3D points they can observe, which greatly reduces the
amount of calculation in global bundle adjustment. Besides,
the poses of the redundant frames are modified by the change



9

TABLE I
EVALUATION RESULTS ON 14 LARGE-SCALE UNORDERED INTERNET PHOTO COLLECTIONS.

#Size #Registered #Time[s] #Precision[%] #Recall[%]
IR5 IR25 IR50 Ours IR5 IR25 IR50 Ours IR5 IR25 IR50 Ours IR5 IR25 Ours

Alamo 2,915 683 810 862 760 144 722 1405 233 40.74 27.61 23.68 37.29 87.70 95.79 95.95
Ellis Island 2,587 295 344 351 331 104 584 988 177 49.25 33.27 26.94 48.47 59.33 93.03 95.11
Gendarmenmarkt 1,463 702 984 1020 923 62 346 596 230 59.16 46.25 39.86 52.09 57.04 91.69 94.38
Madrid Metropolis 1,344 245 409 435 406 47 244 430 113 42.31 27.76 23.10 37.35 72.49 91.86 93.74
Montreal Notre Dame 2,298 475 554 564 552 99 523 972 171 54.79 41.97 36.31 48.54 76.09 96.82 97.83
NYC Library 2,550 385 614 574 592 102 544 975 170 44.32 28.60 21.74 43.58 64.47 92.95 93.83
Piazza del Popolo 2,251 332 901 951 865 99 468 872 234 47.10 34.15 28.53 43.23 65.46 90.16 91.25
Piccadilly 7,351 2213 2871 2988 2838 406 1508 2717 995 40.95 29.17 24.73 40.63 54.92 81.43 86.36
Roman Forum 2,364 1291 1500 1599 1546 164 587 1226 473 59.45 43.15 35.57 33.87 74.90 94.02 94.07
Tower of London 1,576 477 651 699 632 84 386 732 199 42.65 28.08 22.41 35.58 70.93 94.95 94.64
Trafalgar 15,685 4397 7048 7725 7122 713 3474 6396 2819 41.41 30.76 26.54 37.98 52.28 81.00 88.19
Union Square 5,961 536 985 1070 971 311 1436 2313 449 22.63 13.48 10.29 30.07 78.96 96.08 78.96
Vienna Cathedral 6,288 924 1060 1119 1033 533 1657 3328 707 40.25 25.67 20.69 39.28 99.31 99.59 99.31
Yorkminster 3,368 452 655 1060 927 165 1182 1620 382 48.79 32.09 24.89 37.16 72.55 93.59 93.81
Average 4,142 957 1384 1501 1392 216 975 1755 525 45.27 31.57 26.09 40.37 70.46 92.35 92.67
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Fig. 10. The registration ratio of different methods. The registration ratio is
generated from dividing the number of registered frames byRegisteredIR50 .

of 3D points after optimization.

VI. EXPERIMENTAL RESULTS

We evaluate our algorithm on several real datasets, including
Internet photo collection (1DSfM dataset [61]), vehicle-loaded
videos (KITTI dataset [62]), a set of handheld videos [6],
and a set of Internet city walking tour videos. The Internet
city walking tour videos are downloaded from YouTube. The
experiments are conducted on a desktop PC with an Intel i7-
9700K 3.6GHz CPU, 64GB of memory, and a NVIDIA GTX
2070 graphics card. The experiments are divided into two
parts. First, we quantitatively evaluate the efficiency of the
matching strategy and the influence of relevant parameters on
the matching result. Then, we compare our reconstruction part
with the state-of-the-art and carry out the ablation experiments
to verify the effectiveness of the proposed error correction and
hierarchy-based keyframe selection algorithm.

A. Matching Stage

In this section, we conduct comparison experiments on
unordered and sequential datasets to verify the superiority of
the proposed method in terms of efficiency, and evaluate the
impact of each component as well as the influence of different
parameters.

For unordered images, we conduct the experiments on 14
large unordered datasets [61]. These 14 datasets contain a
total number of 58k unordered Internet photos, covering a
wide variety of scenes. The strategy which retrieves NR
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Fig. 11. The number of matching operations for different methods. To plot
the results of different methods on the same coordinate system, we normalize
the results by dividing the number of matching operations for each method
with the number of matching operations for IR50.

images to match is denoted as IRNR
. We use the state-of-

the-art image retrieval method NetVLAD [22], and compare
IR5, IR25, IR50, and the proposed matching strategy. In the
proposed strategy, the two inputs of Algorithm 2, Minit is
the matching result of IR5 and Nmax is set to 50. When
Nmax is 50, the result of the proposed strategy happens to
be a subset of the result of IR50. For a fair comparison, all
strategies use the same implementation in feature extraction,
feature matching, and geometric verification. We evaluate four
metrics and the results are shown in Table I. Registered
is the number of registered frames, Time denotes the time
consumed in the matching stage, Precision is computed
from TP

P , and Recall = TP
Ngt

, where TP is the number of
image pairs that share at least 30 feature tracks, P is the
number of the candidate image pairs, Ngt is the true number
of covisible images. It is best to obtain Ngt by brute-force
matching, but it is computationally prohibitive for large-scale
datasets. Considering that the matching results of all strategies
are subsets of the result of IR50, we can use the result of
IR50 as Ngt without affecting the comparison result between
different strategies. Note that when calculating recall, matches
that are irrelevant to the registered frames are removed. IR5

is the fastest method, but we find the results of IR5 can not
guarantee the completeness of reconstruction. Fig. 12 shows
the reconstruction results of the different methods in Madrid
Metropolis and Union Square. In order to better show the com-
pleteness of reconstruction results under different matching
methods, we show the registration ratio ( Registered

RegisteredIR50
) in
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Fig. 12. The top view of reconstruction results. The first row is the reconstruction result of Madrid Metropolis, the second row is the reconstruction result
of Union Square. The left column is IR5, the middle column is IR50, the right column is Ours. We highlight the area which shows the differences in
reconstruction completeness of different methods.

TABLE II
EVALUATION RESULTS ON KITTI ODOMETRY DATASETS.

#Time[s] #Precision[%] #Recall[%]
Seq. Ours Seq. Ours Seq. Ours

00 677 429 54.67 55.65 100.00 99.98
01 100 75 59.45 64.23 100.00 99.98
02 907 453 51.20 55.56 100.00 99.98
03 144 127 61.14 57.38 100.00 100.00
04 36 28 61.57 57.88 100.00 99.98
05 430 352 57.81 57.56 99.99 99.85
06 163 151 61.95 53.42 99.85 99.89
07 149 164 58.65 63.87 100.00 99.98
08 690 535 53.53 46.39 100.00 99.99
09 246 162 51.39 45.17 100.00 100.00
10 181 174 55.11 50.93 100.00 100.00

Fig. 10. Compared with IR5, the reconstruction result of our
method is more complete. Compared with IR25 and IR50, our
method has a comparable registration ratio but is significantly
faster. The improvement in speed comes from the reduction
in matching operations. We plot the number of matching
operations for different methods to demonstrate the advantages
of the proposed method in Fig. 11. The proposed method
reduces the number of matching operations by 30 ∼ 60%
compared to IR25, while maintaining a similar number of
registered frames. On the one hand, the reduction in the
number of match operation comes from the improvement of
precision. The precision of our method is higher than IR25 and
IR50 on average, which means that our method can accurately
predict overlapping images. On the other hand, our method
only matches the potentially registered frames, while the image
retrieval based matching method matches all frames. This
difference also causes a gap in speed. In addition, compared
with IR5 and IR25, the recall of our method is the highest
on average.

To prove that the proposed method can handle the sequential
images as well, we compare our matching method with the
sequential matching method on KITTI dataset. Since both our
method and this sequential matching method can register all
images, we do not compare the number of registered frames,
but mainly compare the other three metrics, and the results
are shown in Table II. The sequential matching method is the
implementation of COLMAP and is denoted as Seq. In the

TABLE III
THE RESULTS OF DIFFERENT Np ON YORKMINSTER.

Reg. Num. Time[s] Pre.[%] Rec.[%]
Np = 1, T = 2 960 34714 482 27.11 94.24
Np = 5, T = 2 953 31651 439 31.84 94.09
Np = 10, T = 2 943 29220 405 34.46 93.99
Np = 20, T = 2 927 27752 382 37.16 93.81
Np = 30, T = 2 618 23046 320 39.32 91.11
Np = 40, T = 2 601 21653 302 42.19 91.09

TABLE IV
THE RESULTS OF DIFFERENT T ON YORKMINSTER.

Reg. Num. Time[s] Pre.[%] Rec.[%]
Np = 5, T = 1 962 34732 486 29.52 94.67
Np = 5, T = 2 953 31651 439 31.84 94.09
Np = 5, T = 4 921 26646 372 36.96 93.05
Np = 5, T = 6 573 17134 228 40.61 89.79

sequential matching of COLMAP, each frame is matched with
10 adjacent frames, and the image-retrieval-based matching is
performed every 10 frames. It can be found that our method
can process sequential images, and the speed of our method is
slightly faster for most sequences, with comparable precision.
It is worth noting that our method does not need to know
whether the input data set is sequential in advance, which is
a great advantage over the traditional matching algorithm.
Np controls the number of patches in each image and T

denotes the minimum common tracks between a covisible
patch pair. To show the effects of the parameters Np and T ,
we present the ablation studies on Yorkminster in Table III
and Table IV. We show the number of matching operations
for different methods to display the impact of different pa-
rameters more intuitively. Increasing Np and T reduce the
time consumption and raise the precision but decrease the
number of registered images. Since increasing Np means
an image is divided into more small cells, it skips many
mismatched image pairs, so the precision is high. Similarly,
a strict requirement for T (T = 6) also has high precision.
However, at the same time, many potential matches are ignored
and not found, resulting in fewer registered images. We found
the proposed method can keep a good balance between speed
and registered number with Np ∈ [5, 20] and T ∈ [2, 4]. In
our implementation, Np is set to 20, and T is set to 2 for
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TABLE V
THE EXPERIMENTS RESULTS FOR Aappr ON ELLIS ISLAND.

Reg. Num. Time[s] Pre.[%] Rec.[%]
with Aappr 331 14730 177 59.80 95.11
without Aappr 335 22483 264 52.14 95.99

efficiency.
To evaluate the improvement of predicting potential regis-

tration frames Aappr, we present the experiments with and
without computing Aappr on the dataset Ellis Island. As listed
in Table V, the registered image number of the method with
Aappr is almost the same as that of the method without Aappr,
but the running time is reduced by 1/3.

B. Reconstruction Stage

In order to verify the efficiency of the reconstruction pro-
cess, we conducted experiments on the unordered dataset [61],
KITTI dataset [62], and two complex datasets. The Rome
MIX dataset consists of Internet images and YouTube videos,
and the Garden data set consists of six video sequences.
These datasets contain various scenes and different lighting
and angles. The optimizer of our system is the open-source
solver Ceres [63].

For the unordered dataset and mixed dataset, we compare
the proposed reconstruction part to the state-of-the-art incre-
mental SfM system COLMAP [3] and the global SfM system
Theia [64]. Throughout all experiments, we use the same fea-
ture matching result as input, and compare the reconstruction
results of different SfM systems. The comparison results are
shown in Table VI. For each data, we compare the result of
the largest reconstruction component. Theia, as a global SfM,
is the fastest method on large datasets (Trafalgar, Piccadilly,
Garden, and Roman Forum MIX). However, due to weakness
in handling outlier, it generates poor or incomplete reconstruc-
tion structures on these large datasets. The reprojection error
of our system is lower than Theia, indicating the superior
accuracy of our method. Thanks to keyframe-based GBA, our
reconstruction speed is even faster than Theia on most datasets
that are relatively small. Both our method and COLMAP are
incremental methods, but our method is an order of magnitude
faster than COLMAP with a comparable number of registered
frames and reprojection error. The reconstruction results of
our method and COLMAP on 1DSfM dataset are shown in
Fig. 13.

To compare the accuracy of different methods, we evaluate
ORB-SLAM3 [65], COLMAP, and our system in the KITTI
dataset with the groundtruth poses obtained by high precision
GPS/IMU. To ensure the fairness of the comparison, we fixed
the camera intrinsics parameters, and only use the monoc-
ular image sequences. The results are shown in Table VII.
ORB-SLAM3 runs at ten frames per second and carried out
matching and mapping at the same time as a multi-threaded
system. It is difficult to obtain the mapping time alone, so
Table VII does not show the reconstruction time of ORB-
SLAM3. Compared with ORB-SLAM3, our method has better
accuracy because of sufficient optimization and more feature
correspondences. Although there is still a gap with the SLAM

COLMAP Ours COLMAP Ours

Fig. 13. Reconstruction results of different methods on unordered datasets.

Fig. 14. The comparison between the reconstruction results of COLMAP
(left) and ours (right) on sequence 00. We use red circles to highlight the
differences.

system in speed (our system has not reached ten frames per
second), as a general system, our system can handle unordered
and mixed data well with good efficiency. Furthermore, some
sequences (00, 02, 05, 06, 07, 08, 09) contain loops. In these
sequences, COLMAP system has large errors without closing
the loop, while the proposed error correction deals with loop
scenes well. As shown in Fig. 14, there are several places of
misalignment by COLMAP highlighted by red circles, while
our scene structure has a good global consistency. It is worth
noting that the error correction module does not need to know
the order of input data, which is different from the traditional
sequential loop closure algorithm. Moreover, compared to
unordered datasets, the sequential datasets are more redundant,
so the efficiency gain of the proposed method compared to
COLMAP is more impressive.

To demonstrate the effectiveness of the proposed keyframe-
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TABLE VI
EVALUATION RECONSTRUCTION RESULTS FOR STATE-OF-THE-ART SFM SYSTEMS ON LARGE-SCALE PHOTO/VIDEO COLLECTIONS.

#Size #Registered #Time[s] #Avg. Reproj. Error [px]
Theia COLMAP Ours Theia COLMAP Ours Theia COLMAP Ours

Garden 9971 2855 9955 9955 3124 38367 5410 1.64 0.57 0.60
Roman Forum MIX 5227 2140 3158 4005 582 18159 1358 1.26 0.71 0.54
Alamo 2,915 799 882 815 326 1259 136 0.73 0.66 0.66
Ellis Island 2,587 322 344 343 173 258 31 0.91 0.78 0.76
Gendarmenmarkt 1,463 962 974 930 173 1877 162 0.99 0.68 0.69
Madrid Metropolis 1,344 391 412 406 90 810 40 0.78 0.61 0.63
Montreal Notre Dame 2,298 549 555 552 286 973 103 0.99 0.82 0.79
NYC Library 2,550 586 611 556 316 786 62 0.89 0.69 0.69
Piazza del Popolo 2,251 885 909 895 130 1276 93 0.84 0.67 0.68
Piccadilly 7,351 2691 2871 2862 263 4403 634 1.18 0.74 0.80
Roman Forum 2,364 1451 1499 1496 311 2726 208 1.05 0.71 0.66
Tower of London 1,576 625 648 644 196 1156 67 0.73 0.62 0.64
Trafalgar 15,685 6610 7083 7022 534 11467 2819 1.03 0.71 0.72
Union Square 5,961 852 996 962 51 920 40 1.22 0.67 0.70
Vienna Cathedral 6,288 1043 1055 1046 474 1957 189 0.80 0.72 0.72
Yorkminster 3,368 633 661 649 335 1278 130 0.89 0.71 0.69

TABLE VII
TRANSLATION RMSE AND TIME COMPARISON ON KITTI ODOMETRY

DATASET.

#RMSE #Time[s]
ORB − SLAM3 COLMAP Ours COLMAP Ours

00 7.28 52.04 4.95 11988 600
01 X 8.12 7.08 1761 59
02 21.50 53.32 23.35 12473 515
03 1.59 1.68 1.33 1530 77
04 1.40 0.68 0.63 329 17
05 5.29 16.44 4.23 7438 245
06 13.50 36.90 3.86 2688 94
07 2.26 22.74 3.60 1818 185
08 46.68 124.77 44.00 7899 433
09 6.62 60.86 7.79 2600 132
10 8.80 12.25 5.37 2323 135

TABLE VIII
TRANSLATION RMSE AND TIME COMPARISON FOR DIFFERENT

STRATEGIES ON KITTI ODOMETRY DATASET.

#RMSE #Time[s]
gba kgba kgba+ gba kgba kgba+

00 40.51 28.74 4.95 2130 349 600
01 12.08 7.08 7.08 459 59 59
02 28.27 27.52 23.35 3588 439 515
03 1.48 1.33 1.33 243 75 77
04 1.20 0.63 0.63 39 17 17
05 25.26 18.02 4.23 1296 213 245
06 28.71 32.92 3.86 355 68 94
07 15.51 18.59 3.60 589 164 185
08 84.79 93.81 44.00 1571 389 433
09 77.33 77.61 7.79 570 108 132
10 6.81 5.37 5.37 571 132 135

based global bundle adjustment and the geometric error correc-
tion, we compare the reconstruction result with three strategies
on the KITTI dataset and 1DSfM dataset. The strategy gba per-
forms global optimization in all frames, kgba use the proposed
keyframe-based global optimization, and kgba+ reconstructed
scene with both the keyframe-based global bundle adjustment
and the geometric error correction. For sequential data, we
evaluate the accuracy of camera trajectory and reconstruction
time. Table VIII shows kgba greatly accelerates the recon-
struction speed compared to gba. And in most sequences,
the trajectory errors of kgba and gba are similar. Due to the

TABLE IX
TIME COMPARISON FOR DIFFERENT STRATEGIES ON 1DSFM DATASET.

#Registered #Time[s]
gba kgba kgba+ gba kgba kgba+

Alamo 872 815 815 739 134 136
Ellis Island 351 343 343 181 31 31
Gendarmenmarkt 974 930 930 871 160 162
Madrid Metropolis 408 406 406 497 40 40
Montreal Notre Dame 553 552 552 838 101 103
NYC Library 571 556 556 171 61 62
Piazza del Popolo 910 895 895 291 92 93
Piccadilly 2889 2862 2862 3297 628 634
Roman Forum 1501 1496 1496 1001 206 208
Tower of London 645 644 644 384 67 67
Trafalgar 7042 7022 7022 13942 2810 2819
Union Square 1027 962 962 270 40 40
Vienna Cathedral 1141 1046 1046 1268 185 189
Yorkminster 656 649 649 580 125 130

lack of loop closure, gba and kgba have scale drift in some
sequences, which makes the error large. kgba+ solves this
problem well by closing loops, improving the reconstruction
accuracy at a good speed. For unordered data, there is no
ground-truth of camera poses, so we evaluate the number of
registered images to show the completeness of reconstruction
results. Table IX shows the acceleration of kgba is equally
effective on unordered data. kgba+ is mainly used to handle
loop scene and has little effect on unordered data or sequential
data without loops (seq.01, seq.03, seq.04, seq.10).

VII. CONCLUSION

This paper proposes an efficient SfM, which can deal with
both unordered and sequential data in a unified framework.
The proposed SfM system can effectively predict the cov-
isibility by some existing feature matches to extend feature
matching, so as to accelerate the matching stage. A hierarchy-
based keyframe-selection method is proposed to improve the
reconstruction speed. The comprehensive evaluation shows
that the matching speed of the proposed SfM is three times
that of the state-of-the-art, and the reconstruction speed has an
order of magnitude advantage over the excellent incremental
SfM system COLMAP. Our future work will explore how to
integrate the learning-based method with the proposed method
to achieve a more efficient and robust SfM system.



13

ACKNOWLEDGMENT

The authors would like to thank Zhaopeng Cui, Bangbang
Yang, and Yijin Li for their help in proofreading the paper.

REFERENCES

[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz,
and R. Szeliski, “Building Rome in a day,” Commun. ACM, vol. 54,
no. 10, pp. 105–112, Oct. 2011.

[2] C. Wu, “Towards linear-time incremental structure from motion,” in
Proc. Int. Conf. 3D Vis., 2013, pp. 127–134.

[3] J. L. Schönberger and J. Frahm, “Structure-from-motion revisited,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp.
4104–4113.

[4] P. Moulon, P. Monasse, R. Perrot, and R. Marlet, “OpenMVG: Open
multiple view geometry,” in Proc. Int. Workshop Reproducible Res.
Pattern Recognit. Springer, 2016, pp. 60–74.

[5] D. Cernea, “OpenMVS: Multi-View Stereo Reconstruction Library,”
2020. [Online]. Available: https://cdcseacave.github.io/openMVS

[6] G. Zhang, H. Liu, Z. Dong, J. Jia, T. Wong, and H. Bao, “Efficient non-
consecutive feature tracking for robust structure-from-motion,” IEEE
912 Trans. Image Process., vol. 25, no. 12, pp. 5957–5970, 2016.

[7] B. Resch, H. Lensch, O. Wang, M. Pollefeys, and A. Sorkine-Hornung,
“Scalable structure from motion for densely sampled videos,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2015, pp. 3936–
3944.

[8] Z. Ye, G. Zhang, and H. Bao, “Efficient covisibility-based image
matching for large-scale SfM,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), 2020, pp. 8616–8622.

[9] Z. Dong, G. Zhang, J. Jia, and H. Bao, “Keyframe-based real-time
camera tracking,” in Proc. IEEE Int. Conf. Comput. Vis., 2009, pp. 1538–
1545.

[10] S. Holmes, G. Sibley, G. Klein, and D. W. Murray, “A relative frame
representation for fixed-time bundle adjustment in SfM,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), 2009, pp. 2264–2269.

[11] H. Strasdat, J. Montiel, and A. J. Davison, “Scale drift-aware large scale
monocular SLAM,” Proc. Robot., Sci. Syst. VI, vol. 2, no. 3, p. 7, 2010.

[12] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular SLAM with
map reuse,” IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 796–803, 2017.

[13] Z. Cui and P. Tan, “Global structure-from-motion by similarity averag-
ing,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 864–872.

[14] S. Zhu, R. Zhang, L. Zhou, T. Shen, T. Fang, P. Tan, and L. Quan, “Very
large-scale global SfM by distributed motion averaging,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 4568–4577.

[15] K. Moustakas, D. Tzovaras, and M. G. Strintzis, “Stereoscopic video
generation based on efficient layered structure and motion estimation
from a monoscopic image sequence,” IEEE Trans. Circuits Syst. Video
Technol., vol. 15, no. 8, pp. 1065–1073, 2005.

[16] X. Gao, S. Shen, L. Zhu, T. Shi, Z. Wang, and Z. Hu, “Complete scene
reconstruction by merging images and laser scans,” IEEE Trans. Circuits
Syst. Video Technol., vol. 30, no. 10, pp. 3688–3701, 2019.

[17] Y. Rui, T. S. Huang, and S. Chang, “Image retrieval: Current techniques,
promising directions, and open issues,” J. Vis. Commun. Image Repre-
sent., vol. 10, no. 1, pp. 39–62, 1999.

[18] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary
tree,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
2006, pp. 2161–2168.

[19] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A
versatile and accurate monocular SLAM system,” IEEE Trans. Robot.,
vol. 31, no. 5, pp. 1147–1163, 2015.

[20] A. Angeli, D. Filliat, S. Doncieux, and J. Meyer, “Fast and incremental
method for loop-closure detection using bags of visual words,” IEEE
Trans. Robot., vol. 24, no. 5, pp. 1027–1037, 2008.

[21] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” International Journal
of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001.

[22] R. Arandjelovic, P. Gronát, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD:
CNN architecture for weakly supervised place recognition,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 5297–
5307.

[23] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle adjustment
in the large,” in Proc. Eur. Conf. Comput. Vis., 2010, pp. 29–42.

[24] Y. Lou, N. Snavely, and J. Gehrke, “MatchMiner: Efficient spanning
structure mining in large image collections,” in Proc. Eur. Conf. Comput.
Vis. Springer, 2012, pp. 45–58.

[25] M. Havlena and K. Schindler, “VocMatch: Efficient multiview corre-
spondence for structure from motion,” in Proc. Eur. Conf. Comput. Vis.,
2014, pp. 46–60.

[26] J. L. Schönberger, T. Price, T. Sattler, J. Frahm, and M. Pollefeys, “A
vote-and-verify strategy for fast spatial verification in image retrieval,”
in Proc. Asian Conf. Comput. Vis., 2016, pp. 321–337.

[27] C. Mei, G. Sibley, and P. Newman, “Closing loops without places,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2010, pp. 3738–3744.

[28] D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-
supervised interest point detection and description,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR) Workshops, 2018, pp. 224–236.

[29] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperGlue:
Learning feature matching with graph neural networks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020, pp. 4938–4947.

[30] J. Wang, Y. Zhong, Y. Dai, K. Zhang, P. Ji, and H. Li, “Displacement-
invariant matching cost learning for accurate optical flow estimation,”
Proc. Adv. Neural Inf. Process. Syst., vol. 33, pp. 15 220–15 231, 2020.

[31] D. C. Brown, A solution to the general problem of multiple station
analytical stereotriangulation. D. Brown Associates, Incorporated,
1958.

[32] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring
photo collections in 3D,” ACM Transactions on Graphics, vol. 25, no. 3,
pp. 835–846, 2006.

[33] N. Snavely, S. M. Seitz, and R. Szeliski, “Skeletal graphs for efficient
structure from motion,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2008, pp. 1–8.

[34] X. Li, C. Wu, C. Zach, S. Lazebnik, and J.-M. Frahm, “Modeling and
recognition of landmark image collections using iconic scene graphs,”
in Proc. Eur. Conf. Comput. Vis. Springer, 2008, pp. 427–440.

[35] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu,
Y.-H. Jen, E. Dunn, B. Clipp, S. Lazebnik et al., “Building Rome on a
cloudless day,” in Proc. Eur. Conf. Comput. Vis. Springer, 2010, pp.
368–381.

[36] S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar, and
K. Fragkiadaki, “SfM-Net: Learning of structure and motion from
video,” arXiv preprint arXiv:1704.07804, 2017.

[37] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 6612–6619.

[38] Z. Yin and J. Shi, “GeoNet: Unsupervised learning of dense depth,
optical flow and camera pose,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2018, pp. 1983–1992.

[39] Y. Zou, Z. Luo, and J.-B. Huang, “DF-Net: Unsupervised joint learning
of depth and flow using cross-task consistency,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 38–55.

[40] X. Wei, Y. Zhang, Z. Li, Y. Fu, and X. Xue, “DeepSfM: Structure from
motion via deep bundle adjustment,” in Proc. Eur. Conf. Comput. Vis.
Springer, 2020, pp. 230–247.

[41] J. Wang, Y. Zhong, Y. Dai, S. Birchfield, K. Zhang, N. Smolyanskiy, and
H. Li, “Deep two-view structure-from-motion revisited,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2021, pp. 8953–8962.

[42] R. Cai, B. Hariharan, N. Snavely, and H. Averbuch-Elor, “Extreme
rotation estimation using dense correlation volumes,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2021, pp. 14 566–14 575.

[43] S. Liu, X. Nie, and R. Hamid, “Depth-guided sparse structure-from-
motion for movies and TV shows,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2022, pp. 15 959–15 968.

[44] P.-E. Sarlin, A. Unagar, M. Larsson, H. Germain, C. Toft, V. Larsson,
M. Pollefeys, V. Lepetit, L. Hammarstrand, F. Kahl et al., “Back to
the feature: Learning robust camera localization from pixels to pose,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2021, pp.
3247–3257.

[45] V. M. Govindu, “Lie-algebraic averaging for globally consistent motion
estimation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2004, pp. 684–691.

[46] A. Chatterjee and V. M. Govindu, “Robust relative rotation averaging,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 958–972,
2017.

[47] D. J. Crandall, A. Owens, N. Snavely, and D. P. Huttenlocher, “SfM
with MRFs: Discrete-continuous optimization for large-scale structure
from motion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp. 2841–2853, 2012.

[48] X. Gao, L. Zhu, H. Cui, Z. Xie, and S. Shen, “IRA++: Distributed incre-
mental rotation averaging,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 32, no. 7, pp. 4885–4892, 2021.



14

[49] X. Gao, H. Cui, M. Li, Z. Xie, and S. Shen, “IRAv3: Hierarchical
incremental rotation averaging on the fly,” IEEE Trans. Circuits Syst.
Video Technol., vol. 33, no. 4, pp. 2001–2006, 2022.

[50] Y. Chen, J. Zhao, and L. Kneip, “Hybrid rotation averaging: A fast and
robust rotation averaging approach,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2021, pp. 10 358–10 367.

[51] M. Brand, M. Antone, and S. Teller, “Spectral solution of large-scale
extrinsic camera calibration as a graph embedding problem,” in Proc.
Eur. Conf. Comput. Vis. Springer, 2004, pp. 262–273.

[52] M. Arie-Nachimson, S. Z. Kovalsky, I. Kemelmacher-Shlizerman,
A. Singer, and R. Basri, “Global motion estimation from point matches,”
in Proc. Int. Conf. 3D Imag., Modeling, Process., Vis. Transmiss., 2012,
pp. 81–88.

[53] O. Ozyesil and A. Singer, “Robust camera location estimation by convex
programming,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2015, pp. 2674–2683.

[54] K. Sim and R. Hartley, “Recovering camera motion using L∞ min-
imization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), vol. 1, 2006, pp. 1230–1237.

[55] J. Courchay, A. Dalalyan, R. Keriven, and P. Sturm, “Exploiting loops
in the graph of trifocal tensors for calibrating a network of cameras,” in
Proc. Eur. Conf. Comput. Vis. Springer, 2010, pp. 85–99.

[56] N. Jiang, Z. Cui, and P. Tan, “A global linear method for camera pose
registration,” in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 481–488.

[57] Q. Cai, L. Zhang, Y. Wu, W. Yu, and D. Hu, “A pose-only solution to
visual reconstruction and navigation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 45, no. 1, pp. 73–86, 2023.

[58] B. Bhowmick, S. Patra, A. Chatterjee, V. M. Govindu, and S. Banerjee,
“Divide and conquer: Efficient large-scale structure from motion using
graph partitioning,” in Proc. Asian Conf. Comput. Vis. Springer, 2014,
pp. 273–287.

[59] X. Gao, L. Zhu, B. Fan, H. Liu, and S. Shen, “Incremental translation
averaging,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 11,
pp. 7783–7795, 2022.

[60] M. Farenzena, A. Fusiello, and R. Gherardi, “Structure-and-motion
pipeline on a hierarchical cluster tree,” in Proc. IEEE Int. Conf. Comput.
Vis. Workshops Workshops, 2009, pp. 1489–1496.

[61] K. Wilson and N. Snavely, “Robust global translations with 1DSfM,” in
Proc. Eur. Conf. Comput. Vis., 2014, pp. 61–75.

[62] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
2013.

[63] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres solver,” accessed:
Mar. 2, 2021. [Online]. Available: http://ceres-solver.org.

[64] C. Sweeney, “Theia multiview geometry library: Tutorial & reference,”
Accessed: Mar. 7, 2021. [Online]. Available: http://theia-sfm.org.

[65] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Trans. Robot., vol. 37, no. 6,
pp. 1874–1890, 2021.

Zhichao Ye received the B.S. degree from Shandong
University in 2017 and his Ph.D. degree in computer
science from Zhejiang University in 2022. He is
currently a Researcher with SenseTime Research.
His current research interests include structure-from-
motion, SLAM, augmented reality.

Chong Bao received the B.S. degree from Zhe-
jiang Gongshang University, China, in 2020. He is
currently pursuing the Ph.D. degree with Zhejiang
University. His current research interests include 3D
reconstruction and neural rendering.

Xin Zhou received his bachelor’s degree in Com-
puter Science from the University of Electronic
Science and Technology of China in 2019 and the
master’s degree in computer science from Zhejiang
University in 2022. His research interests include
SLAM, 3D reconstruction, and autonomous driving.

Haomin Liu received the master’s and Ph.D. de-
grees in computer science from Zhejiang University
in 2009 and 2017. He is currently a Research Direc-
tor of SenseTime Research. His research interests in-
clude structure-from-motion, SLAM, and augmented
reality.

Hujun Bao (Member, IEEE) is currently a professor
in the Computer Science Department of Zhejiang
University, and the former director of the State
Key Laboratory of Computer Aided Design and
Computer Graphics. His research interests include
computer graphics, computer vision and mixed re-
ality. He leads the mixed reality group in the lab to
make a wide range of research on 3D reconstruction
and modeling, real-time rendering and virtual reality,
realtime 3D fusion and augmented reality. Some of
these algorithms have been successfully integrated

into the mixed reality system SenseMARS.

Guofeng Zhang (Member, IEEE) is currently a
professor at Zhejiang University. He received the
B.S. and Ph.D. degrees in computer science and
technology from Zhejiang University in 2003 and
2009, respectively. He received the National Ex-
cellent Doctoral Dissertation Award, the Excellent
Doctoral Dissertation Award of China Computer
Federation and the ISMAR 2020 Best Paper Award.
His research interests include SLAM, 3D reconstruc-
tion and augmented reality.


