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In this supplementary document, we provide additional experiments in Sec. A,
describe more details on L5 principle in Sec. B and more implementation details
in Sec. C , and discuss our limitation in Sec. D. Finally, we show more qualitative
results in Sec. E. In this document, references that point to the main manuscript
will be referenced as “P-".

A More Experiment Results

A.1 Different way to utilize L5 signal

We implement two variant ways to fuse the information from color and depth
inspired by the depth-completion and depth-super-resolution methods, named
“Point Fusion” and “Zone Fusion” respectively.

We first review what works in the fusion module. In the fusion module, in
order to encode the distribution’s location on the image, we establish the corre-
spondence between the patch image and the distribution, and cross attention is
only performed between the corresponding patch image and the distribution (see
Fig. A-(a)). The difference between these two variants and our full model is the
cross attention. As shown in Fig. A-(b), the cross attention of the full model is
performed between all pixels’ features within the patch and all sampled points’
features of the distribution, while for zone fusion and point fusion, we remove
the sampling operation, thus their distribution features are only the features
extracted from the mean depth. Moreover, we only operate cross attention on
the center pixel of the patch for point fusion.

The results are shown in Table A. The performance of these two variants
drops significantly compared to our full model. It demonstrates that for our
method, considering depth distribution brings an improvement of 1.8cm in RMSE
while considering spatial correspondence between the image patch and L5’s zones
brings an improvement of 7.4cm in RMSE.

* Corresponding authors
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(b) Difference between full-model and zone/point fusion on cross attention

Fig. A. Implementation of zone Fusion and point Fusion. In (a) we review what works
in the fusion module where the cross attention is only performed between the corre-
sponding patch image and the distribution. In (b) we demonstrate how zone Fusion
and point Fusion are derived. For both point Fusion and zone Fusion, we remove the
sampling operation. For point Fusion, we only operate cross attention on the center
pixel of the patch.

A.2 TImpact of Training Data

It is worth noting that in the Table P-1, our method is only trained on synthet-
ically simulated data on the NYU-Depth V2 and directly tested on the ZJU-
L5 dataset without a finetune. The competitive performance indicates that the
model generalizes reasonably well across datasets. To verify the impact of the
collected real-world data, we fine-tune our network on the training set of the
ZJU-L5 dataset, and show the evaluation results in Table B. As can be seen,
the performance is further improved consistently as measured by all the metrics.
This shows that real-world data is important for training to push for superior
performance.

A.3 Effect of Sample Points’ Number

To study the influence of the number of sample points on our distribution feature
extractor, we train our network with various sampling numbers and measure the
performance in terms of the Absolute Relative Error metric. The results are
plotted in Fig. B. The error decreases as the number of sample points increases,
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Models o1 1 RELJ RMSE|
Point Fusion 0.704 0.212 0.510
Zone Fusion 0.839 0.129 0.454
w/o Refine 0.850 0.126 0.462
Full 0.853 0.123 0.436

Table A. Comparison of different ways to utilize L5 signals.

Methods o T 62 T o3 T RELJ RMSE]| log,o 4
Before Fine-tune 0.853 0.941 0.972 0.123 0.436 0.051
After Fine-tune 0.880 0.959 0.982 0.112 0.415 0.049

Table B. Results before and after fine-tuning with real-world data. Our model shows
competitive performance if only trained on synthetic data, and can be further enhanced
if fine-tuned with real-world data collected using our device setup.

and it basically converges when the number of sample points is more than 16.
Therefore, in our experiments, we set the number of sample points to 16.

B More Details on L5 Principle

L5 utilizes a histogram-based algorithm to calculate the depth distribution within
each zone. In detail, photons within each region are collected into histograms.
Each bin in the histogram corresponds to a time window, representing the num-
ber of photons collected within a specific period. Multiplied by the speed of light,
the depth range corresponding to a single bin is 4cm. A histogram contains 100
bins so L5 provides ranging up to 400 cm. Because the L5 is a device designed
for low cost, in order to reduce the broadband’s load, the measured histogram
data is fitted with a normal distribution (see Fig.P-2), and finally, each zone
only outputs the mean and variance of the distribution. L5 also returns a status
code for each data. If it receives too few or the results are unstable, it will return
an invalid code. See STMicroelectronics’s webpage® for more details.

In our simulation of the L5 signal, we randomly crop a rectangle patch from
the image and divide it equally into several zones. Then we simulate the L5
signals for each zone based on the ground truth depth map (see Sec. 5.1 in our
paper). To mitigate the gap with the real L5 signals, we randomly dropout the
zones to simulate the invalid signals from L5.

C More Implementation Details

C.1 Training Details

The proposed method is implemented in PyTorch [7] and is trained with AdamW [6]
optimizer. We use the one-cycle policy [10] for the learning rate with max-lr =

3 https://www.st.com/content /st_com/en/premium-content/premium-content-time-
of-flight.html
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Fig. B. Effect of sample points’ number in terms of Absolute Relative Error metric.
The error decreases as the number of sample points increases and it starts to saturate
when the number is bigger than 16.

3.0 x 107, During training, it linearly increases from max-Ir/25 to max-Ir for
the first 30% of iterations followed by cosine annealing to max-Ir/75. We trained
the network for 25 epochs with a batch size of 16, and it took 25 minutes per
epoch on a single node with three NVIDIA RTX 3090 24GB GPUs.

C.2 Aligning L5’s Zones to Image

For aligning the L5’s zones to the image, only extrinsic parameters are not
enough, because we do not know the precise depth and pixel-wise alignment
which is required to conduct cross-image projection. We make an approximation
that the depths of the zones are all equal to the mean of the depth distribution
and compute projection of the zones’ corner in the image by p = KCKL_51 (z,y,d),
where K. and K5 are intrinsic parameters of camera and L5, respectively. (z,y)
is the corner’s pixel position in L5 and d is the depth. A sample after alignment
is shown in Fig. C-(a).

Note that each region is no longer a precise axis-aligned rectangle after being
warped to the color image and they do not share the same shape. However,
we noticed that they are indeed very close to the rectangle due to the similar
facing direction between the color camera and L5 sensor and they have almost
the same shape. Let them become rectangles and share the same shape can
simplify the following grouping operation (i.e., grouping them into a batch)
without additional operations like padding and masking. To do this, we first fit
them with a minimum axis-aligned bounding box (the yellow rectangle shown in
Fig. C-(a)), and then divide the bounding box into 8 x8 blocks equally to get the
corrected zones. The rectification result is shown in the Fig. C-(b). We also show
examples in Fig. D where the color images are blended with L5’ depth. According
to the status returned by L5, we hide the invalid zones which may receive too few
photons or are unstable. It can be seen that L5 sometimes return noisy and even
wrong measurement which may be caused by multi-path interference [3] (see the
bottom right image in Fig. D, there is a white zone on the wall). As a result, it
is non-trivial to improve the raw signal from L5 because of the measurement’s
extremely low resolution and high depth uncertainty. Thanks to our novel design
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(a) Fitting a compact rectangle on warped zones (b) Rectification result

Fig. C. Rectification of the warped zones. Making the warped zones axis-aligned rect-
angles and share the same shape can simplify the grouping operation (i.e., grouping
them into a batch) without additional operations like padding and masking. We do
this by firstly (a) fitting with a minimum axis-aligned bounding box, then (b) dividing
the bounding box into 8 x8 blocks equally and getting the rectification result.

Fig. D. Blending color images with L5’ depth. White color represents close range, black
color represents long range.

of distribution feature extractor and the fusion network, we improve the depth
quality of L5 and make it even on par with a commodity-level RGB-D sensor
(i.e., Intel RealSense D435i).

C.3 Definition of Evaluation Metrics

We evaluate the performance using the following standard metrics where d; rep-
resents predicted depth, d; represents ground truth depth, and N is the number
of valid ground truth values:

— Threshold Accuracy (d; with i=1,2,3):

>

N Imaz(%, % .25¢
SN Imaa(d, 4) < 1.257 "

=

where [] denotes Iverson brackets.
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Name Input Layer Description Output|Output Tensor Dim.
Input / Image #1 HXxWx3

/ 64 zones X N Sampling Points |#2 64xNx1

Distribution Depth Encoder
PointNet 1 [#2 MLP(1,40,40,40) #3  [64xXNx40
PointNet2 |43 MLP(40,64,64,64) 44 |64xNx64
PointNet 3 |44 MLP(64,176,176,176) 45  |64xNx176
Image Encoder
Block-1 #1 Blockl from EfficientNet B5 |#6 1/2Hx1/2x24
Block-2 #6 Block2 from EfficientNet B5 |#7 1/4aHX1/ax40
Block_3 #7 Block3 from EfficientNet B5 |#8 1/sHx1/8x64
Block_4 #8 Block5 from EfficientNet B5  |#9 1/16Hx1/16 X176
Block_5 #9 Block8 from EfficientNet B5 |#10 1/32H % 1 /32X 2048
Fusion Module
Transformer_1|#5,#9 TransEncoder(num_heads=4) [#11 1/16Hx1/16 X176
Decoder_1 Concat(#11,#10)|(Conv2d+BN+LeakyReLU) X 2|#12 1/16Hx1/16 1024
Transformer_2|#4,#8 TransEncoder(num_heads=4) |#13 1/8Hx1/8W x 64
Decoder_2 Concat(#13,#9) |(Conv2d+BN+LeakyReLU) x2|#14 1/8sHX1/8W x512
Transformer_3|#3,#7 TransEncoder(num_heads=4) |#15 1/aHx1/ax40
Decoder_3 Concat(#15,#8) |(Conv2d+BN+LeakyReLU) x2|#16 1/aHx1/4x 256
Decoder_4 Concat(#16,#7) |(Conv2d+BN+LeakyReLU) X 2|#17 1/2Hx1/2x128
Refinement Module

RefineBlock_1[#17 [MiniViT [1] [Depth [HXxWx1

Table C. Details of our network architecture. Here we omit the details of refinement
module as it can be found in [1].

— Mean Absolute Relative Error (REL):

1 L |d;
R

=1

— Root Mean Square Error (RMSE):

— Average(logyp) Error:

1 & ;
N > logio(|di — d])
1=1

C.4 Network Architecture

Our network details are listed in Table C. The transformer encoder in our fusion
module (denoted as “TransEncoder”) adopts the common designs of residual
connection and layer normalization [5,11]. For the sake of the computational
cost, in our experiments, we only use the transformer in the first three fusion
modules and not in the last one with (H/2, W/2) resolution.
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D Limitation

Our current system has some limitations, which could be fixed in future works.
First, the network run-time is close but not fast enough for real-time perfor-
mance. It takes about 74ms to process a 640x480 color image and L5 signals
on a single GPU (NVIDIA RTX 2080 Ti), which might be insufficient for down-
stream applications such as SLAM. Note that, in this work, we did not optimize
the network architecture for the run-time efficiency, and many standard ap-
proaches, such as [4,8, 2], can be directly adopted. Another problem is that the
system performance degenerates when the L5 signal is not available or noisy,
for example, on the pixels that are not covered by the L5 signals or at the
location beyond the L5’s depth range. In future work, we hope to improve the
depth quality out of L5’s working range by combining surface normal as previous
methods do [9,12]. Lastly, removing the regular grid assumption in the align-
ment may further improve the quality and generalize our method for arbitrary
camera/sensor placement.

E More Qualitative Results

We show more qualitative results on the ZJU-L5 dataset in Fig. E and Fig. F.
Compared to other methods, our method makes the best use of high-resolution
color images and low-quality L5 signals and produces the most accurate depths
that are rich of details.
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Fig. E. More qualitative comparison on ZJU-L5 dataset. Monocular estimation [1]
tends to make mistakes even after aligned with real-world metric scale. Depth super-
resolution and depth completion produce quite blurry results. On the contrary, our
method makes the best use of high-resolution color image and low-quality L5 signals,
and produces the most accurate depths that are rich of details.
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Fig.F. More qualitative comparison on ZJU-L5 dataset. Monocular estimation [1]
tends to make mistakes even after aligned with real-world metric scale. Depth super-
resolution and depth completion produce quite blurry results. On the contrary, our
method makes the best use of high-resolution color image and low-quality L5 signals,
and produces the most accurate depths that are rich of details.
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