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Abstract— 3D environment mapping has been actively stud-
ied recently with the development of autonomous driving and
augmented reality. Although many image-based methods are
proposed due to their convenience and flexibility compared to
other complex sensors, few works focus on fixing the inherent
scale ambiguity of image-based methods and registering the
reconstructed structure to the real-world 3D map, which is
very important for autonomous driving. This paper presents
a low-cost mapping solution that is able to refine and align
the monocular reconstructed point cloud given a public street
map. Specifically, we first find the association between the
street map and the reconstructed point cloud structure by
a novel graph-based geolocalization method. Then, optimized
with the corresponding relationship, the map accuracy is
significantly improved. The rich environment information can
also be associated with the point cloud by the geographical
location. Experiments show that our geolocalization algorithm
can locate the scene on a gigantic city-scale map (173.46 km2) in
two minutes and support 3D map reconstruction with absolute
scale and rich environmental information from Internet videos.

I. INTRODUCTION

Map reconstruction is a fundamental task in computer
vision and has a wide range of applications in au-
tonomous driving, robotics, and the digital twin. In the past
decades, researchers have made significant progress in recon-
structing large-scale scenes, including structure-from-motion
(SfM) [1], [2], [3], [4], [5] with image-only observations,
and the sensor-fusion approaches [6], [7], [8], [9] which
leverages LiDAR, IMU or even GNSS to boost the mapping
quality. Image-based mapping methods (such as SfM tech-
niques), which take as input only video sequences or photo
collections for scene reconstruction, is easy to use and can
even carry out large-scale reconstruction on Internet data.
However, the reconstruction accuracy is sacrificed and lacks
the absolute mapping to the real world. On the other hand,
the multi-sensor fusion methods can effectively improve the
mapping accuracy by observing multiple sensors but bear the
expensive equipment cost and complex manual acquisition
(such as sensor calibration and synchronization). A follow-
up question is: can we reconstruct a large-scale map with
low cost while still maintaining the absolute mapping to the
real world (i.e. recovering the scale of the scene and binding
the geographic location to the real world)?

Fortunately, with the development of Google Maps and
the OpenStreetMap (OSM) project, we can readily obtain
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Fig. 1. Result of our mapping method on a city-scale street map.
The left view is the street map of Regierungsbezirk Karlsruhe, which has
43,909 km of roads and 607,495 junctions. A small red rectangle marks
the geolocalization result, and the details are illustrated in the right-bottom
corner with matching roads highlighted in red. The right view denotes the
optimized point cloud, which is projected onto the aerial image.

the road information of the city. The street map provided by
these projects commonly contains the geographic locations in
the form of longitude and latitude and richly annotated labels,
including road names, building names, and functionality of
the buildings. If we can leverage this road information,
there is a chance to reconstruct the large-scale scene with
image-only observations while keeping the absolute scale
and having the identical mapping from the reconstructed
map to the real world. In this paper, we propose a low-cost
and easy-to-use scene reconstruction pipeline, which matches
road edges distilled from point clouds to the corresponding
road structures of the street map, and utilizes the geographic
locations to enhance the mapping procedure. As show in
Fig. 1, the proposed method can locate point clouds on a
city-scale street map. At the same time, the point cloud can
be further optimized by geographic positioning information
and fit the satellite image better.

In order to make the whole mapping process easy to
use, a powerful geolocalization module is necessary (e.g.,
locate only by the name of the city where the scene is
located). Previous works [10], [11] tend to locate the camera
position with a particle filter. In the beginning, these methods
usually estimate camera poses with low confidence caused by
insufficient observations and then gradually converges as the
odometer or semantic information feed continuously. How-
ever, when processing in large-scale scenes, the calculation
time is unacceptable due to the excessive number of camera
candidate states. Unlike these works, we tackle the problem
by finding correspondence between the reconstructed road
and the street map with a graph-based geolocalization mod-
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ule (see Fig. 2). Practically, we first convert the road structure
of the point cloud and the street map provided by OSM into
two graphs, with the road segments as nodes and connectivity
as edges. In this way, the road correspondence search is
transformed into a graph vertex matching problem, which
can be solved by a method similar to subgraph isomorphism.
Since the number of road segments is much smaller than
the number of cameras and we further combine similar
segments, the number of states involved in the calculation is
reduced by several orders of magnitude. Moreover, we can
start the matching process from any nodes with significant
discrimination (i.e., a representative crossroad) and reduce
the matching candidates rapidly. Experiments show that we
can finish the matching of a 120km×180km scene within
only two minutes on KITTI00, which demonstrates the
efficiency of the proposed matching method.

After figuring out the correspondence from the recon-
structed map to the street map, we leverage the geographic
locations to further optimize the reconstruction with a op-
timization module (see Fig. 2). Specifically, we transform
geographic locations and the point cloud to a unified coordi-
nate space and adjust the reconstruction through a two-stage
optimization (i.e. pose-graph and full bundle adjustment). It
is also noteworthy that the geographic locations from the
street map inherently provides loop closures that are difficult
to discover by visual cues. For example, when the camera
walks through the same path from two opposite directions,
the visual descriptors cannot be matched due to the variations
of a perspective view, and the same regions would be
unexpectedly reconstructed into two parts. In contrast, the
geographic location provided by the street map is always
globally consistent. When two parts of the point cloud are
mapped to the same road segment, the potential loop can
be detected, which is hard for the traditional loop closure
method due to the lack of visual correlation. Therefore, we
develop a novel loop-closing mechanism that exploits the
structural information of the scene and close the loop in a
plane-wise manner instead of a point-wise manner.

To sum up, our major contributions are as follows:
• We propose a low-cost mapping solution to refine and

register the point cloud with geographic observations of
a street map. The proposed mapping solution makes it
possible to recover good 3D scene structure from rich
monocular Internet videos.

• We propose an efficient graph-based geolocalization
method to find the location of a 3D point cloud in a
city-scale street map. Experiments show that we need
only two minutes to locate on a city-scale(173.46 km2)
street map.

• We proposed a loop closure method based on the asso-
ciation of planar structures, which can merge and refine
the point cloud without relying on feature matches.

II. RELATED WORK

A. Reconstruction
Structure-from-motion (SfM) is a technology to determine

the three-dimensional structure from images. The closed-

form solution is firstly derived in [12]. It implements a
virtual tour system that incrementally reconstructs scenes
with exhaustive pair matching and frequent calls for bundle
adjustment(BA)[13]. As an attempt to run in large Internet
photo collection, [14], [1] exploited the skeleton graph of
reconstruction and [15], [2] highlighted the iconic image
representing the main structure of the scene. A lot of
works[3], [16], [17], [18] had introduced several strategies
for robust estimation framework in efficiency and accuracy.
The robust open source SfM systems, OpenMVG[19] and
COLMAP[4], provide reliable reconstruction solutions. In
recent years, global SfM[20], [21], [22], [23], [24], [25] and
hybrid SfM[26], [27], [28] have significantly improved the
reconstruction. However, the SfM suffers the ambiguity of
scale because the observability of camera pose is limited in
the monocular sequence or Internet photo collection. A lot of
works[29], [30], [31] combine GPS information into SfM to
revise the drift in scale. However, this requires additional
equipment to obtain GPS observations, not accessible on
Internet data.

B. Crossview GeoLocalization

Crossview geolocalization has been received significant at-
tention recently. Geolocation based on a single image usually
relies on extracting high viewpoint invariance features. Some
researchers[32], [33], [34] directly learning the embedding of
cross-view images and performed image retrieval to search
most similar images in a database. These methods rely on
a vast database established in advance and are challenging
to work in unknown scenarios. Other researchers[35], [36],
[37] focus on the urban scene and use the scene structure
to bridge the ground images and aerial images. Since the
information of the single image is limited, geolocalization
on sequential images can reach more high-precision results
with hints of motion and structure. [10] uses a particle
filter to geolocalize a ground image on a small scale. [11]
uses a similar method to locate the 3D LiDAR data on an
aerial image that semantic information is extracted to filter.
The crossview semantic-based mapping[38] result has good
accuracy, but accurate semantic segmentation of satellite
images and additional sensors are required for this method.
[39] depends on motion estimation from SLAM to localize
in a street map with a probabilistic model. However, the
localization speed is not ideal for a large street map due to
too many initial candidate states of cameras. Therefore, we
propose a road-based geolocalization method that is extracted
from our point cloud.

III. METHOD

As illustrated by Fig. 2, we take as input a point cloud and
a street map picked up from OpenStreetMap [40]. The overall
pipeline consists of two main modules: 1) the geolocalization
module which represents the point cloud and the street map
into two graphs and localization by searching the vertex asso-
ciation between graphs (III-A), 2) the optimization module
that adjust the reconstruction (the point cloud and camera
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Fig. 2. The pipeline of our mapping method. The input is a point cloud and a street map. In the geolocalization module, the road structures are
converted into graphs respectively, and then the corresponding relationship (marked by the same color) is searched. The optimization module refines
according to the provided geographical location and finally generates a high-quality point cloud with real scale.

poses) to match the real-world geographic location according
to the node association (III-B).

A. Geolocalization Module

Extraction of road structure. The goal of the geolo-
calization module is to associate the real-world geographic
location from the street map to the reconstructed point cloud.
In practice, we only use the road structure (i.e. geometry
and topology of roads) of the input point cloud and the
street map. Correspondingly, we need to extract the road
structure from the point cloud. We first annotate the ‘road’
regions of the images through semantic segmentation with
Deeplab2 [41] and label the point cloud with the 2D-3D
association. Then we divide the point cloud into several local
maps and calculate the road ground plane from the ‘road’
points on each local map. The road edges are projected onto
these road ground planes and become a series of continuously
broken line segments through a line fitting algorithm. Then,
the direction and length of the road centerline are estimated
by the road edges. At last, the road structure of the point
cloud is represented by several connected broken line seg-
ments consistent with the street map. Please note that this
road extraction is replaceable, and other similar algorithms
are also applicable, but we found this simple process is
sufficient for our task.
Converting road structure to road segment graphs. Al-
though the extracted road structure is consistent with the
representation of the road map, it is difficult to match them
directly because there is an unknown Sim(3) transformation
between the two coordinate systems. Furthermore, there may
be errors and scale drift in the reconstruction, which further
increases the difficulty of localization. We observed that
the direction change of adjacent roads or the curvature of
curved roads could be expressed by an angle. For a similarity
transformation, this angle is an invariant measurement, and
the connectivity of extracted road structure is also maintained
in the street maps. Besides, the above geometry and topology
of roads can be well represented by the label graph. Inspired
by subgraph isomorphism, we propose a novel graph-based
matching algorithm. We define a labelled directed graph g as
a triple (V,E, L), where V is a set of vertices representing
a one-way road segment, E is a set of directed edges which
defines the connectivity of road segments, and L is a label

Road segments

s1 s2

s3

ଵଶ

s1

Road segments graph

j1 j1’

s3

s2

Fig. 3. The graph representation of a road structure: The left view is a
three-way fork in the street map. ϕ1, ϕ2 denotes the angle of road direction
change from s1, s2 to s3 . The right view is the graph representation where
two additional connection nodes j1,j′1 are inserted and labelled by ϕ1, ϕ2

respectively.

function which maps a vertex to a label. For simplicity, all
the two-way roads will be split into two individual one-way
roads, with additional connection vertexes inserting between
these two adjacencies and assigning different orientations.
For each connected V (one-way road segment), we label
with the angle of the road direction difference. Fig. 3 is an
example showing how road segments is converted to a graph.
Graph-based matching. We convert the street map and road
structure of the point cloud into two directed labelled graphs
Gsfm = (V1, E1, L1) and Gosm = (V2, E2, L2). Now, the
task can be formulated to the determination the correspon-
dence between the nodes of Gsfm with nodes of Gosm. If
the road segmentation is the same in Gsfm and Gosm, the
correspondence can be represented by an injective function
that makes the task equivalent to a subgraph isomorphism
problem in which there are mature solutions. However, in
real scenarios, the road segmentation on the street map is
completed by crowdsourcing and does not follow stringent
rules. In this case, the correspondence is relaxed as a many-
to-many relationship. The problem is NP-hard and even
worse than subgraph isomorphism. Therefore, we merge
adjacent road segments with similar direction changes in
Gsfm that makes the target correspondence become a one-
to-many relationship (i.e. one vertex in Gsfm corresponding
a chain in Gosm).

Before introducing the overall matching algorithm, we first
describe how to get a matched path set P for a node u, with
the related pseudo-code shown in Algorithm 1. The inputs
are the degree L(u), a starting vertex vs, and data graph g
where vs is the a vertex in g. The output P consists of the
ordered vertex lists, such as (vi0, ...vik) which represents a
path in g. The algorithm is realized by a simple breadth-first
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Algorithm 1 Find matched chain
Input: query degree L(u)
Input: starting vertex vs
Input: data graph g
Output: a path set P

1: P = ∅
2: let Q be a queue
3: Q.enqueue((vs, L(u),))
4: while Q is not empty do
5: (v, d, vi0 ...vik) := Q.dequeue()
6: d′ = d− L(v)
7: if d′ < th1 then
8: P = P ∪ {vi0 ...vikv}
9: end if

10: if d′ > th2 then
11: continue
12: end if
13: for do(v, v′) ∈ E(g)
14: Q.enqueue((v′, d′, vi0 ...vikv))
15: end for
16: end while

Algorithm 2 Graph-based matching method
Input: query graph q
Input: data graph g
Output: a mapping C

1: Vm = ∅, Em = ∅
2: while |Vm| < |V (q)| do
3: u = NEXTQUERYVERTEX(V,M )
4: Vs = {v|∀(u0, u) ∈ Em, (..., v) ∈ C(u0)}
5: for vs ∈ Vs do
6: P = FindMatchedChain(L(u), vs, g)
7: C(u) = C(u) ∪ P
8: end for
9: Vm = Vm ∪ {u}

10: Em = Em ∪ {(u, u1)|(u, u1) ∈ E(q)}
11: for (u0, u) ∈ Em do
12: Vprev = {v|(...v) ∈ C(u0)}
13: C(u) = {(v...)|∃(v...) ∈ C(u), v ∈ Vprev}
14: end for
15: end while

search (BFS). We start from one node and then calculate the
difference between the degree of the path and L(u) in each
iteration. If the difference of the road direction change is
small enough, the path will be added into P as a potential
matched element. If the difference of the road direction
change is so significant that for the path to match vertex u,
subsequent matches for this path will be terminated, and we
will skip to the next iteration directly. In our implementation,
th1 is set to 0.2 and th2 is set to 0.5.

The pseudo-code of our matching algorithm is shown in
Algorithm 2. The inputs are query graph q and data graph
g, and output C consists of matched pair (u, P ) where u
is the a vertex in q and P is a path set in g. In each step
of the matching process, we search the corresponding path

for a vertex in q. Unlike the previous method matching by
order of image sequence, we adopt a matching order strategy
that begins from vertexes with extensive discrimination(i.e. a
representative crossroad) that significantly restricts the search
scope into several small areas. For example, a straight line
may have many correspondences in the data graph, but the
amount of three-way forks with specific angles is relatively
small. On the other hand, if (u′, u) ∈ E(q), the start vertex
of the path corresponding to u must link with an end vertex
of the path corresponding u′, that is, the mapping C is
edge-preserving. With this constraint, we limit the starting
vertex in each search step. Moreover, after each calculation
of C(u), we will traverse each matched edge and filter out
the paths that do not meet the edge-preserving constraints.
After the matching is completed, we will further filter the
results through the relative scale of path length to reduce the
ambiguity.

B. Optimization Module

Through the proposed cross-view geolocalization method,
we can obtain the correspondences between OSM data and
the roads extracted from the point cloud. Using Geographical
observation from this correspondence, the point cloud can be
well optimized. We first convert all OSM observations to a
3D coordinate system by the Mercator projection and trans-
form the point cloud to the same coordinate system by a simi-
larity transformation solved by the Umeyama algorithm [42].
A general approach is applying pose graph optimization to
constrain the camera poses to the correspondence geographic
location measurements. Each camera pose is represented by
a similar transformation Sim(3):

Si =

[
siRi ti

0 1

]
. (1)

The relative motion between camera poses is maintained by:

E(Si, Sj) = ||logsim3(∆SijSiS
−1
j )||2, (2)

with ∆Sij denoted relative similarity transformation mea-
surement. The loss function can be described as:

Lgeo =

ngeo∑
i=1

||tki − gi||2 +

(i,j)∈Pc∑
i,j

E(Si, Sj). (3)

Here, the camera position tki corresponds to a geographic
location gi, and Pc contains all the image pairs which share
common tracks.

However, we can only get the geographic location obser-
vation of the road instead of camera poses. There is an offset
between the camera position and the road. Furthermore,
this problem will be more severe on the video collected
by handheld or UAV, so it is not good to add constraints
directly to the camera position. In contrast, we use some
anchor points {pi|i = 1...n} as bridges to associate camera
pose and observation information, where the anchor points
are the intersections of roads that have been extracted from
the point cloud.

Then, only latitude and longitude can be obtained from
OSM data, while the altitude information is inaccurate or
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C1 … Ci … Cn

p1 … pk

poses

landmarks

geolocation g1 … gk

optimizablefixed

GPS constraint

observation

pose-to-pose 
constraint

Fig. 4. The factors of pose graph optimization.

Before After

Fig. 5. The results of the proposed loop closure method on KITTI
02. The proposed loop closure method can fuse two separated local
maps(colored by blue and red) well.

missing. Directly assuming all roads to be on the same
plane is sub-optimal because they do not conform to the
actual road conditions, and Completely ignoring the height
limitation will also make the problem ill-posed. Therefore,
we implement to reduce the weight along the height direction
(y-axis), and the loss function can be rewritten as:

F (Si, pj) = ||π(Ripj + ti)− sixij ||2, (4)

Lgeo =

ngeo∑
i=1

||λ(pi−gi)||2+
(i,j)∈Pr∑

i,j

F (Si, pj)+

(i,j)∈Pc∑
i,j

E(Si, Sj).

(5)
Here, λ is a diagonal matrix diag(1, 1, 0.01) to adjust the

weight of height direction, Pr contains the correspondence
of cameras and points. Fig. 4 shows the connection of factors
during optimization.

The correspondence between the street map and the point
cloud also identify which part of the point cloud is on the
same road. This makes it possible to detect the loop even
if lack of visual correlation. Fig. 5 shows two local maps
that cannot be merged by visual-based loop closure because
the perspective views are very different in the two trajectory
segments, which makes the feature descriptors fail to be
matched. With the help of the graph matching results, we
can easily find potential loops. However, how to merge these
two local maps is still a problem. We proposed a novel loop
closing method through the global measurement. The local
maps of the ends of the broken loop are denoted as M1

and M2. First, we extract several planes from M1 and M2

and form a plane set L. Each element li of L consists of
(θi, P

i) that θi is the plane parameters and P i is points on
the plane. Since M1 and M2 reflect the same road segment,
the correspondence (ai, bi) can be found that make lai and lbi
the same plane. For each correspondence, we can construct
a new plane element (θai , P

ai ∪P bi) and form a new plane
set L∗. The coplanar constraints can be formulated as

Lco =

(θi,P
i)∈L∗∑
i

pij∈P
i∑

j

||f(θi, p
i
j)||2, (6)

here f(θ, p) is the distance from point p to plane θ. By
minimizing Lco, we can align the points on the plane, so
as to close the loop successfully which is shown in Fig. 5.

TABLE I
TIMING RESULTS[S] OF GEOLOCALIZATION ON THE KITTI DATASET.

00 01 02 03 05
LOST[39](S) 253.10 494.73 280.18 122.01 389.54
LOST[39](M) 16955.97 8918.42 12544.87 22660.44 20453.53

ours(S) 0.02 0.07 0.01 0.01 0.02
ours(M) 7.09 1.20 2.09 1.65 4.41
ours(L) 76.75 16.23 24.96 16.16 25.59

Comp.(M) 247.34 501.00 281.24 119.51 387.84

Fig. 6. The intermediate results of geolocalization. Left: The candidate
matching region (represented by a box containing all candidate paths) de-
creases with the increase of iterations 6 (grey),8 (blue),10 (yellow),12 (red).
Right: Road structures correspond to different iteration times.

IV. EXPERIMENTS

We evaluate our algorithm with five sequences on the
KITTI visual odometry dataset. As for the input data, we use
seven street maps downloaded from the OSM project [40].
In detail, five small maps correspond to five sequences, and
each contains only the scene where the sequence is located.
One medium map covers 18 km2 and contains all scenes of
five sequences. One large map contains 43,909 kilometres of
streets covering the whole city (Regierungsbezirk Karlsruhe).
The input point cloud is reconstructed by COLMAP [4].
According to the geolocalization module and optimization
module, the experiment is divided into two parts. First, we
compare the running time of the proposed geolocalization
method with the open-source work LOST [39] with differ-
ent scales of street maps. Then, we evaluate the accuracy
improvement of the optimization method and qualitatively
evaluate the mapping result of the Internet video. The exper-
iments are conducted on a desktop PC with an Intel i7-9700K
3.6GHz CPU, 64GB of memory, and an Nvidia RTX-2070-
8G graphics card. To inspect the robustness under common
settings, we carry out all the experiments on monocular
sequences.
Geolocalization. As shown in Table I, we test five sequences
on maps of three scales, i.e. smalls (S), medium (M), and
large (L). Following LOST [39], we omit sequence 04 be-
cause its trajectory is close to a straight line and thus cannot
be matched due to insufficient structural information. For
fair comparisons, all the algorithms run on a single thread.
Compared with LOST, our geolocalization module has an
order of magnitude advantage in computing time in all scale
maps, making city-scale localization possible. For the large
map, the running time of our method is 76.75s in sequence
00, while LOST is hard to run on such a vast map. Sequence
03 is very ambiguous, so two candidate results appear on the
large-scale map (L), as shown in Fig. 7. In order to better
reflect the positioning process of our algorithm, we illustrate
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Fig. 7. The ambiguity of road structure. Left: The correct roads
correspond to sequence 03 in the large street map. Right: An error roads
correspond caused by almost the same road structure.

Fig. 8. Comparison of different selection strategies in the proposed
geolocalization method.

the changes of the candidate matching region of sequence
02 in the search process in Fig. 6.

However, our method and LOST are not two opposing
solutions, as we obtain the location of roads in a global
manner and LOST locates camera positions in a sequential
manner. Therefore, we also attempt to evaluate a composite
strategy (denoted as Comp.) by using our method to find a
small area corresponding to the point cloud from the original
street map and then applying LOST to obtain the camera
position in the small area. As Table I shows, this composite
strategy is much more efficient than directly using LOST for
geolocation. It is worth noting that LOST can only locate
the camera trajectory which reflects the real scale (e.g. poses
from Stereo-SLAM or VIO), since it relies on the absolute
length information.

In addition, to more intuitively observe the influence of
candidate vertex selection strategies on the algorithm, we
also draw the decreasing trend of the number of states with
the search step under different matching orders in Fig. 8. Our
matching order strategy is significantly better than matching
in trajectory order, has fewer states at the beginning, and
converges faster.
Mapping Accuracy We also compare the mapping accuracy
between our reconstruction method and other algorithms. In
the implementation of the proposed method, Ceres Solver is
used as the optimizer. The results are illustrated in Table II.
Except for the original point cloud generated by COLMAP
scaled to the actual scale, all the comparisons are at a fixed
scale. For almost all the sequences, the proposed method
improves the accuracy significantly and provides the absolute
scale. Besides, Miller et al. [11] uses the LiDAR, IMU and
satellite image for reconstruction, while we achieve higher
accuracy with only monocular images and simple street
information. We also compare a version (denoted as ours*)
that assumes that all geographical observations are on the
same plane and set λ as Identity matrix in Eq. (5) to verify
the effectiveness of relaxing height constraints. In order to
analyze the possible error sources, we calculate the pose
errors of different axes and find that the error in the height

TABLE II
COMPARISON OF TRANSLATION RMSE(M).

00 01 02 03 05
Miller et al.[11] 2.0 X 9.1 X X

COLMAP [4] 4.31 6.51 28.08 1.86 4.23
ours* 1.86 4.18 7.03 1.88 2.13
ours 1.66 4.24 3.90 1.86 2.02

Fig. 9. The mapping results of the Internet video. We evaluate
our mapping solution on the Internet video captured by a car driving in
Duisburg. The original (blue) and optimized trajectories (red) are projected
onto satellite images for comparison.

direction is the primary source due to the lack of height
information in the OSM. On the other hand, we also project
the OSM data to the satellite image. There is a slight error
between the geographic nodes of OSM data and the actual
location in longitude and latitude. This error may affect the
mapping accuracy at a fine-grained level, but the overall
reconstruction is still good.

We also experiment with Internet data to prove the robust-
ness of our method as well as its great potential in dealing
with rich Internet information. We download an Internet
video from YouTube which is captured by a car driving in
Duisburg. As shown in Fig. 9, we project the reconstruction
result onto the satellite image. Since we have carried out
geolocalization, the initial trajectory can be projected onto
satellite images. The initial camera trajectory (blue) and
our optimized trajectory (red) are visualized to compare the
accuracy before and after optimization. We can see that the
original trajectory completely deviates from the road due
to scale offset and reconstruction error, while the optimized
trajectory delicately fits the correct roads.

V. CONCLUSION

This paper presents a low-cost and easy-to-use mapping
method, which is able to use the road structure of the street
map to improve the mapping accuracy via a novel geolo-
calization algorithm. The comprehensive evaluation shows
that the geolocalization time of the proposed method in a
huge city-scale street map only takes a few minutes, and the
reconstruction accuracy can be improved, which has excel-
lent potential for Internet data. The proposed method has
good performance when the road structure is discriminative,
but it may be affected by similar road structures or graph
matching errors. One interesting future work is to explore
how to use other structures or semantic information to solve
the ambiguity of street structure.
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