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ABSTRACT

Robust and accurate global 6DoF localization is essential for many
applications, i.e., augmented reality and autonomous driving. Most
existing 6DoF visual localization approaches need to build a dense
texture model in advance, which is computationally extensive and
almost infeasible in the global range. In this work, we propose
BDLoc, a hierarchical global localization framework via the 2.5D
building map, which is able to estimate the accurate pose of the
query street-view image without using detailed dense 3D model and
texture information. Specifically speaking, we first extract the 3D
building information from the street-view image and surrounding
2.5D building map, and then solve a coarse relative pose by local to
global registration. In order to improve the feature extraction, we
propose a novel SPG-Net which is able to capture both local and
global features. Finally, an iterative semantic alignment is applied
to obtain a finner result with the differentiable rendering and the
cross-view semantic constraint. Except for a coarse longitude and
latitude from GPS, BDLoc doesn’t need any additional information
like altitude and orientation that are necessary for many previous
works. We also create a large dataset to explore the performance
of the 2.5D map-based localization task. Extensive experiments
demonstrate the superior performance of our method.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented real-
ity; Computing methodologies—Artificial intelligence—Computer
vision—Computer vision problems

1 INTRODUCTION

Estimating the precise 6DoF camera pose of a street-view image
in the world coordinate is essential for the large-scale positioning
services, such as sharing experience in multi-user augmented reality
and motion planning in multi-robot control systems.

Most state-of-the-art 6DoF visual localization approaches employ
the feature matching based strategy by finding correspondences
between 2D keypoints extracted from the street-view image and the
3D dense point cloud [33, 34, 40]. All these methods require the
pre-reconstructed dense texture models, which are not easy to obtain
in the global range. On the contrary, the worldwide 2.5D building
map has been integrated into some mapping service like Google
Map, OpenStreetMap, etc., for many years. Thus, in this work, we
propose a 2.5D building map-based visual localization framework
that eliminates the prerequisite of the pre-built high precision 3D
model.

As shown in Fig. 1, the 2.5D building map, abbreviated as 2.5D
map, is a special 3D map constructed by top-view building con-
tours with heights measured by remote sensors. This process can
be executed either manually or automatically from satellite maps
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Figure 1: The 2.5D map is built upon the satellite map in the world
coordinate and illustrates the rough shape of buildings. Given a
query street-view image with a coarse GPS signal, the proposed
BDLoc framework aims to find its global position and orientation
based on 2.5D building map. The red mask in upper-right image is
the reprojection of the 2.5D buildins via final pose.

and digital elevation models. Compared to the dense 3D map that
includes a great number of faces with complex textures, the 2.5D
map is composed of several texture-less faces close to the building
periphery, saving massive storage memories and transmission band-
width. However, the simplicity brings a considerable loss of details,
which makes it unlikely to apply in the current visual localization
pipelines.

In a pioneering work [4], Arth et al. proposed an automatic 2.5D
map-based localization method which exploits semantic cues and
line segment correspondences between the image and the reprojec-
tion of the 2.5D model to estimate the position and orientation by
generating translation hypotheses that maximize the probability of
overlap. The following work proposed by Argmagan et al. [3]
shares a similar idea and first leverages deep learning techniques
for detecting primitives and predicting moving directions. Although
the above approaches achieve promising results in their experiment
settings, there exist two significant limitations. Firstly, these meth-
ods require fixed height and approximate orientation, which limits
the view freedom and degenerates the problem to a 3DoF pose re-
finement. Secondly, since the 2.5D map has no texture information
and doesn’t accurately match the shape with actual buildings, the
cross-view geometric correspondences are unstable.

In this paper, we propose a multi-phase hierarchical 6DoF global
localization framework named BDLoc. Unlike previous approaches,
our method does not need prior knowledge of altitude and orienta-
tion but only a coarse longitude and latitude from GPS and get rid
of the cross-view geometric 3D-2D correspondences. Specifically
speaking, we first extract the building information from the street-
view image and get the surrounding 2.5D building maps according
to the coarse GPS information. Then we compute the coarse relative
pose between 3D points from the estimated street-view depth map
and the point cloud sampled from 2.5D building map. Finally, an
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optimization is applied to refine the estimated pose. However, it is
nontrivial to design such a system.

At first, although we can obtain a local 2.5D building map from
the coarse GPS information, it is still challenging to estimate the
relative pose between the street-view image and the local 2.5D map.
The recent success of 3D registration of colour-less point cloud
[5, 7] shows the potential of deep networks to extract the structure
feature. However, the distinctiveness of 2.5D building is relatively
weak. In order to solve this problem, we exploit the advanced se-
mantic segmentation [50] and depth estimation from monocular [20]
or binocular [6] images which enable to extract 3D building infor-
mation from the street-view image and thus drastically bridges the
2.5D building map and street-view image. To improve the feature
extraction and matching, we propose SPG-Net, a hybrid architecture
of sparse voxel convolution and spatial graph convolution to capture
both local and global 3D features accompanied by an effective view-
dependent graph construction strategy. In this way, we can register
the street-view image with the 2.5D map roughly.

Secondly, it is hard to conduct the pose optimization with the
2.5D map and street-view image because the shared information is
extremely weak. To solve this problem, we adopt the recently de-
veloped differentiable rendering techniques, which is able to bridge
3D and 2D by rendering the 3D model to the 2D image in a differ-
entiable way and let the gradient of residuals backpropagate to all
input parameters such as camera poses. We exploit the high-level se-
mantic information for optimization and define the loss as the offset
between the silhouette of building masks and the projected ones. In
such way, we can optimize the camera poses without requirement
of the correspondences between 2D and 3D features. With an accu-
rate global 6DoF pose estimation from the street-view image and
2.5D building map, our method can be easily applied to the mobile
augmented reality applications and generate plausible AR effects.

To summarize, our major contributions are as follows:

• We proposed BDLoc, a systematic approach for 2.5D map
based global localization. To the best of our knowledge, this
is the first complete 2.5D building map-based 6DoF visual
localization framework.

• We propose a hybrid architecture (SPG-Net) for point clouds
feature extraction. SPG-Net can model the geometric relation-
ship between different buildings, which significantly improves
the registration accuracy.

• We introduce a novel pose optimization method with the 2.5D
map and street-view image via the semantic information and
differentiable rendering.

• We create a large dataset to explore the performance of the
2.5D map-based localization task. The proposed method out-
performs the exiting methods by a large margin.

2 RELATED WORK

2.1 Visual Localization based on 2.5D Map
Retrieval based and 2D-3D feature matching based methods are
commonly used to estimate the location of a given query image.
NetVLAD [2] is the representative work of retrieval based method
which utilizes a trainable VLAD layer to aggregate patch level
feature. Some retrieval based methods were proposed to handle
the weakly supervised information [11] and matching strategy for
patch level feature [14]. Irschara et al. [16] propose the first 2D-3D
matching method for camera localization. Liu et al. [21] propose an
efficient camera localization approach in a large-scale 3D Map which
takes the co-visibility into consideration to handle the ambiguity of
local features. However, these works only depend on appearance
features and thus require a large image database and a textured dense
3D model respectively, which are not suitable for 2.5D map.

2.5D map-based localization is a sub-class of geolocalization and
has been studied over decades. Meierhold et al. [26] establish line
correspondences between image and 2.5D model. But the quality
of 3D line features is not good enough for localization so that user
interaction is introduced in their method. Matei et al. [25] manually
annotate the building outlines for further matching. Chu et al. [10]
compute a descriptor from vertical building outlines in perspective
input images, which is then matched with a 2.5D map. But in order
to facilitate the detection of vertical edges and vanishing points.
They partially use manual annotation of the input images. The above
methods put forward the basic insight that the building silhouettes
and planes contribute to localization but cannot run automatically.

Taneja et al. [37] propose another pipeline to achieve automation.
Semantic segmentation is applied to extract buildings in images, and
then the semantic images are iteratively updated by matching with
the projected 2.5D building map through pose estimation and seg-
mentation refinement. Similiarly, Arth et al. [4] use both semantic
cues and line segment correspondences between the real image and
projected 2.5D map for localization. And Armagan et al. [3] achieve
the idea by CNN. Later, Liu et al. [22] integrate 2.5D map as a
constraint in non-linear optimization by associating reconstructed
points to corresponding facade. However, these line matching meth-
ods overemphasize the line segments on the contour of building
masks and these features in 2.5D maps cannot always be accurate.
Unlike their methods, our optimization process mainly focuses on
the silhouette area, which is more robust. Besides, high-quality
initialization is required by those methods.

2.2 Large-scale Point Cloud Learning
Point-based methods for point cloud learning have made progress
since PointNet [28], the milestone of this field, has been proposed.
PointNet uses pooling operation to aggregate point-wise feature to
obtain global feature. However, the pooling operation can not extract
the local feature effectively. Some approaches [19, 29, 39, 44, 46]
were proposed to capture point cloud feature from local to global
like the way in image-based CNN. Those methods are for general
point cloud classification and segmentation tasks. For the large
scale point cloud recognition task, PointNetVLAD [41] is the first
work. Furthermore, some approaches [17, 24, 48] were proposed
to improve the performance of large-scale point cloud recognition.
PCAN [48] assigns different weights for the different point-wise
feature before the aggregation operation and shows the attention map
is also important for point cloud learning. LPD-Net [24] extracts the
local information of the point cloud by using a dynamic and static
graph to search neighbourhoods.

Besides, there are some learning-based methods [1, 18, 42] for
point cloud registration that use a neural network to extract the 3D
descriptor. FCGF [8] is a fully convolutional network which aims
to extract local geometric feature for each point which can be used
for point cloud registration. Huang et al. [15] propose a fast feature-
metric approach which does not need search correspondences of
point cloud. Compared to the traditional pairwise registration, Gojcic
et al. [13] present an end-to-end multiview point cloud registration
method. They first register pairwise point cloud and then conduct
the globally consistent refinement.

3 METHOD

As shown in Fig. 2, the proposed BDLoc framework consists of three
phases: lifting phase, registration phase and optimization phase. We
take the GPS-tagged image as input in our setting. The lifting phase
segments the building information from the current image and lifts
it to 3D through depth prediction. Then, the registration phase
retrieves the surrounding 2.5D map according to the associated GPS
signals, and register the lifted 3D building points to the 2.5D map
through point-wise feature matching. In this way, we can obtain
a coarse pose of the street-view image. At last, the optimization
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Figure 2: Overview of proposed BDLoc framework. The lifting phase (grey part) predict the semantic map and the depth map from the current
image and extract the building segments for further refinement, then back project to 3D and get view building points. The registration phase (green
part) first download the surrounding 2.5D building map using GPS signal and sample viewed depth points from the current position. These two
point sets are fed into SPG-Net for feature extraction, followed by a coarse pose estimation via matching based alignment. Finally, the optimization
phase (yellow part) iteratively optimized the pose supervised by occupancy distance of building silhouette and rendered silhouette.

phase is taken to optimize the silhouette distance of buildings in
the street-view image and projected 2.5D map and refine the pose
iteratively. Below we will elaborate on each phase in detail.

3.1 Lifting Phase

The primary purpose of the lifting phase is to unify the representation
between the image and the map. As shown in Fig. 1, the 2.5D map
consists of texture-less building models, and only contains simplified
structure information. Thus, the first step is to extract the building ge-
ometry cues from the query street-view image. This process includes
visual semantic segmentation [38, 50] and depth estimation [6, 20],
which are two essential aspects of visual reasoning that have been
extensively researched for years and shown a promising generaliza-
tion capability. In this work, we take a simple U-Net architecture
[30] which predicts semantic segmentation IS and depth map ID for
a query image IQ. Notice that these networks can be replaced by
any state-of-the-art method for better performance. With pixel-wise
semantic labels, we can extract corresponding building depth IBD
from the ID. To form a compact and clean geometry structure, we
simply filter the predicted depth [32] and lifting them to 3D point
representation PQ via depth back-projection.

3.2 Registration Phase

The buildings in the 2.5D map are usually represented as prism
meshes, which consist of a few simple non-textured faces. Due to
the lack of details, the ambiguity rises as the model scale increases.

To narrow the search range, we take the GPS signal as an initial
position and download the surrounding building models centred
at requested longitude and latitude. We also initialize a random
orientation and altitude w.r.t. the requested position to establish a
local coordinate system. Once the local registration is established,
We can directly obtain the view pose in world coordinate via known
transformation.

Matching from the image to 2.5D map via context features is not
robust owing to the simplicity of the building model. Inspired by the
recent success of point registration approaches, we formulate the task
as a local to global 3D registration problem instead. The goal is to
find the point correspondences from PQ generated in the lifting phase
to the surrounding map M. To make the representation compatible
with depth points PQ, we rendering the depth map panoramically
at origin and back-project them to a full point clouds PV . This
process also reduces the points number and registration difficulty
accordingly.

The essential step of 3D registration is to compute the point-wise
feature for PQ and PV . Recently, FCGF [8] adopt a fully convolu-
tional network to extract local geometric features for each point. The
network is stacked by multiple sparse 3D convolution layers based
on Minkowski Engine [9]. The operation of each layer is defined as
the following,

x′u = ∑
i∈N3(u,K,C)

Wixu+i u ∈C′, (1)

where N3(u,K,C) is a set of locations u where the kernel K con-
volution should conduct based on coordinates C, W and x denote
the learnable weights and feature respectively. C′ is the output co-
ordinates w.r.t. x′. Thanks to the fully convolutional design, the
extracted local feature is coordinate-agnostic. However, compared
to scene-scanned point clouds, the points sampled from the 2.5D
map are excessively uneven (too dense near the building surface and
thoroughly empty for the other space, as shown in Fig. 4). More-
over, the rough building shapes cannot maintain the uniqueness of
local geometric feature, which further degenerates the feature dis-
tinctiveness. Thus, a vanilla FCGF can not perform well in this
scenarios.

SPG-Net: To further improve the feature extraction for this
task, we propose Sparse-Point-Graph architecture, named SPG-Net,
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Figure 3: Structure of SPG-Net. The local geometric features are extracted by several voxel-based sparse 3D convolution layers, the global
relation features are then aggregated by spatial graph convolutions through a view-dependent graph. Finally, these features are spread to each
input points by transpose convolution combined with local features via skip connection.

(a) Dense reconstruction point cloud (b) 2.5D building point cloud

Figure 4: Compared with the dense reconstruction point cloud which
contains rich scenes (a), the points sampled in 2.5D building maps
are locally dense but globally sparse (b).

which is a hybrid point-wise feature extraction network that en-
codes both local geometry and global relations. As shown in Fig. 3,
our SPG-Net adopts a two-step U-shape structure to compute the
per-pixel feature. The sparse voxel-based convolution layers are
leveraged to encode local geometric feature, and the points are be-
coming sparse with the depth of network increase. After that, we
apply the graph convolutions based on the undirected view-graph
constructed on the output coordinates of sparse 3D convolution. The
graph convolution aggregates and updates feature spatially based on
a message-passing paradigm [12]. The formulation is shown as the
following,

x′n =W0xn +
1

|A(n)| ∑
j∈A(n)

W1x j. (2)

The updated feature x′n for node n is the summation of feature from
itself and the mean feature from the adjacent nodes A(n), W0 and
W1 denote the learnable weights. The graph convolution effectively
encodes the global relation as a complementary feature and let in-
formation passes through connecting edges. It is worth noting that
the output features from sparse 3D convolutions don’t include co-
ordinate information. Therefore we additionally append the 3D
coordinate to geometric features before feed into the graph convo-
lution. Finally, the mixed features are spread to each input point
through sparse 3D transpose convolution layers combined with the
local features via skip connection.

View-dependent Graph: Constructing a graph for global rela-
tion extraction is another critical problem. The intuitive idea is to
find the nearest neighbour in Euclidean distance or embedding space
[43]. However, existing methods are prone to connect locally due to
the uneven point distribution in our case. To this end, we propose a
view-dependent graph construction strategy. Our view-dependent
graph neglects the depth interval by projecting the points to a cylin-

der surface centred at the origin of local coordinates. The edges are
generated from projected nodes using the k nearest neighbours algo-
rithm based on the surface distance. This linking approach is built
on a reasonable assumption that the relationship between buildings
would not change much within a limited position offset. In our case,
the noise range of the GPS signal is stable. Thus the local message
passing could mitigate the difference caused by position effectively.

Loss Function: We adopt the margin-based contrastive loss
shown in Equation 3, where fi is the first feature of positive pairs P+,
the f+ and f− are the corresponding positive and negative match
respectively. The margin value for positive and negative pairs are
m+ and m−.

Lconstrastive = ∑
fi∈P+

[D( fi, f+)−m+]
2 +[m−−D( fi, f−)]2. (3)

We randomly choose one of the k nearest points for the positive
match in a specific distance range and select the negative outside
this range accordingly. This loss guarantees the uniqueness of the
learned feature.

We use a shared weight SPG-Net to compute the per point feature

FQ and FV for both PQ and PV . A coarse relative rotation ˜R and

translation˜t from local coordinate to image coordinate is then solved
by the feature-matching based registration method [49].

3.3 Optimization Phase

The ˜R and ˜t solved from 3D point registration are not optimal as
PQ and PV may not be strictly aligned. Therefore, we propose an
refinement method which leverages the silhouettes of buildings. As
shown in Fig. 2, we extract the building silhouette SBD from IBD as
a reference and render the 2.5D building map to get the image SM
using ˜R and ˜t.

To minimize the distance from SM to SBD, we proposed a masked
optimizer based on SoftRas [23]. The mask is used to block the
gradient from an invalid area which could interfere with the opti-
mization direction. In our case, the boundary between the sky and
the roof is important for judging the optimization effect, while the
bottom of the building in the 2.5D map may not align well with the
actual buildings. To this end, we also extract the binary mask BM of
building and sky from IS and constrain the weight during backprop-
agation. The main formulation is presented in Equation 4, where
σ controls the sharpness of the probability distribution, δ indicates
whether pixel is inside the projected triangle or not, i and j are the
indices of the pixel in the image and triangle on mesh, respectively,
and d(i, j) is the closest distance from the pixel to triangle edges.

Ii
silhouette = 1−∏

j
(1− sigmoid(δ i

j ·
d2(i, j)

σ
)). (4)
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(a) Synthetic Data (b) KITTI360 Data (c) Real Data

Figure 5: Feature match recall with respect to different distance thresholds.

The masked pixel-wise mean square loss is adopted for pose
refinement (Equation 5).

Lsilhouette = ‖BM(·SBD−SM)‖2. (5)

In each iteration, the coarse pose is updated constrained by
Lsilhouette to get a finer pose R and t.

4 IMPLEMENTATION DETAILS

We use the 10-layer U-Net architecture for depth and semantic
prediction separately. The depth is represented in log space, and we
mask out the infinite and empty part for better convergence. We use
three labels for semantic prediction: sky, building and others. Before
feeding into SPG-Net, we first downsample the points according
to the specific voxel size and then apply a random rotation and
translation to augment the point distribution. During training, we
select one of the 3 nearest points in 3 meters as the positive match
and the point farther than 12 meters as the negative. Our SPG-Net
consists of 2 sparse 3D convolution layers followed by 2 graph
convolution layers and then upsampled with 2 sparse transposed 3D
convolution layers. We use the Adam optimizer with a learning rate
of 1×10−4 for network optimization and a learning rate of 0.1 for
silhouette optimization.

5 EXPERIMENTS

In this section, we verify the effectiveness of our method through
experiments on multiple datasets.

5.1 Dataset
The dataset with good alignment between the 2.5D map and street-
view image is rare, and previous works [3, 4] only use dozens of
images which are far from enough. As a result, in this work, we
create a large dataset that contains more than 17,000 images and
corresponding 2.5D buildings. For each dataset, we randomly take
4/5 for training and the remaining 1/5 for testing. Our whole dataset
includes three types of data:

Synthetic Data: We use a pre-built urban model downloaded
from the Internet and manually generate the 2.5D model in Unreal
Engine. We first sample 10,000 views randomly and then render
the corresponding image, semantic map, depth map simultaneously
through the AirSim simulator [36]. We use a semantic filter to
remove the view that can barely see the building and sky. This
procedure guarantees the effectivenessof the training data.

KITTI360 Data: We adopt the recent published KITTI360
dataset [45] which contains 2D stereo image, semantic map and
3D model. The bounding box provided in KITTI360 uses a similar
representation as 2.5D buildings. Therefore we can easily transfer
it to our format by modifying the roof shape and contour. Since
KITTI360 does not include ground-truth depth, we adopt a pre-
trained model from [6] to predict dense disparity and triangulate

depth points using the given baseline. We compare the predict depth
and projected depth from 2.5D map, and select about 2,000 views
with small depth errors and enough building and sky information for
evaluation.

Real Data: Additionally, we create a large scale city park dataset
(Fig. 1) which contains a large number of images captured by a
handheld camera. The corresponding 2.5D map is downloaded from
OpenStreetMap. We use the SfM technique [35] to reconstruct the
whole area and compute the per image pose with respect to the SfM
coordinate. We then align the reconstructed point cloud to the 2.5D
map using ICP-based registration given manually annotated point
pairs. We use the multi-view stereo method [47] to recover the
depth map for each view, and leverage the method proposed in [38]
to generate the semantic map. To mitigate the segmentation error
caused by inductive bias form pre-trained model, we compute the
overlapping area of projected building mask from 2.5D map and
predict building labels. The data whose IOU is larger than 0.9 will
be selected. Finally, about 5,000 views are selected with enough
building and sky information.

5.2 Feature Match Evaluation

To prove the feature extraction ability of the proposed SPG-Net
described in Sect. 3.2, we evaluate the performance of feature recall.
The metric we used is shown as the following,

Rd =
1

M

M

∑(Txi− y j)< τ, (6)

where M is the total number of fragment pairs (x and y), and T is
the ground truth transform matrix. This metric represents the ratio
of matching points within a certain distance threshold τ .

We compare our SPG-Net with the traditional descriptor FPFH
[31] and the sparse voxel-based method FCGF [8] in Synthetic
and KITTI360 data. We additionally compare the performance in
different voxel-size in KITTI360 data and Real data. The results
are reported in Fig. 5. The vertical axis is the inlier ratio in various
distance thresholds, and the horizontal axis is the corresponding
distance. From (a) and (b), we can find that our SPG-Net outper-
forms FCGF nearly 20 percent on a 10-meter matching distance
while FPFH performs poorly in such point distribution. Since SPG-
Net and FCGF utilize the similar sparse voxel convolution for local
geometry feature extraction, we conclude that the performance im-
provement mainly comes from the proposed view-dependent graph
convolution strategy. From (b) and (c), we can find that the in-
lier ratio boosts as the voxel size increases. We conclude that the
large voxel size makes the network more conducive to learning the
global relationship features, which is more critical in such extreme
distribution.
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Figure 6: Qualitative results of KITTI360 Data, from top to bottom are the AR results of the initial pose, optimized pose after 10 iteration and finial
pose.

Table 1: Quantitative results of pose refinement in constrained setting.

Method RRE [deg] RTE [m]

2.5D Align [3] 2.48 3.43

Mask-SoftRas (Ours) 1.12 2.97

Table 2: Evaluation of lifting phase.

Data Type log RMSE mean IOU

Synthetic 0.1418 0.9669

KITTI360 0.7951 0.9146

Real 0.9387 -

5.3 Optimization Evaluation

We then conduct an experiment to evaluate the accuracy of our pose
refinement method, abbreviated as Mask-SoftRas. We adopt the
same constrained setting in 2.5D Align network [3]: pre-fix the
height and provide an initial orientation (< 15 deg) and position
(< 10 m). We try our best to re-implement the 2.5D Align network
as our main comparison method. Our data contains more complex
building shapes than their data, which are hard to annotate edges and
facades manually. Therefore, we feed the 2.5D Align network with
the semantic segmentation from our network directly and predict
the moving direction from classification. We then compare the
optimization result of ours and 2.5D Align using Relative Translation
Error (Equation 7) and Relative Rotation Error (Equation 8) to
measure localization accuracy of our framework as follows,

RT E = |t− t∗|, (7)

RRE = arccos((trace(RT R∗)−1)/2), (8)

where R∗ and t∗ are the ground-truth rotation and translation, while
R and t are the estimated ones.

The quantitative results on Synthetic dataset are shown in Table 1.
Even without training, our Mask-SoftRas method still outperforms
2.5D Align, which means that with good initialization condition,
Mask-SoftRas can generalize well in similar tasks.

5.4 Localization Evaluation

Finally, we evaluate the localization accuracy of the complete frame-
work. We randomly select the number within 10 meters to simulate
GPS signals and get the corresponding 2.5D map. The map coordi-
nate system is then established on a random orientation.

For Synthetic data, the semantic segmentation and depth estima-
tion networks are supervised by the ground truth. For KITTI360
data, we directly use the estimated depth from [6] and the given
baseline, and train the semantic segmentation network. For Real
data, we use the predicted semantic from [38] and train the depth
estimation network. During registration, we down-sample PV and
PQ to voxel-size of 2 meters and only use the points within 200
meters for feature extraction and matching.

The qualitative results of registration and iterative optimization
during optimization phase are shown in Fig. 6, Fig. 7 and Fig. 8. We
apply the Mask-SoftRas optimization for over 200 iterations. From
the visualization, we can see that the projected buildings (red mask)
are gradually aligned to the outline of the actual buildings.

We report the mean IOU of building segmentation as well as
log RMSE of predicted depth and projected depth of 2.5D map
from the lifting phase in Table 2. The localization results also
reported in Table 3. We use inlier ratio in a specific distance and
orientation threshold as our metric and compare the result of BDLoc
from the registration phase and the optimization phase with the
2.5D Align in different combinations of distance and orientation
thresholds. From the results, we can see that precise semantic
segmentation and depth prediction will improve the accuracy of
localization, however the actual scene will also affect the final result.
The buildings in KITTI360 data are relatively close and dense which
is more sensitive to feature matching while the buildings in Real
data are far and sparse. Therefore, although the depth error is larger
than KITTI360 data, our method achieves better performance in
Real data. The localization result also prove the effectiveness of our
optimization strategy. Due to the reconstruction noise and inaccurate
2.5D building map, the performance on the real-world data is not
as good as that on the synthetic data. Even though, our method still
outperforms others by a large margin.

6 APPLICATION FOR AUGMENTED REALITY

Accurate global localization is very important for augmented reality
applications. Many AR applications need two stages, i.e., offline
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Figure 7: Qualitative results of Real Data, from left to right are the AR results of the initial pose, optimized pose after 10 iterations, pose after 50
iterations and finial pose.

Figure 8: Qualitative results of Synthetic Data, from left to right are the AR results of the initial pose, optimized pose after 10 iterations, pose after
50 iterations and finial pose.
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Table 3: Quantative results of localization.

Synthetic KITTI360 Real
distance [m] 2.5 / 5.0 / 7.5 2.5 / 5.0 / 7.5 2.5 / 5.0 / 7.5
orient. [deg] 5 / 10 / 15 5 / 10 / 15 5 / 10 / 15

2.5D-Align [3] 1.69 / 13.93 / 39.43 1.70 / 14.52 / 43.16 1.60 / 10.44 / 33.36
Ours(Registration Phase) 16.94 / 50.50 / 89.65 2.55 / 26.80 / 52.34 5.27 / 29.20 / 57.93
Ours(Optimization Phase) 63.65 / 89.44 / 97.15 3.76 / 30.12 / 56.48 5.56 / 31.44 / 61.43

Figure 9: Augmented reality results with different perspectives.

Figure 10: Augmented reality results of SLAM with BDLoc based relocalization.

stage and online stage. In the offline stage, the virtual objects need
to be placed in the desired positions in the world coordinate sys-
tem. Then in the online stage, we can run SLAM and use a global
localization method to estimate the global pose of one frame and
compute the transformation between the world coordinate system
and the coordinate system of SLAM. Then the estimated 6DoF poses
by SLAM can be aligned into the world coordinate and the virtual
objects can be accurately composited into the live video stream.

We first show an example that we directly use the estimated 6DoF
poses by our method for augmented reality without SLAM, as shown
in Fig. 9. We took two pairs of images with different perspectives
from synthetic data and real data respectively and use our BDLoc
method to estimate the corresponding pose for each image. Although
there are a little jittering, the ISMAR 2021 logo faithfully appears
in the desired position for most frames.

Fig. 10 shows another AR example by combining our localiza-
tion method and ORB-SLAM2 [27]. We run the ORB-SLAM2 on
KITTI360 data and activate the global localization simultaneously.
When enough building detected in the current view, our BDLoc
start to estimate the relative transformation from local to global and
register the trajectory into global coordinate. Thus, we can show
the virtual objects placed in global coordinate at offline stage. The
complete video is provided in the supplementary materials.

7 LIMITATION AND FUTURE WORK

Currently, our method still has some limitations. First, it is still
a challenge to handle the buildings with complex shapes for our
method due to the geometry information loss in the 2.5D map. Sec-
ond, there are very few datasets that can be used for 2.5D based
visual localization task, and therefore our network is only trained

on the specific dataset. When adopted to totally different scenes,
the inaccuracy of depth and semantic prediction may cause large
localization errors. But compared to the existing appearance based
localization strategies, our method does not need to build high-
precision maps frequently which greatly improves the reusability
of maps and robustness to appearance change. Besides, in practical
applications, our method can be used in a certain scale of scenes
with only part of the scene data for training. To further improve the
robustness to various scenarios, we consider to use sequence im-
ages for 2.5D-based localization and improve localization accuracy
through spatio-temporal consistency constraints.

8 CONCLUSION

We propose a global localization framework based on the 2.5D build-
ing map. Our framework solves the 6DoF position and orientation
only using a coarse GPS signal as an initialization. With extensive
experiments, we show that our BDLoc achieves better performance
compared to other methods in each stage, and leads to satisfied
results in synthetic and real data. We also show that our method
can be directly applied to AR applications with accurate 6DoF pose
estimates.

ACKNOWLEDGMENTS

The authors would like to thank Zhuang Zhang and Hanqing Jiang
for their help in generating the 3D point cloud and depth maps of the
real data. This work was partially supported by NSF of China (Nos.
61822310 and 61932003).

87



REFERENCES

[1] Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey. PointNetLK: Ro-

bust & efficient point cloud registration using pointnet. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, pp.

7163–7172, 2019.

[2] R. Arandjelovic, P. Gronát, A. Torii, T. Pajdla, and J. Sivic. NetVLAD:

CNN architecture for weakly supervised place recognition. IEEE Trans.
Pattern Anal. Mach. Intell., 40(6):1437–1451, 2018.

[3] A. Armagan, M. Hirzer, P. M. Roth, and V. Lepetit. Learning to

align semantic segmentation and 2.5D maps for geolocalization. In

Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4590–4597, 2017.

[4] C. Arth, C. Pirchheim, J. Ventura, D. Schmalstieg, and V. Lepetit.

Instant outdoor localization and SLAM initialization from 2.5D maps.

IEEE Trans. Vis. Comput. Graph., 21(11):1309–1318, 2015.

[5] X. Bai, Z. Luo, L. Zhou, H. Fu, L. Quan, and C. Tai. D3Feat: Joint

learning of dense detection and description of 3D local features. In

Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6358–6366, 2020.

[6] X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drum-

mond, and Z. Ge. Hierarchical neural architecture search for deep

stereo matching. In Proceedings of Annual Conference on Neural
Information Processing Systems, 2020.

[7] C. Choy, W. Dong, and V. Koltun. Deep global registration. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition,

pp. 2511–2520, 2020.

[8] C. Choy, J. Park, and V. Koltun. Fully convolutional geometric features.

In Proceedings of IEEE International Conference on Computer Vision,

pp. 8957–8965, 2019.

[9] C. B. Choy, J. Gwak, and S. Savarese. 4D spatio-temporal convnets:

Minkowski convolutional neural networks. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3075–

3084, 2019.

[10] H. Chu, A. C. Gallagher, and T. Chen. GPS refinement and camera ori-

entation estimation from a single image and a 2D map. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, pp.

171–178, 2014.

[11] Y. Ge, H. Wang, F. Zhu, R. Zhao, and H. Li. Self-supervising fine-

grained region similarities for large-scale image localization. In Pro-
ceedings of European Conference on Computer Vision, vol. 12349, pp.

369–386, 2020.

[12] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl.

Neural message passing for quantum chemistry. In Proceedings of
the 34th International Conference on Machine Learning, vol. 70 of

Proceedings of Machine Learning Research, pp. 1263–1272, 2017.

[13] Z. Gojcic, C. Zhou, J. D. Wegner, L. J. Guibas, and T. Birdal. Learning

multiview 3D point cloud registration. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1756–1766,

2020.

[14] S. Hausler, S. Garg, M. Xu, M. Milford, and T. Fischer. Patch-

NetVLAD: Multi-scale fusion of locally-global descriptors for place

recognition. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 2021.

[15] X. Huang, G. Mei, and J. Zhang. Feature-metric registration: A fast

semi-supervised approach for robust point cloud registration without

correspondences. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pp. 11363–11371, 2020.

[16] A. Irschara, C. Zach, J. Frahm, and H. Bischof. From structure-from-

motion point clouds to fast location recognition. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pp.

2599–2606, 2009.

[17] J. Komorowski. Minkloc3D: Point cloud based large-scale place recog-

nition. In Proceedings of the IEEE Winter Conference on Applications
of Computer Vision, pp. 1790–1799, 2021.

[18] H. M. Le, T. Do, T. Hoang, and N. Cheung. SDRSAC: Semidefinite-

based randomized approach for robust point cloud registration without

correspondences. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pp. 124–133, 2019.

[19] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. PointCNN: Convo-

lution on X-transformed points. In Proceedings of Advances in Neural
Information Processing Systems, pp. 828–838, 2018.

[20] Z. Li and N. Snavely. MegaDepth: Learning single-view depth pre-

diction from internet photos. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2041–2050, 2018.

[21] L. Liu, H. Li, and Y. Dai. Efficient global 2D-3D matching for cam-

era localization in a large-scale 3D map. In Proceedings of IEEE
International Conference on Computer Vision, pp. 2391–2400, 2017.

[22] R. Liu, J. Zhang, S. Chen, and C. Arth. Towards SLAM-based outdoor

localization using poor GPS and 2.5D building models. In Proceedings
of IEEE International Symposium on Mixed and Augmented Reality,

pp. 1–7, 2019.

[23] S. Liu, W. Chen, T. Li, and H. Li. Soft rasterizer: A differentiable

renderer for image-based 3D reasoning. In Proceedings of IEEE Inter-
national Conference on Computer Vision, pp. 7707–7716, 2019.

[24] Z. Liu, S. Zhou, C. Suo, P. Yin, W. Chen, H. Wang, H. Li, and Y. Liu.

LPD-Net: 3D point cloud learning for large-scale place recognition

and environment analysis. In Proceedings of IEEE International Con-
ference on Computer Vision, pp. 2831–2840, 2019.

[25] B. C. Matei, N. V. Valk, Z. Zhu, H. Cheng, and H. S. Sawhney. Image

to LIDAR matching for geotagging in urban environments. In Pro-
ceedings of IEEE Workshop on Applications of Computer Vision, pp.

413–420, 2013.

[26] N. Meierhold, A. Bienert, and A. Schmich. Line-based referencing

between images and laser scanner data for image-based point cloud

interpretation in a cad-environment. International Archives of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, 37, 01

2008.

[27] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: An open-source SLAM

system for monocular, stereo, and RGB-D cameras. IEEE Trans.
Robotics, 33(5):1255–1262, 2017.

[28] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep learning

on point sets for 3D classification and segmentation. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, pp.

77–85, 2017.

[29] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep hierarchical

feature learning on point sets in a metric space. In Proceedings of
Annual Conference on Neural Information Processing Systems, pp.

5099–5108, 2017.

[30] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional net-

works for biomedical image segmentation. In Proceedings of Medical
Image Computing and Computer-Assisted Intervention, vol. 9351, pp.

234–241, 2015.

[31] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms

(fpfh) for 3D registration. In Proceedings of IEEE International Con-
ference on Robotics and Automation, pp. 3212–3217, 2009.

[32] K. Sanford. Smoothing kinect depth frames in real-time. Digital image.
CodeProject, 24, 2012.

[33] P. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk. From coarse to

fine: Robust hierarchical localization at large scale. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, pp.

12716–12725, 2019.

[34] T. Sattler, B. Leibe, and L. Kobbelt. Efficient & effective prioritized

matching for large-scale image-based localization. IEEE Trans. Pattern
Anal. Mach. Intell., 39(9):1744–1756, 2017.

[35] J. L. Schönberger and J.-M. Frahm. Structure-from-Motion Revisited.

In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[36] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual

and physical simulation for autonomous vehicles. In Field and Service
Robotics, 2017.

[37] A. Taneja, L. Ballan, and M. Pollefeys. Registration of spherical

panoramic images with cadastral 3D models. In Proceedings of Interna-
tional Conference on 3D Imaging, Modeling, Processing, Visualization
& Transmission,, pp. 479–486, 2012.

[38] A. Tao, K. Sapra, and B. Catanzaro. Hierarchical multi-scale attention

for semantic segmentation. arXiv preprint arXiv:2005.10821, 2020.

[39] H. Thomas, C. R. Qi, J. Deschaud, B. Marcotegui, F. Goulette, and

L. J. Guibas. KPConv: Flexible and deformable convolution for point

clouds. In Proceedings of IEEE International Conference on Computer

88



Vision, pp. 6410–6419, 2019.

[40] C. Toft, E. Stenborg, L. Hammarstrand, L. Brynte, M. Pollefeys, T. Sat-

tler, and F. Kahl. Semantic match consistency for long-term visual

localization. In Proceedings of European Conference on Computer
Vision, vol. 11206, pp. 391–408.

[41] M. A. Uy and G. H. Lee. PointNetVLAD: Deep point cloud based

retrieval for large-scale place recognition. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4470–

4479, 2018.

[42] J. Vongkulbhisal, B. I. Ugalde, F. D. la Torre, and J. P. Costeira. Inverse

composition discriminative optimization for point cloud registration.

In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2993–3001, 2018.

[43] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.

Solomon. Dynamic graph CNN for learning on point clouds. ACM
Trans. Graph., 38(5):146:1–146:12, 2019.

[44] W. Wu, Z. Qi, and F. Li. PointConv: Deep convolutional networks on

3D point clouds. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pp. 9621–9630, 2019.

[45] J. Xie, M. Kiefel, M.-T. Sun, and A. Geiger. Semantic instance anno-

tation of street scenes by 3D to 2D label transfer. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[46] Q. Xu, X. Sun, C. Wu, P. Wang, and U. Neumann. Grid-GCN for fast

and scalable point cloud learning. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5660–5669, 2020.

[47] Q. Xu and W. Tao. Multi-scale geometric consistency guided multi-

view stereo. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5483–5492, 2019.

[48] W. Zhang and C. Xiao. PCAN: 3D attention map learning using

contextual information for point cloud based retrieval. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, pp.

12436–12445, 2019.

[49] Q. Zhou, J. Park, and V. Koltun. Fast global registration. In Proceedings
of European Conference on Computer Vision, vol. 9906, pp. 766–782,

2016.

[50] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. D. Newsam, A. Tao, and

B. Catanzaro. Improving semantic segmentation via video propagation

and label relaxation. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition,, pp. 8856–8865, 2019.

89


