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Neural 3D Scene Reconstruction With Indoor
Planar Priors
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Abstract—This paper addresses the challenge of reconstructing
3D indoor scenes from multi-view images. Many previous works
have shown impressive reconstruction results on textured objects,
but they still have difficulty in handling low-textured planar re-
gions, which are common in indoor scenes. An approach to solving
this issue is to incorporate planar constraints into the depth map
estimation in multi-view stereo-based methods, but the per-view
plane estimation and depth optimization lack both efficiency and
multi-view consistency. In this work, we show that the planar
constraints can be conveniently integrated into the recent implicit
neural representation-based reconstruction methods. Specifically,
we use an MLP network to represent the signed distance function as
the scene geometry. Based on the Manhattan-world assumption and
the Atlanta-world assumption, planar constraints are employed
to regularize the geometry in floor and wall regions predicted by
a 2D semantic segmentation network. To resolve the inaccurate
segmentation, we encode the semantics of 3D points with another
MLP and design a novel loss that jointly optimizes the scene
geometry and semantics in 3D space. Experiments on ScanNet
and 7-Scenes datasets show that the proposed method outperforms
previous methods by a large margin on 3D reconstruction quality.

Index Terms—3D reconstruction, implicit neural repre-
sentations, the manhattan-world assumption, the Atlanta-world
assumption.

1. INTRODUCTION

ECONSTRUCTING 3D scenes from multi-view images
R is a cornerstone of many applications such as augmented
reality, robotics, and autonomous driving. Given input images,
traditional methods [56], [57], [77] generally estimate the depth
map for each image based on the multi-view stereo (MVS)
algorithms and then fuse estimated depth maps into 3D models.
Although these methods achieve successful reconstruction in
most cases, they have difficulty in handling low-textured regions,
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Fig. 1. Mainidea. We represent the geometry and semantics of 3D scenes with
implicit neural representations, which enable the joint optimization of geometry
reconstruction and semantic segmentation in 3D space based on indoor planar
assumptions.

e.g., floors and walls of indoor scenes, due to the unreliable stereo
matching in these regions.

To improve the reconstruction of low-textured regions, a typi-
cal approach is leveraging the planar prior of man-made scenes,
which has long been explored in literature [10], [15], [16],
[54], [62], [68]. A renowned example is the Manhattan-world
assumption [10], i.e., the surfaces of man-made scenes should
be aligned with three dominant directions. These works either
use plane estimation as a postprocessing step to inpaint the
missing depth values in low-textured regions, or integrate planar
constraints in stereo matching or depth optimization. However,
all of them focus on optimizing per-view depth maps instead of
the full scene models in 3D space. As a result, depth estimation
and plane segmentation could still be inconsistent among views,
yielding suboptimal reconstruction quality as demonstrated by
our experimental results in Section V-C.

Thereis arecent trend to represent 3D scenes as implicit neural
representations [43], [59], [72] and learn the representations
from images with differentiable renderers. In particular, [65],
[71], [72] use a signed distance field (SDF) to represent the
scene and render it into images based on the sphere tracing or
volume rendering. Thanks to the well-defined surfaces of SDFs,
they recover high-quality 3D geometries from images. However,
these methods essentially rely on the multi-view photometric
consistency to learn the SDFs. So they still suffer from poor
performance in low-textured planar regions, as shown in Fig. 1,
as many plausible solutions may satisfy the photometric con-
straint in low-textured planar regions.

In this work, we show that the Manhattan-world assump-
tion [10] and the Atlanta-world assumption [55] can be
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conveniently integrated into the learning of implicit neural
representations of 3D indoor scenes and significantly improves
the reconstruction quality. Unlike previous MVS methods that
perform per-view depth optimization, implicit neural represen-
tations allow the joint representation and optimization of scene
geometry and semantics simultaneously in 3D space, yielding
globally-consistent reconstruction and segmentation. Specifi-
cally, we use an MLP network to predict signed distance, color
and semantic logits for any point in 3D space. The semantic
logits indicate the probability of a point being floor, wall or back-
ground, initialized by a 2D semantic segmentation network [6].
Similar to [71], we learn the signed distance and color fields by
comparing rendered images to input images based on volume
rendering. For the surface points on floors and walls, we enforce
their surface normals to respect the indoor planar assumption.
Considering the initial segmentation could be inaccurate, we
design a loss that simultaneously optimizes the semantic logits
along with the SDF. This loss effectively improves both the
scene reconstruction and semantic segmentation, as illustrated
in Fig. 1.

We evaluate our method on the ScanNet [11] and 7-
Scenes [58] datasets, which are widely-used datasets for 3D
indoor scene reconstruction. The experiments show that the
proposed approach outperforms the state-of-the-art methods in
terms of reconstruction quality by a large margin, especially in
planar regions. Furthermore, the joint optimization of semantics
and reconstruction improves the initial semantic segmentation
accuracy.

In summary, our contributions are as follows:

® A novel scene reconstruction approach that integrates the

indoor scene priors into the optimization of implicit neural
representations.

® A novel loss function that optimizes semantic labels along

with scene geometry.

e Significant gains of reconstruction quality compared to

state-of-the-art methods on ScanNet and 7-Scenes.

A preliminary version of this work appeared in CVPR
2022 [20]. Here, the work is extended in the following ways.
First, we extend our method to more general indoor scenes
with the Atlanta-world assumption by proposed adaptive nor-
mal clustering strategy. Second, inspired by [40], we integrate
spatial hash encoding into our method, which substantially
accelerate the training process. Third, additional experiments
on non-Manhattan scenes of ScanNet [11] are conducted to
evaluate our approach, we also evaluate our extended method
on Manhattan scenes to show backward compatibility of our
extension. Moreover, we perform detailed ablation studies to
validate the effectiveness of each extension.

II. RELATED WORK

MYVS: Many methods adopt a two-stage pipeline for multi-
view 3D reconstruction: first estimating the depth map for each
image based on MVS and then performing depth fusion [36],
[42] to obtain the final reconstruction results. Traditional MVS
methods [56], [57] are able to reconstruct very accurate 3D
shapes and have been used in many downstream applications
such as novel view synthesis [52], [53]. However, they tend
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to give poor performance on texture-less regions. A major
reason is that texture-less regions make dense feature matching
intractable. To overcome this problem, some works improve
the reconstruction pipeline with deep learning techniques. For
instance, [23], [69], [70] attempt to extract image features,
build cost volumes and use 3D CNNs to predict depth maps.
[91, [19] construct cost volumes in a coarse-to-fine manner and
can achieve high resolution results. Another line of works [16],
[54], [62], [68] utilize scene priors to help the reconstruction.
They observe that texture-less planar regions could be completed
using planar prior. [27], [34], [73] propose a depth-normal con-
sistency loss to improve training process. Instead of predicting
the depth map for each image, our method learns an implicit
neural representation, which can achieve more coherent and
accurate reconstruction.

Neural scene reconstruction: Neural scene reconstruction
methods predict the properties of points in the 3D space using
neural networks. Atlas [41] presents an end-to-end reconstruc-
tion pipeline which directly regresses truncated signed distance
function from the 3D feature volume. NeuralRecon [61] im-
proves the reconstruction speed through reconstructing local
surfaces for each fragment sequence. They represent scenes
as discrete voxels, resulting in the high memory consumption.
Recently, some methods [37], [38], [44], [45], [59], [65], [66],
[71] represent scenes with implicit neural functions and are able
to produce high-resolution reconstruction with low memory con-
sumption. [31], [43] propose an implicit differentiable renderer,
which enables learning 3D shapes from 2D images. IDR [72]
models view-dependent appearance and can be applied to non-
Lambertian surface reconstruction. Despite achieving impres-
sive performance, they need mask information to obtain the
reconstruction. Inspired by the success of NeRF [38], NeuS [65]
and VoISDF [71] attach volume rendering techniques to IDR and
eliminate the need for mask information. Mip-NeRF [3] pro-
poses amultiscale representation that addresses inherent aliasing
to achieve better performance. MonoSDF [75] leverages learned
monocular depth and normal prior to improve multi-view geo-
metric reconstruction and achieve appealing results. However,
its performance heavily depends on the quality of the learned
monocular depth and normal estimation. [47] also exploits the
Manhattan-world assumption for neural scene reconstruction.
Our work and [47] share similar ideas, but we address quite dif-
ferent problems. Our work expands the Manhattan-SDF from the
Manhattan-world assumption to the more general Atlanta-world
assumption, whereas [47] is still based on the Manhattan-world
assumption, extending the constraints to the areas beyond floors
and walls, e.g., tables.

Although they achieve amazing reconstruction results of
scenes with small scale and rich textures, we experimentally
find that these methods tend to produce poor results in large
scale indoor scenes with texture-less planar regions. In contrast,
our method utilizes semantic information to assist reconstruction
in texture-less planar regions.

Some methods attempt to accelerate NeRF in either ren-
dering speed or the optimization process. NSVF [30] utilizes
an explicit sparse voxel structure to skip empty voxels during
ray marching and achieve efficient rendering. KiloNeRF [51]
replaces the large MLP in NeRF with thousands of tiny MLPs.
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Overview of our method. We learn the geometry, appearance and semantics of 3D scenes with implicit neural representations. For an image pixel, we use
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differentiable volume rendering to render its pixel color and semantic probabilities, which are supervised with input images and semantic labels in 2D. To jointly
optimize the geometry and semantics, we introduce geometric constraints in planar regions based on the Manhattan-world assumption, which improves both the

reconstruction and segmentation accuracy.

FastNeRF [17] and SqueezeNeRF [64] factorize NeRF into sev-
eral subnetworks and build a cached representation which can be
efficiently queried during rendering. SNeRG [21] and PlenOc-
trees [74] convert NeRF to explicit volumetric representation
for inference, which supports real-time rendering. While these
methods can achieve high-speed rendering, they still require a
long time for training. Plenoxels [14] and DVGO [60] directly
adopt the explicit volumetric representation during training and
utilize coarse to fine strategy to achieve high resolution. Instant-
NGP [40] employs a multiresolution hash table for encoding and
lightweight MLPs as decoder, achieving unprecedentedly fast
training. TensoRF [5] and CCNeRF [63] utilize tensor decom-
position to factorize the feature grid into compact components
and lead to high memory efficiency, as well as fast training.
K-Planes [13] further models temporal information, thereby
enabling more effective reconstruction of dynamic scenes.

Semantic segmentation: Recently, learning-based methods
have achieved impressive progress on semantic segmentation.
FCN [33] applies fully convolution on the whole image to pro-
duce pixel-level image semantic segmentation results. Recent
methods [2], [8] attempt to aggregate high-resolution feature
maps using a learnable decoder to keep the detailed spatial in-
formation in the deep layers. Another line of works [6], [7], [76]
use dilated convolutions for large receptive fields. In addition
to 2D segmentation methods, a lot of works aim to achieve
semantic segmentation from 3D space. [4], [48], [49], [50]
develop networks to process different representations of 3D data
including point clouds and voxels. More recently, [78] proposes
to extend NeRF to encode semantics with radiance fields. The in-
trinsic multi-view consistency and smoothness of NeRF benefit
semantics, which enables label propagation, super-resolution,
denoising and several tasks. There are also some works [22],
[26], [28], [32] that learn semantic segmentation in both 2D
and 3D space and utilize the projection relation between images
and 3D scenes to facilitate the performance. Our method learns
3D semantics from 2D segmentation prediction [7] and jointly
optimizes semantics with geometry.

III. METHOD

Given multi-view images with camera poses of an indoor
scene, our goal is to reconstruct the high-quality scene geometry.
In this paper, we propose a novel approach as illustrated in
Fig. 2. We represent the scene geometry and appearance with
signed distance and color fields, which are learned from images

with volume rendering techniques (Section III-A). To improve
the reconstruction quality in texture-less regions (e.g., walls
and floors), we perform semantic segmentation to detect these
regions and apply the geometric constraints based on the indoor
planar assumption [10], [55] (Section III-B). To overcome the
inaccuracy of semantic segmentation, we additionally encode
the semantic information into the implicit scene representation
and jointly optimize the semantics together with the geometry
and appearance of the scene (Section III-C).

A. Learning Scene Representations From Images

In contrast to MVS methods [57], [69], we model the scene as
an implicit neural representation and learn it from images with a
differentiable renderer. Inspired by [65], [71], [72], we represent
the scene geometry and appearance with signed distance and
color fields. Specifically, given a 3D point x, the geometry model
maps it to a signed distance d(x), which is defined as

(d(x), 2(x)) = Fa(x), M

where Fy is implemented as an MLP network, and z(x) is
the geometry feature as in [72]. To approximate the radiance
function, the appearance model takes the spatial point x, the
view direction v, the normal n(x), and the geometry feature
z(x) as inputs and outputs color c(x), which is defined as

c(x) = Fe(x,v,n(x),z(x)), 2)

where we obtain the normal n(x) by computing the gradient of
the signed distance d(x) at point x as in [72].

Following [65], [71], we adopt volume rendering to learn
the scene representation networks from images. Specifically, to
render an image pixel, we sample N points {x; } along its camera
ray r. Then we predict the signed distance and color for each
point. To apply volume rendering techniques, we transform the
signed distance d(x) to the volume density o(x)

(1 — 7exp< (B))) if d(x) <0,
2 exp (_%) if d(x) > 0,

where [ is a learnable parameter. Then we accumulate the
densities and colors using numerical quadrature [38]

o(x) =

3

K
r) =Y Ti(l - exp(—0:5))c;, )
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Fig. 3. Qualitative ablations. (a) Training with only images. (b) Adding L.
(c) Adding Lgeo. (d) Replacing Lgeo With Lioint.

TABLE I
ABLATION STUDIES ON SCANNET

Acc] Compl Prect Recallf F-score?
VoISDF 0414 0.120 0.321 0.394 0.346
VoISDF-D 0.069 0.067 0.614 0.591 0.601
VoISDF-D-G  0.073  0.058 0.664  0.647 0.655
VoISDE-D-S  0.065 0.062 0.627 0.614 0.621
Ours 0.053 0.056 0.714 0.664 0.688

We report 3D reconstruction metrics. Our method has a notable improve-
ment in terms of both accuracy and completeness compared to our
baselines. Bold value means the best result among all methods.

where d; = [|x;41 — X;[|2 is the distance between adjacent

sampled points, and T; = exp(— E;;ll 0;j0;) denotes the

accumulated transmittance along the ray.
During training, we optimize the scene representation net-

works using multi-view images with photometric loss

Line = Y_||C) — C)|. ®)

reR

where C(r) is the ground-truth pixel color, and R is the set
of camera rays going through sampled pixels. Additionally, we
apply Eikonal loss [18] as suggested by [71], [72].

L= (IVydy)l, - 1), (©)

yey

where ) denotes the combination of points sampled from ran-
dom uniform space and surface points for pixels.

‘We observe that learning the scene representation from scratch
with only images has difficulty in reconstructing reasonable
geometries even in textured regions, as shown in Fig. 3(a). In
contrast, although depth estimation based methods [56], [57],
[77] tend to give incomplete reconstructions in low-textured
regions, they can reconstruct accurate point clouds of textured
regions from images. We propose to use depth maps from
multi-view stereo method [56] to assist the learning of the scene

representations
La=3,

reD

D(r) — D(r)], (M

where D is the set of camera rays going through image pixels
that have depth values estimated by [56], D(r) and D(r) are
rendered and input depth values, respectively. Fig. 3(b) presents
an example of the reconstruction result using the depth loss.
Although the depth loss improves the reconstruction quality,
the reconstruction performance is still limited in texture-less
regions, since input depth maps are incomplete in these regions.
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B. Scene Reconstruction With Planar Constraints

We observe that most texture-less planar regions lie on floors
and walls. While it is hard to reconstruct these regions directly,
we found strong prior exists in man-made scenes, which can be
formulated as geometric constraints on floors and walls. Specif-
ically, we adopt The Manhattan-world assumption [10] and The
Atlanta-world assumption [55], which have long been explored
in literature, and design corresponding geometric constraints.

1) The Manhattan-World Assumption: As pointed by the
Manhattan-world assumption [10], floors and walls of indoor
scenes generally align with three dominant directions. Motivated
by this, we propose to apply the geometric constraints to the
regions of floors and walls. Specifically, we first use a 2D
semantic segmentation network [7] to obtain the regions of floors
and walls. Then we apply loss functions to enforce the surface
points in a planar region to share the same normal direction.

For the supervision of floor regions, we assume that floors are
vertical to the z-axis following the Manhattan-world assump-
tion. We design the normal loss for a floor pixel as

Lp(r) =1 -n(x) 0y, (®)

where x,. is the surface intersection point of camera ray r, n(x;)
is the normal calculated as the gradient of signed distance d(x) at
point x,, and ny = (0,0, 1) is an upper unit vector that denotes
the assumed normal direction in the floor regions.

To supervise the wall regions, a learnable normal n,, is
introduced. We design a loss that enforces the normal directions
of surface points on walls to be either parallel or orthogonal with
the learnable normal n,,, which is defined for wall pixels as
min

Lo(r) =
(r) ie{~1,0,1}

|i - Il(Xr) ! nw| ) (9)
where the learnable normal n,, is initialized as (1,0, 0) and is
jointly optimized with network parameters during training. We
fix the last element of n,, as 0 to force it vertical to n. Finally,
we define the normal loss as

Loo =Y Lp(r)+ > Ly(r),

reF rew

(10)

where F and W are the sets of camera rays of image pixels
that are predicted as floor and wall regions by the semantic
segmentation network [7].

2) The Atlanta-World Assumption: While most man-made
scenes obey the Manhattan-world assumption, some scenarios
require a more general assumption. To make our method more
generalizable, we relax the constraints and adopt the Atlanta-
world assumption [55]. Similar to Manhattan-world assumption,
the Atlanta-world assumption [55] states that floors are vertical
to z-axis and walls are aligned with z-axis. But it assumes
that the relative angles among the walls are arbitrary. Due to
the unknown number of those arbitrary walls’ normal direc-
tions, it is difficult to define and jointly optimize the normal
directions with the SDF function as done in Manhattan-world
scenes in Section III-B1. Therefore, we propose a coarse-to-
fine adaptivenormalclusteringstrategy to automatically
learn the normal directions of walls.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 29,2024 at 15:06:12 UTC from IEEE Xplore. Restrictions apply.
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VoISDF VoISDF-D VoISDF-D-G VoISDF-D-S Ours Ground Truth
Fig. 4. Ablation studies on ScanNet. Our method can produce much more coherent reconstruction results compared to our baselines. Note that VoI[SDF-D-G can

reconstruct smoother and more complete planes compared to VolISDF and VoISDF-D. Ours can maintain the reconstruction quality of planes and also reconstruct

much more details in non-planar regions compared to VoISDF-D-G. The color indicates surface normal. Zoom in for details.

TABLE II
ABLATION STUDIES OF ADAPTIVE NORMAL CLUSTERING AND OUR ACCELERATION MODULE ON SCANNET
Normgl Acceleration Manhattan-world scenes Atlanta-world scenes .Training
clustering Acc]  Compl Prect Recallf F-scoref | Acc]l Comp| Prect Recallf F-scoref | time (hrs)]
X X 0.053 0.056 0.714 0.664 0.688 0.110 0.115 0.484 0.434 0.458 5.0
v X 0.048 0.052 0.718 0.673 0.695 0.107 0.110 0.498 0.445 0.470 5.0
v v 0.064 0.067 0.644 0.612 0.627 0.104 0.164 0.460 0.377 0.414 0.7

We evaluate the methods on both manhattan-world scenes and atlanta-world scenes. The experiments show that the design of adaptive normal clustering can extend our method
to atlanta-world scenes, which can also work well on manhattan-world scenes. Moreover, the acceleration module can achieve similar reconstruction quality with a much faster

training speed. Bold value means the best result among all methods.

TABLE III
ABLATION STUDIES OF DIFFERENT TYPES OF DEPTH SUPERVISION

Acc] Compl Prect Recallt F-scoref

COLMAP depth 0.053 0.056 0.714 0.664 0.688
OmniData depth  0.043  0.050 0.743  0.688 0.714

We report the reconstruction results by using depth from COLMAP and
depth predicted from monocular images by OmniData as our supervison.

Because of the unknown number of wall directions in the
Atlanta-world assumption, we first uniformly initialize a set of
learnable normal directions N, = {11, Nyo, Nys3, ... }. Ac-
cording to the Atlanta-world assumption, the wall normal loss
is reformulated as
min min

Ly =
ny,; €N, ie{-1,0,1}

(1)

i = n(xx) - Dy,
where the normal direction of a wall point n(x,) will query the
closest learnable normal direction in N, to calculate normal
loss. We optimize the neural network parameters and the
learnable normal directions in V,, together during training.

To ensure the reconstructed walls to be flat, \;, needs to be
compact. To this end, we record the number of times each normal
direction in \V,, being queried during the calculation of £,,, and
periodically discard normal directions queried infrequently. For

the remaining normal directions, we also conduct a periodic
Authorized licensed use limited to: Zhejiang University. Downloaded on

_ 4

Ground Truth Number=1 Number=3 Normal Clustering

Fig. 5. Ablation studies for adaptive normal clustering strategy on ScanNet.
We conduct the ablation studies for adaptive normal clustering strategy on
Atlanta-world scenes. Specifically, we reduce the number of learnable normal
directions to 1 and 3 and train the model without adaptive normal clustering
strategy for comparison.

merge operation which merges two normal directions if their
distance is smaller than a threshold. Please refer to Section IV
for more details.

C. Joint Optimization of Semantics and Geometry

Applying geometric constraints to floor and wall regions
improves the reconstruction quality. However, 2D semantic
December 29,2024 at 15:06:12 UTC from IEEE Xplore. Restrictions apply.
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TABLE IV
AVERAGED 3D RECONSTRUCTION METRICS ON MANHATTAN SCENES ON SCANNET AND 7-SCENES
Method ScanNet 7-Scenes
Acc] Compl) Prect Recallt F-scoref | Acc/ Compl PrecT Recallf F-scoref

COLMAP 0.047 0.235 0.711 0.441 0.537 0.069 0.417 0.536 0.202 0.289

COLMAP* | 0.396 0.081 0.271 0.595 0.368 0.670 0.215 0.116 0.215 0.149

ACMP 0.118 0.081 0.531 0.581 0.555 0.293 0.194 0.350 0.269 0.299

NeRF 0.735 0.177 0.131 0.290 0.176 0.573 0.321 0.159 0.085 0.083

UNISURF 0.554 0.164 0.212 0.362 0.267 0.407 0.136 0.195 0.301 0.231

NeuS 0.179 0.208 0.313 0.275 0.291 0.151 0.247 0.313 0.229 0.262

VoISDF 0.414 0.120 0.321 0.394 0.346 0.285 0.140 0.220 0.285 0.246

Ours 0.053 0.056 0.714 0.664 0.688 0.112 0.133 0.351 0.326 0.336

We compare our method with MVS and volume rendering based methods. The accuracy of our method ranks only second to COLMAP and

our completeness is on par with MVS methods with planar prior. Considering both accuracy and completeness, our method achieves the best

reconstruction performance. Bold value means the best result among all methods.

TABLE V Comparison of Hash and MLP
AVERAGED 3D RECONSTRUCTION METRICS OF NON-MANHATTAN
SCENES ON SCANNET 0.7 {|=== MLP_Acc
= Hash_Acc
Acc] Compl Prect Recallf  F-scoref 0.6
COLMAP 0.083 0.276 0.501 0.335 0.393
COLMAP*  0.486 0.161 0.170 0.376 0.234 0.5 4
ACMP 0.096 0.196 0.540 0.381 0.439 °
NeRF 0.390 0.370 0.166 0.164 0.154 §
UNISURF 0.359 0.320 0.213 0.197 0.190 2 041 ~ -
NeuS 0.192 0.433 0.255 0.175 0.206 7 Sm——— -
VoISDF 0.259 0.347 0.252 0.200 0.219 0.3 1 /
Ours 0.101 0.180 0.475 0.410 0.440 //
‘We compare our method with MVS and volume rendering based methods. The 0.2 4 V B o
accuracy of our method ranks only second to COLMAP and our completeness 7/
is on par with mvs methods with planar prior. Considering both accuracy and —_— e~
completeness, our method achieves the best reconstruction performance. 0.1 . . . . . . . .
Bold value means the best result among all methods. 25 5.0 75 1000 125 15.0 175 20.0
Time Cost (min)
segmentation results predicted by the network could be wrong in Fig. 6. Ablation studies for two architectures on ScanNet. Hash encoding-

some image regions, which leads to inaccurate reconstruction,
as shown in Fig. 3(c). To solve this problem, we propose to
optimize semantic labels in 3D together with scene geometry
and appearance.

Inspired by [78], we augment the neural scene representation
by additionally predicting semantic logits for each point in 3D
space. Let us denote semantic logits for x as s(x) € R3. The
semantic logits are defined as

s(x)

where Fy is an MLP network. By applying softmax function, the
logits can be transformed to the probabilities of point x being
floor, wall and other regions. Similar to image rendering, we
render the semantic logits into 2D image space with volume
rendering techniques. For an image pixel, its semantic logits are
obtained by

Fi(x), (12)

N

Z T;(1 — exp(—0:0;))s4,

i=1

S(r)

13)

where s; is the logits of sampled point x; along the camera ray
r. We forward the logits S into a softmax normalization layer
to compute the multi-class probabilities p s, p,, and py, denoting
the probabilities of the pixel being floor, wall and other regions.

During training, we integrate the multi-class probabilities into
the geometric losses proposed in Section III-B. To this end, we
improve the normal loss in (10) to a joint optimization loss,

based architecture accelerates the convergence speed, which achieves conver-
gence after 20 minutes of training with 20,000 iterations, while the MLP-based
architecture trains much slower.

which is defined as

Lisin =Y _pr()Ls(r) + > pu(r)Lu(r).

reF reWw

(14)

This loss function optimizes the scene representation in the
following way. Taking the floor region as an example, if the input
semantic label of r is correct, L (r) should decrease easily. But
if the input segmentation is wrong, £ (r) could vibrate during
training. To decrease ps(r)Ls(r), the gradient will push p(r)
to be small, which thus optimizes the semantic label. Note that
a trivial solution is that both p; and p,, vanish. To avoid this, we
also supervise the semantics with input semantic segmentation
results estimated by [7] using the cross entropy loss

Lo==> Y pel(r)logpr(r),

reR ke{f,w,b}

5)

where py(r) is the rendered probability for class & and py(r)
is 2D semantic segmentation prediction. Note that learning 3D
semantics with L naturally utilizes the multi-view consensus to
improve the accuracy of semantic scene segmentation, as shown
in [78].

Accelerating the optimization process: Similar to [65], [71],
[72], our method requires expensive time for optimization. To
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make our method more applicable, we adopt the multi-resolution
hash table [40] to reduce the training time. We construct mul-
tiresolution grids of L levels and a hash table consisting of T’
code. For each node y of the grids, we use a spatial hash function
h: Z% — Zq to index it to the hash table. The hash function is
defined as

3
h(y) = <€B yw) mod T, (16)
i=1

where ¢ denotes the bit-wise XOR operation and 7; are unique,
large prime numbers. After that, the encoding of an arbitrary
input coordinate x at level [ can be calculated by linear interpo-
lation from gird points using weight w; = x; — |x; . Lastly, we
concatenate the feature vector of x at each level, as well as the
encoded view direction v, and feed them into a tiny MLP to pre-
dict the values. The hash encoding and feature interpolation step
can be performed efficiently, and the tiny MLP costs much less
time than the original MLP, so we can significantly accelerate
the optimization process. Please refer to [40] for more details.

IV. IMPLEMENTATION DETAILS

We implement our method with PyTorch [46]. The network
training is performed on one NVIDIA TITAN Xp GPU. Images
are resized to 640 x 480 for both 2D semantic segmentation and
scene reconstruction. We take VolSDF [71] as our backbone,
and our basic version is constructed with a simple Multi-layer
perceptron neural network(MLP). Meanwhile, we implement
our acceleration version based on multi-resolution hash ta-
ble [39].

Initialization: We first normalize all cameras to be inside a
unit sphere and initialize network parameters following [1] so
that the SDF is approximated to a unit sphere, and we modify
the sign to make sure that the surface normal of the sphere is
facing inside.

Adaptive normal clustering strategy: We initialize 20 learn-
able normal directions at the beginning of the training, which
evenly lie in the range of [0, %ﬂ'] (only needing a quarter part of
search space, which is similar to (9)). During training, we record
the number of queries made to each normal direction in V,, and
determine the query frequency for each by dividing its query
count by the sum of query counts of all normal directions. To
implement periodic discard and merge, for every 50 iterations,
we sort all normal directions in descending order of query fre-
quency, select a subset of directions with the highest frequencies
such that their cumulative frequency accounts for 0.9 and discard
the others, then merge two normal directions if their L1 distance
is smaller than 0.055. We set these hyperparameters empirically
and find that our method is quite robust to them.

Multiresolution hash encoding: We set the number of lev-
els of the multiresolution grids as [ = 8, the resolution of the
coarsest level as N; = 16, the growth factor as b = 1.38, and
the size of the hash table as T = 2'7. We use 7, = 1,mp =
2654435761, m3 = 805459861 in the spatial hash function.

Training strategy: We use Adam optimizer [25] with learning
rate of 5e-4 to train the network with batches of 1,024 rays. Our
approach requires 5-hour optimization (50 k iterations) for each
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TABLE VI
QUANTITATIVE RESULTS OF SEMANTIC SEGMENTATION

IoUf 1+ ToU¥ 1 ToU™ ¢
DeepLabV3+ 0.532 0.475 0.503
Ours 0.624 0.518 0.571

IoU/ and IoU" denote IoU of floor and wall regions,
respectively. loU” denotes the average of loU/and loU".
Bold value means the best result among all methods.

scene without acceleration, which can be substantially reduced
to 40 minutes (20 k iterations) by employing the acceleration
module. After training, we use Marching Cubes algorithm [35]
for extracting surface mesh from the learned signed distance
function.

Semantic segmentation: We adopt DeepLabV3+ [7] from
Detectron2 [67] for implementing 2D semantic segmentation
network. We train the network on the training set of ScanNet [11]
according to the official train/val/test split.

V. EXPERIMENTS
A. Datasets, Metrics and Baselines

Datasets: We perform the experiments on ScanNet (V2) [11]
and 7-Scenes [58]. ScanNet is an RGB-D video dataset that
contains 1613 indoor scenes with 2.5 million views. It is anno-
tated with ground-truth camera poses, surface reconstructions,
and instance-level semantic segmentations. 7-Scenes consists of
RGB-D frames recorded by a handheld Kinect RGB-D camera.
It uses KinectFusion to obtain camera poses and dense 3D mod-
els. In our experiments, we train the 2D semantic segmentation
network on training set of ScanNet and perform the experiments
on 8 randomly selected scenes (4 from validation set of ScanNet
and 4 from 7-Scenes). Each scene contains 1 K-5 K views. We
uniformly sample one tenth views for reconstruction.

Metrics: For 3D reconstruction, we use RGB-D fusion results
as ground truth and evaluate our method using 5 standard metrics
defined in [41]: accuracy, completeness, precision, recall and F-
score. We consider F-score as the overall metric following [61].
The definitions of these metrics are detailed in the supplementary
material on our project page. For semantic segmentation, we
evaluate Intersection over Union (IoU) of floor and wall.

Baselines: (1) Classical MVS method: COLMAP [56]. We
use screened Poisson Surface reconstruction (sPSR) [24] to
reconstruct mesh from point clouds. (2) MVS methods with
plane fitting: COLMAP#*. There are several methods [16], [54]
that segment piece-wise plane segmentations in image space
and apply plane fitting to COLMAP. Since these methods have
not released code, we implement this baseline using state-of-
the-art piece-wise plane segmentation method [29] and denote
it as COLMAP*. (3) MVS method with plane regularization:
ACMP [68]. ACMP utilizes a probabilistic graphical model to
embed planar models into PatchMatch and proposes multi-view
aggregated matching cost to improve depth estimation in planar
regions. (4) State-of-the-art volume rendering based methods:
NeRF [38], UNISUREF [44], NeuS [65] and VoISDF [71]. For
these methods, we use Marching Cubes algorithm [35] to ex-
tract mesh. Since they (including our method) can reconstruct
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Ground Truth

Ours

3D reconstruction results on Manhattan scenes on ScanNet. Our method significantly outperforms COLMAP and volume rendering-based methods.

Furthermore, compared with methods that apply planar prior to MVS, we can produce more coherent reconstruction results especially in planar regions. Zoom in

for details.

unobserved regions which will be penalized in evaluation, we
render depth maps from predicted mesh and re-fuse them using
TSDF fusion [42] following [41].

B. Ablation Studies

We conduct the ablation studies on ScanNet. To evaluate the
effectiveness of our proposed geometric constraints based on
the Manhattan-world assumption as well as joint optimization
strategy, we train our basic model with four configurations:
(1) Raw setting of VoISDF: training network with only image
supervision, (2) VoISDF-D: we add depth supervision L, defined
in Section III-A, (3) VolSDF-D-G: in addition to VoISDF-D, we
addnormalloss L, defined in Section III-B, (4) VoISDF-D-S: in
addition to VoISDF-D, we learn semantics in 3D space, (5) Ours:
we learn semantics in 3D space and improve normal loss to joint
optimization loss Ljoin defined in Section III-C. We report quan-
titative results in Table I and provide qualitative results in Fig. 4.

Comparing VoISDF and VoISDF-D in Table I shows that
supervision from estimated sparse depth maps gives about 0.293
precision improvement and 0.197 recall improvement. Visual-
ization results in Fig. 4 show that there are improvements in
both planar and non-planar regions, but the reconstruction is
still noisy and incomplete. These results demonstrate that L4
can make network converge much better, but the reconstruction
results are still of low quality.

Then, we study how the normal loss affects the reconstruction
performance. Results in Table I show that VoISDF-D-G gives
0.050 precision improvement and 0.056 recall improvement.
As shown in visualization results in Fig. 4, VoISDF-D-G can
reconstruct smoother and more complete planes compared to
VolSDF-D, but some details of non-planar regions are missed.
These results demonstrate that L, can improve the reconstruc-
tion in planar regions, but the performance in non-planar regions
could be decreased due to misleading of wrong segmentation.

To validate the benefit of learning semantic fields, we com-
pare VolSDF-D and VoISDF-D-S. Results in Table I show that
VoISDF-D-S gives 0.013 precision improvement and 0.023 recall
improvement. These results demonstrate that learning semantics
in 3D space can also assist reconstruction.

To validate the benefit of our proposed joint optimization
manner, we compare VoISDF-D-G and Ours in Table 1. Sub-
stituting Lgeo With Ligine gives 0.050 precision improvement and
0.017 recall improvement. Visualization results in Fig. 4 show
that, while Ours can keep great reconstruction performance
in planar regions, the reconstruction in non-planar regions are
also improved notably. These results demonstrate that Ours can
achieve the most coherent reconstruction results.

We conducted an additional ablation experiment to show the
impact of different types of depth supervision on reconstruction
results. The results in Table III indicate that using the depth
predicted by OmniData [12] indeed improves the outcomes, but
the enhancement is not significant.
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COLMAP*

COLMAP ACMP

Fig. 8.

NeuS Ours Ground Truth

3D reconstruction results on non-Manhattan scenes on ScanNet. Our method significantly outperforms COLMAP and volume rendering-based methods.

Furthermore, compared with methods that apply planar prior to MVS, we can produce more coherent reconstruction results especially in planar regions. Zoom in

for details.

We also perform ablation studies on the proposed adap-
tive normal clustering strategy in both Manhattan-world and
Atlanta-world scenes. Results in Fig. 5 qualitatively show that
the learned normal directions can automatically fit the ground
truth normal directions of the walls and efficiently improve the
reconstruction quality of the Atlanta-world scenes. For compar-
ison, we reduce the number of learnable normal directions to
1 (Manhattan-assumption) and 3 and train the model without
adaptive normal clustering strategy, we found that they will
suffer degraded performance. When N = 1, the decline in re-
construction quality is primarily manifested in walls that do
not conform to the Manhattan-world assumption. These walls
are poorly reconstructed, often appearing jagged, while other
regions are almost unaffected. Therefore, the overall decrease
in reconstruction quality is not particularly significant. Results
in Table II quantitatively justify the effectiveness of our adaptive
normal clustering strategy in our experiments. It is shown that the
Atlanta-world assumption is more general and is also applicable
to the Manhattan scenes (as special cases of Atlanta scenes).
For non-Manhattan scenes, our Atlanta-based approach outper-
forms the Manhattan-based approach. For Manhattan scenes, the
Atlanta-based approach performs comparably, and in some cases
even slightly better than the Manhattan-based approach. Our
observation is that many Manhattan scenes do not strictly satisfy
the orthogonal constraint, and the Atlanta-world assumption

provides more flexibility, allowing for more accurate learning
of the normal directions of walls.

To show the effectiveness of the multi-resolution hash table,
we report the convergence curve in Fig. 6 and the final geometric
results in Table II. The results show that the hash-based model
impressively shorten the training time while sacrificing little
accuracy of reconstruction.

C. Comparisons With the State-of-the-Art Methods

3D reconstruction: For Manhattan-world scenes, we evaluate
3D geometry metrics on ScanNet and 7-Scenes. For Atlanta-
world scenes, we only evaluate on ScanNet due to there are no
Atlanta-world scene in 7-Scenes dataset. Averaged quantitative
results are shown in Tables IV and V. Please refer to the sup-
plementary material on our project page for detailed results on
individual scenes. Qualitative results on ScanNet are shown in
Figs. 7 and 8. By analyzing quantitative and qualitative results,
we found that our method significantly outperforms state-of-the-
art MVS and volume rendering based methods considering both
reconstruction precision and recall.

COLMAP can achieve extremely high precision as it filters
out reconstructed points which are inconsistent between
multiple views in fusion stage. However, this process sacrifices
recall. COLMAP* and ACMP can obviously complete some
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Image DeepLabV3+ Ours Ground Truth

Fig. 9. Semantic segmentation results. We compare our semantic segmenta-
tion results with DeepLabV3+. We mask pixels of floor and wall labels with
blue and red.

VoISDF

Ours GT Mesh

Fig. 10. Novel view synthesis results. We select novel views relatively far
from training views for the qualitative comparison. Our method produces better
rendering results compared to NeRF and VoISDF. Due to the lack of ground
truth images in novel views, we render GT mesh in these views for reference.

missing areas and achieve higher recall by applying planar
prior to COLMAP. However, their optimization strategy can not
guarantee the consistency of estimated depth maps, resulting
in noisy reconstructions. The performance of NeRF is poor
since the volume density representation has not sufficient
constraint on geometry. Other volume rendering based methods
— UNISUREF, NeuS and VolSDF perform better than NeRF as
occupancy and signed distance function have better surface
constraints. However, they still struggle in reconstructing
accurate and complete geometry.

Semantic segmentation: We render our learned semantics
to image space and evaluate semantic segmentation metrics
on ScanNet. We compare our method with DeepLabV3+, and
report quantitative results in Table VI. Qualitative results are
shown in Fig. 9. Quantitatively, our metrics in both floor and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 9, SEPTEMBER 2024

wall regions are improved distinctly compared to DeepLabV3+.
Visualization results show that semantic segmentation results
predicted by DeepLabV3+ have non-negligible noise especially
near boundaries. The noise is ruleless and generally inconsistent
between different views. By learning semantics in 3D space,
our method can naturally combine multi-view information and
improve consistency so that the noise could be remitted notably.
However, there are also some misclassified pixels that cannot be
easily corrected using multi-view consistency. Taking the last
row of Fig. 9 for example, the bottom of wall has different color
with the main part of the wall, so that some pixels are wrongly
recognized as floor. This kind of phenomenon can occur in every
view and is different from the inconsistent noise. By optimizing
semantics together with geometry, these misclassified pixels
could be corrected.

Novel view synthesis: Our accurate reconstruction results
enable us to render high-quality images under novel views.
To evaluate novel view synthesis, we select some novel views
away from training views and render images. The qualitative
comparison are shown in Fig. 10.

VI. CONCLUSION

In this paper, we introduced a novel indoor scene reconstruc-
tion method based on the Manhattan-world and Atlanta-world
assumption. The key idea is to utilize semantic information in
planar regions to guide geometry reconstruction. Our method
learns 3D semantics from 2D segmentation results, and jointly
optimizes 3D semantics with geometry to improve the robust-
ness against inaccurate 2D segmentation. Experiments showed
that the proposed method was able to reconstruct accurate and
complete planes while maintaining details of non-planar regions,
and significantly outperformed the state-of-the-art methods on
public datasets.
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