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Learning Dense Correspondences for Non-Rigid
Point Clouds With Two-Stage Regression

Kangkan Wang , Member, IEEE, Guofeng Zhang , Member, IEEE, Huayu Zheng, and Jian Yang, Member, IEEE

Abstract— We propose a novel deep learning method to predict
dense correspondences for partial point clouds of non-rigidly
deformable targets. Dense correspondences are learned in the
form of vertex displacements of a template mesh towards the
point clouds. A two-stage regression framework is proposed
to estimate accurate displacement vectors, including the global
and local regression networks. Specifically, the global regression
network estimates global displacements from the global features
of the template mesh and point clouds through a graph CNN
based hierarchical encoder-decoder network. Based on the initial
displacements, a mesh can be generated that fits to the point
clouds roughly. In the local regression network, a local feature
embedding layer fuses local features of point clouds with graph
features on the generated mesh through an attention mechanism.
Consequently, the embedded local features are employed to refine
the correspondences in local regions of the targets by predicting
the increments of vertex displacements. Our method is further
generalized to correspondence estimation on unseen real data
with a robust fine-tuning method. The experimental results on
diverse datasets of various deformable subjects (e.g., human bod-
ies, animals, and hands) demonstrate that the proposed approach
can accurately and robustly estimate dense correspondences from
non-rigid point clouds.

Index Terms— Dense correspondences, deep learning, non-rigid
point clouds, weak supervision.
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I. INTRODUCTION

F INDING dense correspondences [10], [28], [33], [35]
for 3D shapes is one of the fundamental problems in

computer vision and computer graphics, which is a signif-
icant building block in many promising applications such
as games, robotics, and virtual reality. With the increasing
availability of 3D point clouds, dense correspondence esti-
mation from non-rigid point clouds has become paramount
in many research topics such as multi-view stereo [53], object
retrieval [19], 3D reconstruction [26], and motion tracking [5],
[17], [52]. However, due to various factors such as variations
of deformable subjects, incomplete 3D data and viewpoint
changes of cameras, estimating dense correspondences from
point clouds still remains challenging.

Most methods [5], [17], [54], [55] obtain dense point
correspondences by registering a template model to input
point clouds through non-rigid deformation techniques. These
methods work on a sequence of frames rather than a sin-
gle frame as the nearest neighboring searching method for
point correspondences is only effective for small motions
between neighboring frames. In the cases of large discrepancy
between a single frame of point clouds and the template
model, the found correspondences are prone to errors. The
model fitting methods [6], [16], [30] first detect 2D joint
locations and then fit a statistical model to the detected joints
for the correspondences. Since the model fitting methods
highly rely on joint estimation, it is difficult to handle the
cases with strong occlusions or large poses, leading to the
high correspondence errors. The deep learning method [52]
directly predicts dense correspondences between 3D shapes of
human bodies by converting the correspondence problem into
a classification problem for multiple segmentations of the 3D
human body. Nonetheless, due to the inconsistency between
multiple segmentations, the predicted correspondences might
be inaccurate from a single depth image.

Descriptor-based methods [2], [9], [28], [43] can establish
correspondences between 3D shapes by matching local geom-
etry descriptors. However, low resolution, random noise, and
partial data pose significant challenge for computing local
geometric features, which requires tedious manual efforts to
remove outliers. By taking the descriptors [2], [43] as the
inputs, non-rigid 3D shapes can be matched by estimating the
functional maps [18], [27], [36], [41]. These methods general-
ize poorly across datasets due to reliance on the hand-crafted
input descriptors. The recent method [14] learns geometry fea-
tures from raw 3D shapes which improves the generalization
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Fig. 1. Dense correspondences predicted using our method on SCAPE [1], BUFF [57], and Kinect data. Correspondence is visualized by the colors mapped
from a template model. The input to our method is the sampled point clouds from a single depth image.

power, but it requires ground truth correspondences for real
dataset. Affected by the input descriptors, the performance
of these methods is sensitive to arbitrary deformations of
modeling targets and data occlusion from a single view.

Recently, 3D-CODED [15] estimates the 3D correspon-
dences by predicting the shape deformation of a template into
the input shape. Since the network of 3D-CODED is trained
on synthetic data and domain gap exists between real data
and synthetic data, the accuracy and robustness are limited
when handling real point clouds. Compared to 3D-CODED,
our method can predict dense correspondences for deformable
subjects more robustly and accurately especially on the unseen
point clouds. Other methods [3], [29], [51] find the correspon-
dences by estimating the 3D flow between two consecutive
frames. However, these methods mainly focus on handling
small or rigid motions.

In this paper, we propose a novel deep learning framework
to predict dense correspondences for partial point clouds
of non-rigidly deformable targets. The correspondences are
estimated in the form of dense 3D displacement vectors of
template vertices to the point clouds. The proposed frame-
work consists of two stages, i.e. the global regression net-
work and local regression network. The global regression
network predicts the global displacements with global features
of the template model and point clouds, while the local
regression network estimates the displacement increments by
exploiting local features of point clouds using an attention-
based mechanism. To handle unseen real data, we pro-
pose a weakly-supervised model estimation method to create
pseudo-ground truth correspondences which are provided to
the two-stage network as full 3D supervision. With the initially
predicted correspondences, the proposed model estimation
method can robustly recover accurate 3D models that are
consistent with the real data. The correspondences from the
recovered 3D models are then used to fine-tune the networks,
making our method generalize well to correspondence estima-
tion on real data. Fig. 1 shows some correspondence results
of our approach on various real dataset of human bodies. The
experimental results on diverse datasets of different subjects
(e.g., human bodies, animals, and hands) demonstrate the
effectiveness of the proposed dense correspondence method
for non-rigid point clouds. In summary, the main contributions
of our method are as follows:

• We propose a novel deep learning method to predict dense
correspondences of non-rigidly deformable targets by
learning the vertex displacements of a template mesh to

the partial point clouds. Our method can achieve accurate
estimation of dense correspondences and outperform the
state-of-the-arts. We will release our source code and
trained models to benefit the community.

• We propose a two-stage regression framework to esti-
mate dense displacements. The global regression network
learns geometry features of the template mesh and point
clouds to predict global displacements; the local regres-
sion network refines the displacements locally with the
embedded local features between the point clouds and
the mesh generated from the initial displacements.

• A local feature embedding technique is proposed with
an attention mechanism to fuse local deep features of
point clouds with geometry features of the graphs which
effectively improves the correspondence accuracy in the
local regions of point clouds.

• A robust fine-tuning method is proposed to generalize
our method to handle real data. The pseudo-ground
truth correspondences are generated for real data with a
weakly-supervised model estimation method and are then
supplied to the two-stage regression network as the full
supervision.

II. RELATED WORK

A. Dense Correspondences From 3D Model Estimation

3D model estimation aims to recover the 3D models from
the input data. Dense correspondences can then be estab-
lished from the registration results between the recovered
3D models and the input data. Most methods of 3D model
estimation from a single color image match a parametric
model [1], [6], [16], [30] to a set of observations from the
input image, such as keypoints and silhouettes. For example,
SMPLify [6] estimates a full 3D body mesh from a single
color image by first predicting the 2D body joint locations
and then fitting the statistical SMPL model [30] to the 2D
joints. Deep learning based methods [21], [23], [37], [45],
[56] regress the parametric model directly from a single color
image. Kanazawa et al. [21] first extracts features on the color
image and then infers the SMPL parameters of human bodies
from the features through a 3D regression network. A mesh
convolution method [23] first attaches the extracted features
from the input color image to 3D vertex coordinates of a
template mesh and then predicts coordinates of mesh vertices
using a convolutional mesh regression.

Learning based methods are proposed to build dense
correspondences for a single depth image. Metric regression
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forest is adopted in [38] to directly predict correspondences
for human bodies from depth images. Wei et al. [52] trains
smoothly changed feature descriptors over depth images of
human bodies and builds dense correspondences by matching
the learned feature descriptors. LBS Autoencoder [25] matches
articulated mesh models to point clouds by learning the
linear-blend skinning deformation, which is mainly proposed
for point clouds with complete 3D shape but not partial
data. Optimization based models [54], [55] primarily handle
a sequence of depth images since they rely on information
of neighboring frames to build point correspondences for
each frame. Our recent work [47] can predict the 3D body
model sequence from an input sequence of partial point clouds
of a human body with a spatial-temporal mesh attention
convolution network.

B. Correspondence Estimation Based on Feature Descriptors

Discriminative feature descriptors play a fundamental role in
building correspondences for deformable shapes. The spectral
descriptors [2], [9], [28], [43] are derived from the eigenval-
ues and eigenvectors of the Laplace-Beltrami operator [4],
thus allowing to deal with any shape representation, e.g.
meshes, point clouds, or graphs. Geometric deep learning
methods [9], [10], [33], [35] generalizes deep learning tech-
niques to non-Euclidean structured data such as graphs and
manifolds which can be applied for 3D shape correspondence
estimation. For example, MoNet [35] learns task-specific fea-
tures on non-Euclidean domains with mixture model networks
which formulates previously proposed Geodesic CNN [33] and
Anisotropic CNN [10] as particular instances of [35]. These
methods can obtain robust descriptors for isometric and non-
isometric deformations, but the performance degrades signif-
icantly when handling partial point clouds due to irregular
structure and data missing.

Based on the pre-computed features [2], [43], pointwise
correspondences can be found among non-rigid shapes by
computing functional maps [36]. The functional map esti-
mation methods are fundamentally error prone due to the
initial choice of descriptor functions. To alleviate this depen-
dence, FMNet [27] learns a transformation of initial descrip-
tors to compute more optimal functional map, but requiring
ground truth point-wise maps. Following the similar func-
tional map framework, the unsupervised versions are pro-
posed by enforcing structural properties on the computed
map (SURFMNet [41]) or replacing supervision of pointwise
correspondences with standard geometric quantities (Unsup
FMNet [18]). The recent method [14] learns the features
directly from raw shape geometry and has better generalization
power than current descriptor-based learning methods. Since
these methods need compute the feature descriptors on the
partial point clouds, the performance of these methods is very
sensitive to arbitrarily non-rigid deformations and partial data
under view occlusion.

C. 3D Correspondence Estimation for Point Clouds

Recent works estimate the correspondences by learning 3D
flow from point clouds using deep neural networks. Scene flow

can be predicted in [3], [29] from unstructured point clouds by
learning geometric similarities and spatial relations of points,
but these methods are limited to handle small motions between
neighboring frames. The other kinds of methods [31], [50],
[51] build 3D correspondences by finding the transformation
of registering one point cloud into another. These registration
estimation methods are mainly proposed for dealing with rigid
point clouds. To the best of our knowledge, there are few
methods that directly learn dense 3D flow for non-rigidly
deformable point clouds.

3D-CODED [15] builds dense 3D correspondences for
non-rigidly deformable point clouds with an encoder-decoder
architecture. From the extracted global features, this method
estimates the deformations of a template model into the
point clouds by regressing coordinates of model vertices.
When testing on real partial point clouds, we find in the
experiments that the predicted models of their network are
prone to be unreasonably distorted and significantly incon-
sistent with the input shapes due to the lack of real training
data. In 3D-CODED, the initially predicted models are refined
through an additional optimization step by minimizing the
Chamfer distance between the input and transformed tem-
plate. However, as stated in 3D-CODED, the quality of the
initialization (the prediction of their network) is crucial for
the deformation optimization. That is the reason why the
deformation optimization is very likely to fail when Chamfer
distances are computed incorrectly from the unreliable initial
models. In this paper, we sufficiently exploit local geometry
features on the point clouds with an attention strategy to
improve the correspondence accuracy and successfully handle
unseen real point clouds with a robust fine-tuning method.

III. PROPOSED APPROACH

Given a template model and the partial point clouds of
deformable targets, our method accurately predicts the corre-
sponding point for each template vertex in the point clouds by
estimating 3D displacement vectors of each vertex. We choose
the human body as the deformable target to present our
approach which is a popular modeling subject in the areas
of computer vision such as 3D human pose and shape esti-
mation [21], [47], [55]. It is noted that our approach can
be applied to handle general non-rigidly deformable targets.
In the experiments, we demonstrate the effectiveness of our
method on other targets such as animals and hands. We use the
Skinned Multi-Person Linear model (SMPL) [30] to represent
the template model of human bodies. The input point clouds
can be human bodies with arbitrary non-rigid deformations.
Fig. 2 illustrates the framework of the proposed method. Our
framework consists of two stages, i.e., the global regression
network and local regression network. We adopt a graph CNN
based hierarchical encoder-decoder structure for both two
regression networks. The global regression network estimates
the global displacements based on the concatenated global fea-
tures extracted on the template model and point clouds. Based
on the initial displacements, the template is registered to the
point clouds globally. Consequently, with the registered mesh,
the local regression network further refines the displacements
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Fig. 2. Overview of the proposed framework. Our two-stage regression method can predict dense correspondences in the form of 3D displacements between
vertices of a template model and the input points. Please refer to Sect. III for detailed description. The global and local regression networks are firstly
trained on synthetic data; and then fine-tuned on real dataset without 3D ground truth correspondences by introducing pseudo-ground truth correspondences
through model estimation. Initialized from the predicted mesh on real data, the model estimation recovers the parametric model that fits to the input points. The
recovered parametric model is then used as the pseudo-ground truth correspondences to fine-tune both global and local regression networks in a fully-supervised
manner.

in the local regions of point clouds. In the local regression
network, the local feature embedding layer fuses the local
features of point clouds with that of the registered mesh in
an attention strategy to estimate incremental displacements
for template vertices. To further effectively handle real data,
pseudo-ground truth correspondences are first generated using
a robust model estimation method and then utilized as the
supervision to fine-tune the two-stage network.

A. Geometric Feature Learning

1) Spectral Graph CNN: We adopt the Chebyshev spectral
Graph CNN [13] to capture geometry features on the mesh
and estimate 3D displacements from the extracted features.
Compared to the multi-layer perceptrons of estimating coordi-
nates of model vertices [15], graph CNN can regress more
smooth 3D shapes by implicitly utilizing mesh topology,
as demonstrated in the recent works [23], [47]. The 3D
template mesh is defined as M = (V, A), where V = {vi }n

i=1
is a set of n vertices, A ∈ R

n×n is the adjacency matrix
(Aij = 1, an edge connecting vertices i and j ; Aij = 0,
otherwise). The normalized graph Laplacian is computed as
L = In − D−1/2 AD−1/2, where D = diag(� j Ai j ) is the
diagonal degree matrix and In is the identity matrix. Given
f = ( f 1, · · · , f n)

T ∈ R
n×p represent the input features of n

vertices with p-dimension of feature. The mesh convolution
is formulated as a recursive Chebyshev polynomial of order
K which captures geometry features of the K -ring neighbors
for each vertex. The learned features f ′ are defined as:

f ′ =
K−1∑

k=0

Tk(L̃) · f · θ k, (1)

where Tk ∈ R
n×n is the Chebyshev polynomial of order k that

is computed recursively as Tk(x) = 2xTk−1(x)−Tk−2(x) with
T0 = 1 and T1 = x, L̃ = 2L/λmax − In is the rescaled Lapla-
cian, λmax is the maximum eigenvalue of L, and f ′ ∈ R

n×q

is the output q-dimensional feature. Chebyshev coefficients
θ k ∈ R

p×q are trainable parameters in the graph convolutional
layer. We test the performance of our method with different
values of the order K . The average correspondence errors
(in mm) are 19.4, 18.1, 18.3, 29.7 for K = {1, 2, 4, 6} on
SURREAL dataset [46], respectively. We can see that the
best accuracy is obtained when K = 2. High value of K
involves much redundant feature mapping at a coarse graph
(e.g. 27 vertices), which might lead to larger errors. Thus,
we set K = 2 in our experiments.

2) Feature Extraction on Point Clouds: We use a similar
framework of PointNet++ [39] to extract geometry features
of point clouds which is composed by several set abstraction
levels. The inputs are a set of points X = {x1, x2, · · · , xn}
and the corresponding point features f = { f 1, f 2, · · · , f n}.
In each set abstraction level, farthest point sampling is firstly
performed to sample m centroid points Y = { y1, y2, · · · , ym}
which cover the entire point set. For each centroid point yi ,
we then find k neighboring points among all points within
a radius r . The k neighboring points of each centroid point
form point sets in a local region. Both k and r are constant
values for all the centroid points in the same set abstraction
level. In the higher set abstraction level, we enlarge r and
increase k accordingly. From m local regions of all centroid
points, we use a multi-layer perceptron network to extract
features for each point. Finally, a max pooling operator is
applied in each local region to aggregate information from all
the neighboring points to extract local features for point yi .
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Fig. 3. Illustration of local feature embedding. We extract local features in the neighborhood points of each vertex on the registered mesh through an attention
mechanism. The local features are then embedded with graph features which are taken as the input to feature learning of graph convolution.

After several successive set abstraction levels, a global feature
vector can be extracted over the whole point clouds.

B. Global Regression Network

The global regression predicts global 3D displacement vec-
tors for template vertices with a graph CNN based hierarchical
encoder-decoder network. The encoder network extracts the
global features on the template model M and the point
clouds X . In order to capture both global and local geometry
context, we apply graph CNN on multi-resolutions of the tem-
plate mesh hierarchically. We adopt the mesh sampling method
of [40] to generate meshes of different resolutions. The mesh
downsampling and upsampling operations are performed by
left-multiplying the downsampling and upsampling matrices
with the mesh, respectively. The mesh at each resolution has
a fixed topology, and downsampling and upsampling matrices
are precomputed at different resolutions using the sampling
method proposed in [40]. By performing the graph convolution
and downsampling iteratively, the graph features are finally
mapped to a global feature vector F1(M), where F1 is a
feature mapping function. We apply successive set abstraction
levels in PointNet++ to iteratively downsample the point
clouds and capture local features in local regions of points.
Through the max pooling operator over the features of all
points in the final level, a global feature vector F2(X) is
obtained from the point clouds X , where F2 is a feature
mapping function.

From the concatenated global features [F1(M); F2(X)],
the decoder network estimates the 3D displacement vectors
between the template vertices and corresponding points:

G : [F1(M); F2(X)] → D, (2)

where G is the mapping function of the decoder network,
D ∈ R

n×3 denotes the 3D displacement vectors of all n
vertices. The decoder network estimates the 3D displacements
with a hierarchical graph CNN in a coarse-to-fine manner. The
concatenated features are firstly mapped to graph features of
the coarsest mesh using a fully connected layer. Graph CNN
and mesh upsampling are then applied iteratively to regress
the displacement vectors using the following loss:

Lglobal =
n∑

i=1

‖ v̂i + d i − pi ‖2
2, (3)

where v̂i is the 3D coordinates of the i -th vertex on the
template, d i is the regressed 3D displacement vector to the

corresponding point of the i -th vertex, and pi is the ground
truth 3D coordinates of the corresponding point.

C. Local Regression Network

After the global regression, the initial corresponding points
are predicted for all template vertices. A new mesh M ′ can be
generated with the same topology as the template M which is
registered to the point clouds X roughly. In the global regres-
sion, we only utilize the global geometric features extracted
on the entire point clouds, but ignore many local geometric
features in local parts of point clouds. Thus, correspondences
are likely to be inaccurate in the local regions. Based on
the predicted mesh M ′, the local regression network aims to
estimate more accurate vertex displacements.

We propose a local feature embedding layer to fuse local
features of point clouds X with graph features of mesh M ′.
Fig. 3 illustrates the process of our local feature embedding.
With the registered mesh M ′, we can exploit local features
of the input point clouds around the vertices of mesh M ′.
For each vertex vi on mesh M ′, we search the neighboring
point set X i in the point clouds within a radius r around vi .
We then apply a MLP to encode deep features for each point
in the neighborhood X i as:

f ′
j = M L P( f j , x j − vi ), {x j | x j ∈ X i }, (4)

where f j is the input feature of point x j in X i , and f ′
j is

the output feature of x j .
To capture distinctive features in the neighborhoods,

we adopt an attention mechanism to learn the relationship of
different points in X i with vi . The attentional weights of vi

with its neighboring points x j are computed as follows:
αi j = α([ f ′

j − gi , x j − vi , r j ni ]), j ∈ Ni , (5)

where gi is the local geometry feature of the vertex vi ,
Ni is the neighbor set of vertex vi , and r j and ni are the
normals of x j and vi , respectively. Besides the feature vector
differences, we also consider the position distances and normal
angles between two points to estimate the point relationship,
which is similar to the idea of point correspondence finding.
Then, feature vector differences, position differences, and dot
products of normals are concatenated as the input features,
and the attentional weights of vertex vi are regressed by the
attention mechanism α, which is a MLP in our experiments.

To handle the neighbors across different vertices and spatial
scales, the attentional weights are normalized across all the
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Fig. 4. An illustration of model estimation that creates pseudo labels for real data. Based on the predictions of the two-stage regression, we estimate the 3D
models that fit to the input points through initial estimation and refinement of parametric models. The vertex coordinates of 3D models can then be used as
pseudo-ground truth correspondences to fine-tune the two-stage regression network.

neighbors of vertex vi as follows:
α̃i j = so f tmax j (αi j ) = ex p(αi j )∑

s∈Ni
ex p(αis )

, (6)

where αi j is the attentional weight vector of point x j in
neighborhood X i relative to vertex vi . The local features of
X i are computed by a linear combination of the neighboring
point features with the normalized attentional weights:

h̃i =
∑

j∈Ni

α̃i j f ′
j + bi , (7)

where bi ∈ R
F is a learnable bias. The extracted local

features h̃i in neighborhood X i are then concatenated with the
geometry feature gi of vertex vi . The fused local features are
taken as the input graph features to learn deep features on the
mesh M ′ using hierarchical graph CNN. In ablation studies,
we perform the local feature embedding layer at different mesh
resolutions and find that it is more effective to apply it after
the graph convolution layer on the full mesh. In this way, local
features of the point clouds can be exploited more sufficiently.

In the local regression network, we employ a graph CNN
based hierarchical encoder-decoder structure similar to the
global regression. The global features of point clouds are
extracted and concatenated with the learned deep features
of M ′. A hierarchical graph CNN is then applied to estimate
the increments of 3D displacement vectors from the newly
concatenated features with the following loss:

Llocal =
n∑

i=1

‖ vi + �d i − pi ‖2
2, (8)

where vi is the 3D coordinates of the i -th vertex on the initially
predicted mesh M ′, �di is the regressed increment of 3D
displacement vector to the corresponding point of vi , and pi
denotes the ground truth correspondences as Eq. (3).

D. Fine-Tuning on Real Data
Due to the domain gap between the real data and the

synthetic training data, the trained two-stage network may fail
to work well on the real data (e.g. depths captured by Kinect).
In this section, we generalize our method to real data with
a robust fine-tuning method. Based on the initially predicted
correspondences P̃ for the input point clouds, we propose a
model estimation method to recover the parametric models
that fit to the point clouds robustly and accurately. Then,
by supplying the 3D models of these real data to the network
as full 3D supervision, we fine-tune the two-stage regression to
improve its performance. An illustration of model estimation is
shown in Fig. 4 which creates the pseudo-ground truth corre-
spondences for the real data. The parametric SMPL model [30]
of human bodies is represented using a 85 dimensional vector
� = (θ ,β, R, t), where β ∈ R

10, θ ∈ R
69 and (R, t) denote

the shape parameters, pose parameters and the global rigid
motion of the human body, respectively. For other deformable
targets, we can adopt the corresponding parametric models like
SMAL [59] of animals and MANO [24] of hands.

From the initial correspondences P̃ , we employ fully con-
nected networks to learn the initial parametric model V (�̃)
using the following loss:

Einit (�̃) = 1

n

n∑

i

‖V (�̃)i − p̃i‖2
2 + δL prior , (9)

where V (�̃)i is the i -th vertex of the initial parametric
model V (�̃), p̃i is the predicted corresponding point of the
i -th vertex, and δ is a regularization parameter. L prior is an
adversarial prior [21] to prevent producing implausible 3D
models. For animals and hands, we utilize the prior loss
defined in [59] and [24], respectively. Due to the domain
gap, unnatural meshes are easily predicted on real data which
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have an abnormal shape of human bodies. This problem is
not solved in the related works like [15]. In 3D-CODED [15],
the optimization step requires a reasonable initialization and
may fail to correct the abnormal shape. In our model estima-
tion, the normal body shape can be recovered effectively that
fit to the unreasonable predictions. As shown in Fig. 9 (b),
the models generated from the predicted correspondences are
distorted seriously. The parametric models can successfully
rectify the unnatural deformations, as shown in Fig. 9 (c).
It should be noted that we only use the predicted corre-
spondences as the supervised signals during the initial model
estimation.

By aligning the initial model V (�̃) with the correspon-
dences in the input point clouds, we can estimate the para-
metric model accurately that is consistent with the point
clouds. Since the input point clouds are partial, the nearest
neighboring point found by the Chamfer distance [15] may be
incorrect. To solve this problem, we define a distance measure
F between the input point p and the model vertex v as [49]:

F(p, v) = max(1 − ‖ x p − xv ‖
θx

, 0) · max(npnv , 0), (10)

where x p and np denote the position and normal of point p
respectively, and xv and nv denote the position and normal
of model vertex v, respectively. The angles of point normals
can effectively prune erroneous correspondences under partial
point clouds. For each point p in the input points, we can
find the vertex ṽ from the estimated model to maximize F .
If F(p, ṽ) > 0, the correspondence (p, ṽ) is correct, otherwise
it is removed. For each vertex on the models, we also find the
corresponding point in the input point clouds in the same way.

Since the initial parametric model has a close shape or pose
to the input points, the model estimation can become easier
by taking the initial parametric model as the input. Thus,
we concatenate vertex coordinates of the initial model with the
features extracted from the point clouds to estimate the refined
parametric model. We also employ fully connected networks
to learn the updates of model parameters by minimizing the
following function:
E(��) = 1∑

k σk

∑

i

‖σi (V (�)i − xεi )‖2
2

+ 1∑
k τk

∑

j

‖τ j (x j − V (�)ε j )‖2
2

+ γ
∑

m

‖π c(J3D(V (�))m) − Ĵm‖1 + δL prior ,

(11)

where � = �̃+�� denotes the refined parameters by adding
the updates ��, V (�)i is the i -th vertex of the refined
parametric model V (�), εi is the correspondence index in
the point clouds of the i -th vertex, x j is the j -th point of the
point clouds, ε j is the correspondence index of x j in the model
vertices, σi (τ j ) ∈ {0, 1} is a mask (if the correspondence is
correct, σi = 1; otherwise, σi = 0),

∑
k σk (

∑
k τk) is the

number of correct correspondences, γ and δ are regularization
parameters, and Ĵm are the ground truth 2D positions of the
m-th joint. The first two terms of the loss function measure the

correspondence distances between the estimated model and the
input points. The 3D joint locations J3D(V (�))m are obtained
with linear regression [30] from the mesh vertices. The 3D
joints are then projected into 2D image space with the camera
parameters πc to form estimated 2D joints. We adopt the joint
loss for human bodies and detect the ground truth 2D joints
using OpenPose [12]. By incorporating the joints, our method
can handle large deformations that fail to be recovered from
the initial predictions. Some results of the refined parametric
models are shown in Fig. 9 (d). In our experiments, we set
γ = 50 and δ = 10 empirically.

The vertex coordinates of the refined 3D models are lever-
aged as the pseudo-ground truth correspondences to supervise
the fine-tuning of the two-stage regression network. Trained
on synthetic data, our two-stage regressor cannot work well on
real data due to the domain gap. By providing pseudo-ground
truth correspondences as full supervision to the two-stage
regressor, the performance of our method can be improved
remarkably on the real data. In this way, the two-stage
regressor can produce more accurate results on real data as
more examples are supplied to the network as supervision.
The fine-tuning on real data has been done in related works
like 3D-CODED [15], but the problem and goal of our method
are different from the related works. The goal of our method
is to refine the unreasonable predictions of the networks and
utilize the refined results in return to boost the performance
of the two-stage regression. In addition, the idea of our model
estimation can be applied in the optimization-based model
fitting methods to obtain the parametric models for real data.
However, the direct optimization is rather sensitive to the
initialization of parameters and highly relies on joint detection.
When tested on samples with strong occlusions or large poses,
the optimization easily gets trapped in local minima and the
model fitting will fail. Benefitting from solving the fitting
problem in a learning framework, our model estimation can
perform more robustly and accurately under large poses or
strong occlusions and also achieve faster running efficiency.
In this work, a complete deep learning framework is developed
which integrates the supervised learning and the pseudo label
creation so that they can collaborate with each other efficiently.

IV. EXPERIMENTS

In this section, we first elaborate our implementation details
and then compare with the state-of-the-art methods. Finally,
we perform ablative analysis on our method and evaluate it
on the real datasets.

A. Implementation Details

1) Datasets: We conduct experiments on the SUR-
REAL [46], Human3.6M [20], DFAUST [8], and various real
data. Each training model in the SURREAL dataset is rendered
from 15 different viewpoints arranged evenly in a cycle around
the 3D model to create depth images, which simulates real
depths captured by a depth sensor. From the rendered depths,
we uniformly sample 100, 000 depth images for both men
and women as the training data. DFAUST dataset [8] contains
real registered scans of human bodies, which have shapes and
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motions beyond the SMPL model. We generate 80, 000 depth
images for both male and female as the training data from
DFAUST dataset. The depths are converted to point sets for
the training. Each test model is also rendered from 15 different
viewpoints to generate depth images. We uniformly sample
10, 000 frames with different poses and shapes as the test
data for the three public datasets, respectively. The test data
do not have the same human bodies as the training data. For
the real data, we use point clouds captured by Kinect and
publicly available datasets such as SCAPE [1], BUFF [57],
FAUST [7], and CAPE dataset [32]. We also test our method
on the data of deformable subjects like animals and hands.

2) Architecture and Experimental Settings: The raw point
clouds of depth images are uniformly downsampled to n =
3000 in our experiments. We use a template mesh with
1723 vertices downsampled on the original SMPL mesh [30]
to avoid spatial redundancy of the vertices. The template
meshes of other subjects are handled in the same way and
the downsampled vertex number can be changed according to
the topology of the template. The feature extraction on the
meshes applies four successive graph CNN [13] on different
resolutions of graphs with downsampling factors of {2, 2, 4, 4}
and feature channels of {32, 64, 128, 256}, and finally outputs
a 1024-dim feature vector with a full-connected layer. The
global features extracted on the point clouds compose of
four successive set abstraction levels of PointNet++ [39]
with downsampled point numbers of {1500, 500, 150, 50}
and finally generates a 1024-dim feature vector. In the four
successive set abstraction levels, the neighbor point num-
ber and the searching radius are set to {16, 32, 64, 64} and
{0.05, 0.1, 0.2, 0.4}, respectively. For the local feature embed-
ding layer, we search 256 neighboring points within a radius
r = 0.2m around the vertices. We use mlp{32, 32, 64} to
extract local features of point clouds and mlp{32, 64} for
the attention mechanism. The concatenated 2048-dim feature
vector is transformed to a (27 × 256)-dim vector with a
full-connected layer and reshaped to 27 vertices with 256-dim
feature vector. Four successive graph CNN are then applied
with upsampling factors of {4, 4, 2, 2} and feature channels of
{256, 128, 64, 32}, finally outputting the 3D displacement vec-
tors of 1723 vertices. Each graph convolution is followed by a
ReLU layer except the last one of regressing the 3D displace-
ments. Both two regression networks in the weakly-supervised
model estimation consist of two fully-connected layers with
1024 neurons each with a dropout layer, followed by a final
layer of 85-dim neurons. There are 3 iterations in the regressor
and the network of the adversarial prior is the same as
that in [21]. The learning rate is set to 1 × 10−3. We use
Adam optimizer [22] with the batch size of 8. The average
running time for a test sample is about 16.1ms for the global
regression, 29.3ms for the local regression, and 14.5ms for the
model estimation with a NVIDIA 2080 Ti GPU.

B. Comparison to State-of-the-Art Methods of 3D Model
Estimation

Dense correspondences can be established by fitting 3D
template models to depth images. We first compare our corre-
spondence method with three kinds of model fitting methods

TABLE I

CORRESPONDENCES ERRORS (mm) WITH DIFFERENT METHODS TESTED
ON SURREAL, HUMAN3.6M, AND DFAUST DATASETS

Fig. 5. The visualization of correspondence errors using different methods on
the SURREAL data. (a) The input scan. (b) Our method. (c) Wang et al. [47].
(d) 3D-CODED [15]. (e) Kolotouros et al. [23]. (f) Kanazawa et al. [21].
(g) Wei et al. [52]. (h) Bogo et al. [6]. (i) The result of pure model fitting.

for a single depth image. Pure model fitting method [30]
deforms the SMPL template to the input depths directly.
Bogo et al. [6] first detects 2D body joints and then fits
the SMPL template to the point clouds based on detected
joints. Wei et al. [52] builds the point correspondences by
matching the learned feature descriptors for depth images of
human bodies. We register the template model to the point
clouds based on the predicted correspondences [52] using
their released codes. The correspondence errors are computed
between vertices of the fitted 3D models and the ground truth
corresponding points as in [47]. The correspondence errors
with different methods are listed in Table I. The comparison
results on the SURREAL data using different methods are
shown in Fig. 5. The pure model fitting method has much
higher error because there is large discrepancy between the
template model and the input depth and correspondences fail
to be searched correctly. The performance of Bogo et al. [6]
highly relies on the joint estimation which has difficulties in
handling the cases with strong occlusions or large poses. With
inaccurately detected joints, searched correspondences are
prone to be unreliable. Also, erroneous deformations may be
generated during the fitting by merely using joint information.
These reasons make the optimization get trapped in local
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minima and cause large correspondence error in certain areas
(e.g. right legs in Fig. 5). The predicted correspondences
using [52] might be inaccurate by matching learned features
because neighboring points probably are not classified into
the same segmentation and multiple segmentations might fail
to enforce smoothness of feature embedding, leading to large
errors in certain areas of Fig. 5. In contrast, our method can
predict more accurate correspondences for the point clouds.

We also compare our method to our recent work [47] which
estimates the 3D human shapes from point clouds. Many
deep learning methods of estimating 3D body models are
proposed for a single color image. As in [47], we extend
color images based methods for the comparison by adding
a 3D correspondence loss defined as Eq. (11) to register the
estimated models with the input depths. Kanazawa et al. [21]
predicts the parametric SMPL models [30] from extracted
features on a single color image. Kolotouros et al. [23] first
attaches the extracted features to each vertex of a template
mesh and then regresses the 3D meshes through Graph CNN.
We re-train the network of [21] and [23] using depth images.
The correspondence errors with different methods are listed
in Table I. The comparison results on the SURREAL data
using different methods are shown in Fig. 5. The comparison
results demonstrate our method can obtain dense correspon-
dences with higher accuracy than these model estimation
methods. Since color images contain sufficient texture infor-
mation of human bodies, the CNN can capture discriminative
features of 2D joints to regress the body models. However,
depth images only provide depth discrepancy over the body
and the extracted features on depth images might not be
discriminative as color images. Thus, there are relatively larger
errors for the color images based methods [21] and [23].
Particularly, the correspondence error of our method is lower
than that of our recent work [47] since the attention mechanism
in the local feature embedding technique effectively improves
the correspondence accuracy in the local regions of point
clouds. This work mainly focuses on learning correspondence,
while the recent work [47] recovers the 3D models.

C. Comparison to State-of-the-Art Methods of Non-Rigid 3D
Shape Matching

We apply our method on non-rigid 3D shape matching and
compare to several state-of-the-art methods. Here, we choose
some representative methods for the comparisons which obtain
state-of-the-art performance. FMNet [27] is a learning based
functional map estimation method which requires ground
truth point-wise maps. The unsupervised version, SURFM-
Net [41], enforces structural properties on the computed map.
Unlike the approaches [27], [41], Deep Geometric Functional
Maps (GeomFmaps) [14] learn the features directly from
the geometry of the shapes and compute a robust functional
map with a novel regularized estimation layer, which is a
supervised method. We also compare to these methods with
post-processing refinements (please refer to [14] for details of
refinement methods). In addition, we compare our method to
MoNet [35] which learns feature descriptors on graphs and
manifolds and matches 3D shapes based on the descriptors.
These methods are implemented with their released codes.

We use FAUST [7] and SCAPE [1] as the training and
testing dataset which provide a variety of shape structures
and connectivity. For all compared methods, we split the
dataset into training and test sets containing 80 and 20 shapes
for FAUST, and 51 and 20 shapes for SCAPE as in [14].
The correspondence accuracy is measured by geodesic error
between the predicted and ground truth correspondences.
We perform the experiments in two settings, i.e., complete
shapes and partial shapes from a single view. It is noted
that handling partial point clouds is more challenging than
handling the complete shapes due to occlusions and data
missing. Since all shapes are matched to a reference shape for
MoNet [35], 3D-CODED [15] and our method in the experi-
ment of complete shapes, we build correspondences between
any two shapes using matched results with the reference shape
as [15]. For the experiment of partial shapes, we match partial
data to a complete reference shape and compute geodesic error
on the reference shape. To generate partial data, we render
each shape from 10 different views scattered evenly in a
cycle around it. We follow the same data preprocessing and
experimental settings in the original papers. The raw data are
re-meshed for SURFMNet [41] and GeomFmaps [14] except
FMNet [27] since the raw meshes are directly used in [27].
We do not perform data augmentation as FMNet [27] as the
sampling method is not provided clearly in [27]. In original
SURFMNet [41] and FMNet [27], the network is trained on
all the data and the trained model is applied on the same test
set. In MoNet [35], geodesic errors are computed between the
input shape and the reference shape, while ours are computed
between any two input shapes in the complete shape matching.
The above factors lead to that some errors computed in our
experiments are a bit different from that reported in the original
papers.

Quantitative comparison of the different methods are shown
in Fig. 6 on complete and partial data, respectively. The
comparison results on complete data demonstrate our method
can achieve much lower average error than these functional
map based methods. These methods primarily operate in
the spectral domain while our approach directly learns the
correspondences in the spatial domain. The refinements, e.g.
ZoomOut (ZO) refinement [34], are not adapted to our method.
Without any post-processing refinement, our method still out-
performs or at least is comparable to these compared methods
with the refinements. MoNet [35] casts correspondence as a
labeling problem, which tries to label each vertex on the test
shapes with a vertex index on the reference shape. Rather than
the nearest neighbor searching in other methods, most vertices
have zero error, but the rest ones may have much higher error
using MoNet [35]. Particularly, our method is more effective to
handle partial point clouds than other methods. Two examples
of matching partial data are shown in Fig. 7. Partial shapes
pose challenges for computing the Laplace-Beltrami operators
and SHOT features. The noisy initial descriptors lead to large
error for functional map estimation methods.

More accurate correspondences can be obtained through
non-rigid fitting based on the initially estimated correspon-
dences of different methods. We perform the non-rigid fit-
ting using Laplacian deformation proposed in [42]. Laplacian
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Fig. 6. Quantitative comparison of correspondence accuracy using different methods on complete and partial data, respectively. For the experiment on partial
data, we only compare our method to the state-of-the-art methods that can handle partial data.

Fig. 7. Comparison examples of different methods on matching partial
data of FAUST (top row) and SCAPE (bottom row). (a) Our method.
(b) 3D-CODED [15]. (c) MoNet [35]. (d) GeomFmaps [14]. (e) FMNet [27].
Correspondence is visualized by the colors mapped from the template model
shown in Fig. 1. The colorization of our method is more consistent with the
template.

deformation [42] is formulated as minimizing the energy
function consisting of a Laplacian smooth term and a cor-
respondence term. With the initially estimated correspon-
dences between the template model and the input point
clouds, the SMPL template is deformed to the point clouds
and a 3D model can be recovered that fits to the point

clouds. The new correspondences are then built between
the recovered model and the point clouds using the cor-
respondence searching method described in Section III-D.
After applying non-rigid fitting on the complete SCAPE
data, the average geodesic errors decrease to 0.0085,
0.0102, 0.0286, 0.0082, 0.0093, 0.0234 for our method,
3D-CODED, MoNet, GeomFmaps+ZO, FMNet+PMF, and
SURFMNet+ICP, respectively. The results show that the
non-rigid fitting can result in better correspondence accuracy
by taking more accurate initial correspondences as the input.

D. Comparison to 3D-CODED [15]

3D-CODED [15] presents a deep learning approach for
predicting correspondences between the input shape and the
template. Different from their method, which requires a rela-
tively complete 3D shape, our method can handle the partial
data captured from a single view with serious occlusion
and data missing which is more challenging. Their method
improves the correspondences by an additional optimization
step, while we innovatively exploit local features on the point
clouds and fuse them with graph features using an attention
mechanism, largely improving the correspondence accuracy.
In addition, compared to 3D-CODED, our model estimation
method can handle the unseen real data more robustly and
accurately. Our method can refine the unreasonable pre-
dictions of the networks by incorporating the parametric
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TABLE II

CORRESPONDENCE ERRORS (mm) AT THE BEGIN AND END OF THE
GLOBAL AND LOCAL REGRESSION ON THE SURREAL, HUMAN3.6M,

AND DFAUST DATASET. WE ALSO LIST THE ERRORS OF

APPLYING ANOTHER LOCAL REGRESSION

models and handle large deformation with joint information.
In 3D-CODED, the optimization step is an optimization-based
method and independent of the network in their first step.
In contrast, all components of our methods are fulfilled with
networks and composed in an unified framework, which
achieves the efficient collaboration between the two-stage
network fine-tuning and the pseudo label creation. We compare
our method with 3D-CODED in the experiments of model
estimation (Section IV-B) and shape matching (Section IV-C).
The quantitative comparisons on our testing dataset are listed
in Table I and that of shape matching are shown in Fig. 6,
demonstrating that our method can achieve higher correspon-
dence accuracy than 3D-CODED. Qualitative comparisons are
shown in Fig. 5, Fig. 7 and Fig. 9. Particularly, 3D-CODED
has large error on SCAPE dataset since human poses vary
tremendously in the data. In contrast, our method can estimate
more accurate correspondences for these data with large poses.

E. Ablative Analysis

1) The Two-Stage Regression Framework: We first evaluate
the effectiveness of our two-stage regression framework by
comparing the correspondence accuracy in the global and local
regression network. The correspondence errors at the begin
and end of each stage are listed in Table II on different
datasets. The error in the begin of each stage is computed
from the trained model after the first epoch. It can be seen
that the correspondence error is reduced largely in each stage.
We also observe that there is a noticeable improvement of
correspondence accuracy with the local regression network
compared to the global regression network. The qualitative
comparisons of two stages are shown in Fig. 8 on DFAUST
and SURREAL data. The results imply that our two-stage
regression framework successfully achieves very accurate
dense correspondences. After the local regression, we try to
perform another one by decreasing the searching radius of
neighboring points. Since the correspondence error declines
little as shown in the third row of Table II, we perform the
local regression only once in the experiments.

2) Local Feature Embedding: To investigate the effective-
ness of local feature embedding (LFE), we report corre-
spondence errors of three embedding methods that add the
LFE layer on different graph resolutions, i.e., graphs with
1723, 431, and 27 vertices. These methods correlate local
features of point clouds with the graph features on the finest,
medium-resolution, and coarsest graph, respectively. In addi-
tion, we compare our method to the max pooling operation
over the neighboring point features (defined in Eq. (4)) and
another LFE by replacing the attention mechanism with a

Fig. 8. The visualization of correspondence errors on DFAUST and
SURREAL data using different methods in the ablation analysis. (a) The input
depths. (b) The results of our method. (c) The results of our method without
local feature embedding (LFE). (d) The results of the global regression. Our
method with LFE can obtain more accurate correspondences in local regions
than that without LFE.

TABLE III

COMPARISON OF APPLYING LOCAL FEATURE EMBEDDING (LFE) ON

THE FINEST, MEDIUM-RESOLUTION AND COARSEST GRAPH,
LFE WITH MAX POOLING AND SIMPLY AVERAGING, AND

OUR METHOD WITHOUT LFE. NUMBERS ARE

CORRESPONDENCE ERRORS IN mm

simply average operation. We also compare the results with
and without LFE. Table III lists the correspondence errors of
different methods on three test datasets. The correspondence
accuracy is a bit higher by performing LFE on the finest
graph (graph with 1723 vertices) since the local features
are captured and exploited more sufficiently. The comparison
results between our method with and without LFE show
the correspondence accuracy is improved largely with LFE.
Two comparison examples with and without LFE are shown
in Fig. 8 on DFAUST and SURREAL data. Especially, com-
pared to the max pooling and the simply averaging on the
neighboring point features, the attention model can capture
the local geometry structure better in point clouds.

3) The Number of Sampled Points: We also report the
correspondence errors of our method on different numbers of
sampled points n = {1000, 3000, 5000, 7000}. Table IV lists
the correspondence errors by applying our method on different
numbers of sampled points. The results demonstrate that our
method can work well for different numbers of sampled
points. There is a slight improvement on the performance
with an increasing number of points. To balance between
correspondence accuracy and training efficiency, we choose
n = 3000 in our experiments. This experiment also verifies
that our approach is robust to a small number of sampled
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TABLE IV

CORRESPONDENCES ERRORS (mm) ON DIFFERENT NUMBER OF
SAMPLED POINTS USING OUR METHOD

Fig. 9. The recovered results using our model estimation method on “Kungfu”
data from [17] and “Girl” data. We also show the results of 3D-CODED [15]
for comparison. (a) The input depths. (b) The resulting models using our
two-stage regression. (c) The initial parametric models fitted to (b). (d) The
refined parametric models fitted to (a) with both the correspondences and
joints. (e) The refined models with the correspondences but without joints.
(f) Predicted models using 3D-CODED based on Chamfer distance.

points since the correspondence accuracy does not reduce a
lot with a decrease of point numbers.

4) Model Estimation on Real Data: In this test, we demon-
strate the effectiveness of the proposed weakly-supervised
model estimation method on real data. The model estima-
tion method consists of two steps, i.e., initial estimation of
parametric models and model refinement. Tested on real data,
the proposed two-stage network can easily lead to unsat-
isfying results due to the lack of real training data. The
initial estimation of parametric models (shown in Fig. 9 (c))
can correct the distorted models (shown in Fig. 9 (b))
predicted by the two-stage network. The model refinement
can accurately align the initial estimation to the input data
by searching accurate correspondences and utilizing joint
information (shown in Fig. 9 (d)). Since minimizing the
correspondence distance can only achieve local deformation,
alignment failure still occurs under large shape discrepancy
between the initial models and input data. Fortunately, the joint
information can effectively alleviate the problem by han-
dling large deformation. Fig. 9 (d) and Fig. 9 (e) show two
examples of our method with and without joint information.
Under serious occlusion and data missing in the partial data,
we compute the correspondence distance by considering both
point positions and normals, resulting in more accurate align-
ment compared to the Chamfer distance of 3D-CODED [15].
Fig. 9 (d) and Fig. 9 (f) show two examples of the final
results using our method and 3D-CODED [15], respectively.

5) Model Estimation vs. Optimization-Based Model Fitting:
In this experiment, we compare the proposed model estimation
with the optimization-based model fitting in terms of recon-
struction accuracy. Based on the state-of-the-art method [6],
we perform model fitting with the same two steps in our model

Fig. 10. Comparison examples between our model estimation and the
optimization-based model fitting [6] on CAPE data. (a) The input depths.
(b) The recovered models using our model estimation. (c) The recovered
models using [6]. The resulting models of our two-stage regression before
(d) and after (e) the fine-tuning, respectively. Some body parts cannot
be recovered correctly using [6] (surrounded in rectangle) due to strong
occlusions or large poses. In contrast, our method can perform more accurately
and robustly.

estimation, i.e., initial estimation and model refinement. The
CAPE dataset [32] are used in this test. The CAPE data is
more challenging because the humans are dressed with various
clothes. We select 8 subjects from the total 10 male subjects
and uniformly sample 10, 000 models. Using the same way of
dataset generation in Section IV-A, totally 150, 000 samples
are rendered as the training data. We generate 5, 000 samples
from the other 2 subjects as the testing data. The pre-trained
two-stage regressor is applied on the CAPE test data to predict
the initial correspondences. Based on the initial correspon-
dences, the parametric models are then recovered by our model
estimation method and the model fitting method [6], respec-
tively. Since there are the corresponding ground truth SMPL
models, we compute the reconstruction errors as in [47].
The average reconstruction errors are 27.7mm for our model
estimation and 32.8mm for the model fitting method [6]. The
model fitting method can work well for the data with relatively
small poses. Nonetheless, the reconstruction error becomes
larger when tested on samples with strong occlusions or large
poses. The comparison results show that our model estimation
can achieve higher reconstruction accuracy.

The optimization-based model fitting merely relies on the
2D joints and correspondences with the point clouds. In the
cases with strong occlusions or large poses, human joints
might be detected inaccurately and searched correspondences
are prone to be unreliable. Also, the direct optimization
is rather sensitive to the initialization of parameters. The
inaccurate joints or improper initializations make direct opti-
mization easily get trapped in local minima and lead to large
fitting errors. As shown in Fig. 10 (c), the recovered models
using direct optimization cannot fit to the input data well
and even the body shapes are distorted. In contrast, deep
neural networks have the stronger capacity of representing
any complicated function, and modern techniques allow the
deep networks to be successfully trained. By learning from
sufficient training samples and leveraging deep features of
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Fig. 11. Correspondence results using our method on real data. For each result, we show correspondence colorization on the depth image, the generated
mesh with predicted 3D displacements, and the fitted parametric model to the input point clouds. From top to bottom: “Kungfu” [17], SCAPE [1], BUFF [57],
and “Girl” data. Note that the input to our method is the sampled 3000 points from the depth image.

point clouds in predicting the 3D model, our method can
robustly predict reasonable results even if the input joints are
inaccurate due to strong occlusion or large poses. Thus, our
model estimation can recover the 3D models more accurately
and robustly. In addition, compared to computationally exhaus-
tive optimization of model fitting methods, our method has
considerably faster running efficiency. The inference time of
our model estimation (14.5ms per frame) is hundreds of times
faster than the model fitting method (11.35s per frame).

With the supervision of pseudo-ground truth correspon-
dence produced in model estimation, we fine-tune the
two-stage regression network on the CAPE training data.
Computed on the test data, the average correspondence
errors of our two-stage regression are 46.1mm and 28.4mm
before and after the supervised fine-tuning, respectively.
Two examples before and after the fine-tuning are shown
in Fig. 10 (d) and Fig. 10 (e), respectively. The comparison
results demonstrate that fine-tuning with the pseudo label
can remarkably improve the performance of our two-stage
regression on unseen real data.

F. Evaluation on Real Datasets

We test our method on various datasets of real human
bodies. “Kungfu” data [17] and “Girl” data are captured by
a Kinect V2 sensor. We also test on SCAPE [1] and BUFF
dataset [57] to verify the performance of our method. Fig. 11
shows some correspondence results using our method on these
real data. The input to our method is 3000 uniformly sampled
points from the raw or rendered depth images. Our method
directly predicts the 3D displacement vectors of template
vertices to the corresponding points. A mesh can be generated

Fig. 12. Correspondence results using our method on animals and hands.
From top to bottom: “Cat” from [11], “Horse” from [11], “hand” from [48]
and [44], respectively. Correspondence colorization of each test sample is
consistent with the template shown in the far left.

by adding the predicted displacement vectors to coordinates
of the corresponding vertices. The dense correspondences
for each depth are built by finding the nearest neighboring
points on the generated mesh. Correspondences are visualized
by the colors mapped from the template model. We also
show the recovered parametric models that fit to the input
point clouds for fine-tuning our network. Although there are
strong self-occlusions and arbitrary deformations on the point
clouds, our method still can robustly and accurately estimate
accurate correspondences for deformable point clouds. The
colorizations of predicted correspondences change smoothly
over the body and are consistent between different point
clouds. Through the proposed fine-tuning method, our method
can generalize well to real point clouds. Our method may fail
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on human bodies with loose clothes like long skirts. In the
future, we plan to adopt an elaborate surface deformation
technique to handle the real data with loose clothes.

Our method is also tested on other deformable subjects such
as animals and hands. For the animals, we train on the syn-
thetic data from SMAL [59] and test on TOSCA dataset [11].
For hands, we train on the synthetic data of FreiHAND [58]
and test on the “Hand” data scanned using a Artec Scan-
ner [48] and captured by a RGB-D sensor [44]. The “Hand”
data from [44] have severer noise than that from [48]. Some
examples of colorized correspondences are shown in Fig. 12.
The results demonstrate that our method can generalize to
various non-rigidly deformable targets effectively.

V. CONCLUSION

In this paper, we addressed the problem of estimating dense
correspondences from non-rigid point clouds using deep neural
networks. The correspondences are predicted in the form
of 3D vertex displacements between vertices of a template
mesh and the point clouds. We propose a two-stage regression
framework which consists of the global regression and local
regression network to estimate 3D displacements of tem-
plate vertices using a graph CNN based hierarchical encoder-
decoder network. The global regression network infers the
global displacements from the concatenated global features of
the template and the point clouds. In the local regression net-
work, with the resulting mesh from initial displacements, local
features of point clouds are captured and fused with graph
features through an attention mechanism. The displacements
can then be refined locally with the fused local features in the
hierarchical encoder-decoder network. In addition, our method
is generalized to handle real point clouds through a robust fine-
tuning method. The experimental results on diverse datasets of
various deformable subjects (e.g., human bodies, animals, and
hands) demonstrate that the proposed method can achieve the
state-of-the-art performance on the correspondence estimation
of non-rigid point clouds.
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