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This supplementary document aims to provide additional
details to make our submission self-contained. It includes:
1) System details; 2) Training details; 3) Registration of a
query image at runtime; 4) Additional ablation studies and
time costs;

A. System Details
Co-visible Frames Clustering: We use “average” linkage
for hierarchical clustering since it is less sensitive to out-
liers. After obtaining the hierarchically clustered dendro-
gram, flat clusters are formed such that the distance be-
tween samples in a cluster is less than a pre-defined dis-
tance threshold. We implement this with scipy’s [19]
linkage and fcluster functions respectively.
2D Keypoint Features: Our 2D keypoint feature is based
on SuperPoint [3]. It encodes the Superpoint feature and its
confidence along with the 2D keypoint position using Su-
perGlue’s [14] keypoint encoder. Concretely, let i be a key-
point at position xi in frame m with SuperPoint feature F̃i

and confidence pi. Its encoded feature Fi is then generated
by:

Fi = F̃i + MLP(x̂i, pi). (1)

Here, x̂i denotes the normalized keypoint position in the
range (−1, 1). The MLP layer MLP transforms the nor-
malized position and the keypoint’s confidence into a 256-
channel feature.
3D Point Features: The 3D anchor point feature is gener-
ated by fusing its 2D observations. Let Xk be a 3D point in
anchor set A with its 2D observations in verification frames
{Vn} denoted by {xkn}. The feature of point Xk is the aver-
age of {xk

n} from MeanPooling operation:

Fk = MeanPooling({xkn}) (2)

*Equal contribution, †Corresponding authors

Geometric Similarity: The reprojection distance between
a 3D anchor point Xi ∈ R3 and a 2D keypoint xj ∈ R2 in
verification frame Vn is given by:

rij = ∥π(ξn,Xi)− xj∥.

Here, ξn is the camera pose of frame Vn, π is the 3D pro-
jection function that projects a 3D point to 2D image plane
given camera intrinsic and extrinsic parameters.

The geometric similarity Mij between point i and key-
point j is then defined as:

Mij = exp(−log(rij)) (3)

Anchor-Verification Fusion using Attention: We use the
multi-head attention mechanism [18] to fuse the aggregated
verification features {OVn→A} from all the verification
frames with the anchor features FA to obtain aggregated an-
chor features Fagg

A ∈ RmA×C (Equation 4 of the main text).
Here, mA is the number of 3D anchor points and C is the
dimension of the features. Multi-head attention aggregates
information from different representation subspaces of the
features by training multiple attentions in parallel. Each at-
tention (known as “head”) has 3 inputs: key (K), value (V)
and query (Q). For an anchor point i ∈ [1,mA], these are
obtained as follows:

K = MLPK(Fi
A),

V = MLPV ({Vi
n}),

Q = MLPQ({Vi
n}), (4)

where {Vi
n} ∈ RN×C are the aggregated verification fea-

tures corresponding to the 3D point i with N being the
number of verification frames. We have K ∈ R1×C′

,
V ∈ RN×C′

and Q ∈ RN×C′
where C ′ is the dimension
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Figure A. Point Transformer Structure Each rectangle repre-
sents a PointTransformer Block [20], the inner text indicates
input and output dimension of the point feature (in → out). The
blocks are stacked in a UNet [12] style.

of the features after their respective multilayer perceptrons
MLP{}. We use C ′ = 64 in our network.

The attention weights of jth head is computed using the
scaled dot-product of K, V and Q

headj(Q,K,V) = softmax(
QKT

√
N

)V. (5)

The outputs of the independent heads are then concate-
nated and linearly transformed to obtain the fused anchor
feature of i.

Faggi

A = Attention(Q,K,V)

= [head1; ...; headh]WO, (6)

where WO is a parameter matrix to be learned and h is the
number of attention heads. We set h = 4 in our network.
Point Transformer Structure: Our Point Transformer
structure is shown in Figure A. Two mostly identical net-
works are used to generate distinctiveness scores d and
pairwise proximity matrix K of 3D points. We stack mul-
tiple PointTransformerBlocks [20] in a UNet [12]
scheme as it can better fuse local and global information of
the point cloud. Similar structures have also been used for
point cloud classification and segmentation tasks with im-
pressive results [20]. We set sampling ratio to 0.25 in all
blocks. The input to our Point Transformer is the normal-
ized 3D point positions (in the range [−1, 1]) concatenated
with their features from Section 3.2 of the main paper. A
one-layered MLP is added at the end of the point trans-
former to produce output with desired dimensions. Con-
cretely, we set the output dimensions to 1 to obtain the dis-
tinctiveness scores d of the points and 64 to yield the point
features that are used for computing the proximity matrix
K.
Solving QP Problem: During training, we use differen-
tiable convex optimization solver CVXPYLayers [1] for
solving the QP problem which allows us to backpropagate
the error gradients to d, K and τ to train our network. How-
ever, training with more than 1000 points is not feasible

using CVXPYLayers since it requires considerable GPU
memory. Therefore, we randomly select 1000 points from
the anchor point set at each iteration. The weight τ that bal-
ances the two terms in the QP problem (Equation 3 in the
main paper) is also learned. We set its lower bound to 0.1
in order to prevent extreme solutions that ignore the distinc-
tiveness scores altogether.

For testing, we implement the efficient Sequential Min-
imal Optimization based QP solver from [9] to compress
points from each co-visible cluster. It solves the problem
iteratively and optimizes only 2 points in one iteration. It
therefore supports problems with a large number of vari-
ables (i.e. points). The algorithm is summarized in Algo-
rithm 1.

Algorithm 1: Sequential Minimal Optimization
Input: d,K, τ, v,max iter
Output: α

1 α← initialize(d, ν)
2 m← size(α)
3 itr = 0
4 while itr ≤ max iter do
5 i, j ← select pair(α)
6 ∆← αi +αj

7 θ1 ← 2
∑

l ̸=i,l ̸=j

αlKil

8 θ2 ← 2
∑

l ̸=i,l ̸=j

αlKjl

9 T ← τ(di − dj)− θ1 + θ2

10 α
′

i ← 1
2 (

T

2(1−Kij+∆)
)

11 α∗
i ← max(0,min(min( 1

vm ),∆),α
′

i)
12 αj ← ∆−α∗

i ;αi ← α∗
i

13 itr ← itr + 1

Here, “initialize(d, ν)” initializes α by assigning the cor-
responding entries of the top ⌈νm⌉ distinct points to 1

νm
and the rest to 0. This initialization procedure was pro-
posed by [9] and has shown to greatly reduce the conver-
gence time. The “select pair(α)” operation randomly se-
lects a pair of points (i, j) such that at least one of them has
non-zero entry in α. The maximum number of iterations
max iter is set to 20000.
Feature Quantization: Our feature quantization module is
an auto-encoder network with Differentiable Soft Quanti-
zation (DSQ) [4] function as the network’s bottleneck. The
input to the module is 128 dimensional point features. The
encoder is a 2 layered MLP where each layer consecutively
outputs latent features of dimensions 256 and 128. The de-
coder is a mirrored version of the encoder.

Let Ḟi be the 128-dim feature of point i produced by the
encoder. The DSQ layer first transforms it with an MLP and
then normalizes it to (−0.5, 0.5) using the sigmoid func-



tion:

F̈i = sigmoid(MLP(Ḟi))− 0.5. (7)

To obtain the quantized feature F̂i, we then use the differen-
tiable soft quantization function (Equation 5 in [4]) to map
F̈i from the interval (−0.5, 0.5) to [0, 2b − 1]. Here, we set
the bit width b = 8 to quantize our features to 8-bit unsigned
integers. The differentiable soft quantization [4] is summa-
rized in Algorithm 2. We refer our readers to the original
paper for detailed derivations.

Algorithm 2: Differentiable Soft Quantization

Input: F̈i, lQ, uQ, b, γ

Output: F̂i

1 ∆← uQ−lQ
2b−1

▷ interval width

2 F̈i ← F̈i + ReLU(lQ − F̈i) ▷ clip lower bound

3 F̈i ← F̈i − ReLU(F̈i − uq) ▷ clip upper bound

4 i← trunc(
¨Fi−lQ
∆ ) ▷ index of interval

5 m← lQ + (i+ 0.5)∆

6 s← 1
1−γ

7 k ← 1
∆ log( 2γ )− 1

8 ϕ← stanh(k(F̈i −m)) ▷ asymptotic function

9 F̂i ← lQ +∆(i+ 1
2 (ϕ+ 1))

The decoder consists of 2 fully-connected layers. The
first layer takes the 128-dimensional quantized 8-bit un-
signed integer features from the DSQ and outputs 128-
dimensional 32-bit floating point features. The second layer
transforms the features further to 256-dimensional floats
which are used for feature matching during runtime local-
ization after compression.
Quantized AP-GeM Global Descriptor: For the coarse
image retrieval based localization, we compress and store
the global descriptor of one frame from each cluster. We
quantize the AP-GeM [11] descriptor of an image using the
same technique described in sub-section Feature Quan-
tization. Specifically, we apply the encoder MLP to the
2048-dim AP-GeM descriptor which converts it to a 1024-
dim float feature. Next, a DSQ [4] layer quantizes the
feature to 1024-dim 8-bit integers. A decoder symmetric
to the encoder is used to recover the original information
from the quantized feature. To train the quantization model,
we fix the parameters of the AP-GeM backbone and use
APLoss [11] to update weights of the quantization MLPs.
At each iteration, we take 10 samples from the training set
of RobotCar Seasons dataset for computing APLoss while
making sure that there are at least two positive samples.
Additionally, hard-negative mining [17] is applied every 5
epochs. We train the model for 30 epochs in total.

Note that only the quantized global descriptors are stored
for runtime localization and the decoder network is applied

to the quantized global descriptors only when registering a
query image.

B. Training Details

Training Data: Our training data is sampled from the
RobotCar Seasons [8] dataset. Since the dataset captures a
large city-scale scene, exhaustively computing pairwise co-
visibility distances between the image frames is expensive.
We therefore sample a subset of reference images where any
two frames are at least 6m and 45°apart before applying
clustering based on the co-visibility distance. The subset
sampling is also done using the same hierarchical cluster-
ing technique [10]. We first group the frames using their
pairwise camera distance and then further split the groups
based on their angular distance. From each group, we only
keep one frame that is closest to the group’s centroid. Next,
we use co-visible frames clustering (Section 3.1 in main pa-
per) with maximum inter-cluster distance 10 on the selected
subset. If any group has less than 20 frames we add images
that are co-visible to the existing frames in the group from
the images outside of the selected subset to ensure that each
cluster has at least 20 frames.

We use hierarchical clustering because it does not require
us to set a prespecified number of clusters. Instead, a tree
structure of cluster hierarchies is generated based on pair-
wise distances between the frames. The cluster hierarchies
are “flattened” [19] into independent clusters by enforcing
a maximum inter-cluster distance.
Query frames: While the co-visible clusters are sam-
pled only from the reference set overcast-reference,
the training set contains different scenarios such as dawn,
dusk, night etc. Therefore, for robustness against dif-
ferent weather conditions we use images from the training
set as query frames. Note that the number of images in the
training set is quite limited and there might not be enough
query frames for every co-visible cluster. For any cluster
that has no query image from the training set, we use im-
ages from the co-visible set (at most 5) that were not used
as anchor or verification frames as query frames.
Training Process: Since compressing a scene point cloud
using the differentiable QP solver [1] is time-intensive, we
train our network in two stages. In the first stage, we only
train the point transformer that computes the distinctiveness
scores d using the loss Ld (Equation 6 of the main docu-
ment) for 30 epochs. This stage does not require us to solve
the QP problem. In the second stage, we train our entire
network with both Ld and Lξ losses for 15 more epochs
or until convergence. The loss Lξ utilizes the α estimated
by the QP solver (Equation 7 of the main paper). We use
H = 64 hypotheses, with each consists of 4 sampled 2D-
3D correspondences, and an inlier threshold of 12 pixels
while solving the PnP problem [6] for each hypothesis.



K.College S.Facade O.Hospital St.Church Aachen

3D Points 230K 61K 214K 308K 1.3M
DB Frames 1220 231 895 1487 4328
Co-visible clusters 14 6 24 46 1935
Query Frames 343 103 182 530 922

Table A. Test dataset statistics

C. Registration of Query Frames

Test Dataset: After training, we test our model on the Cam-
bridge Landmarks [5] and Aachen Day-Night [15] datasets.
We use the training set of these datasets as reference frames
and follow the technique described in Section B to sam-
ple co-visible frames. The Cambridge Landmarks contains
1080P video sequences and covers small to medium scale
outdoor scenes. The larger Aachen Day-Night dataset on
the other hand is captured using sparsely distributed cam-
eras at image resolution 1600x1063 pixels. We therefore
do not apply the reference frames pre-sampling procedure
of Section B for this dataset. The dataset statistics is listed
in Table A.

For each co-visible cluster, we store: 1) 1024 bytes
global descriptor of the frame that has the most observed
3D points; 2) selected 3D points’ positions and quantized
descriptors.
Query Frame Registration: We match and register a query
frame IQ to the compressed scene. Our registration pipeline
is similar to hloc [13]. First, we retrieve the co-visible clus-
ters that have similar appearance to the query frame IQ. We
follow [13] and select 15 closest candidates for the Cam-
bridge Landmarks scenes and 50 candidates for the larger
Aachen Day-Night scenes. Next, we use SuperGlue [14]
matcher to establish 2D-3D correspondences between the
query image IQ and 3D points from from each candidate
cluster. RANSAC+PnP [6] is then applied to register the
query frame against each cluster individually. We use the
implementation of COLMAP [16] for RANSAC+PnP with
an inlier re-projection error threshold of 12 pixels. Finally,
we use all the 2D-3D correspondences from the clusters that
were successfully registered to obtain the query frame cam-
era pose ξQ with another RANSAC+PnP.

D. Additional Ablation Studies

Size/Performance comparison with uncompressed rep-
resentation: Table B shows the size/performance of
uncompressed and compressed representations on St.M
Church scene. ‘Uncompressed’ uses the full image
database along with all the raw (1024 bytes) SuperPoint fea-
tures. For ‘Compressed’, we first perform co-visible clus-
tering to generate clusters, and select points with different
compression ratios from each cluster. The selected points’
features are further quantized to 128-bytes. When the scene
is compressed to 11.2 MB, the accuracy is comparable to

Compressed Uncomp.
Size (MB) 1.18 1.93 3.51 6.63 11.85 2009
Recall (%) 86.9 91.3 93.0 94.2 94.8 95.1

Table B. Percentage of query frames localized within 0.25m
translation error and 1◦ rotation error when using com-
pressed/uncompressed representations on St.M Church.

Our QP+R.Sift [9] KC [7] KCP [2]

484 18 328 798

Table C. Compression time (seconds) of different methods.
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Figure B. Localization accuracy with different quantized fea-
ture dimensions. We evaluate the performance of 64, 128 and
256 dimensional quantized features along with the 256-dim raw
point features for reference.

the uncompressed 2009 MB representation.

Feature Quantization: To study the impact of feature
quantization, we trained three auto-encoders that pro-
duce 64, 128 and 256 dimensional quantized 8-bit inte-
ger features, denoted by 64-uint8, 128-uint8 and
256-uint8 respectively. These quantized feature are
used in our localization pipeline to estimate query image
poses. The compression ratio is set to 1.5% for all cases.
We evaluate the final localization accuracy using the met-
ric recall under (25cm, 2◦) and (50cm, 5◦) pose error on
the Shop Facade scene. We also include the perfor-
mance of raw point features without quantization (denoted
as 256-raw) for reference. The results are shown in Fig-
ure B.
As can be seen from Figure B, the performance of
256-uint8 is slightly lower than 256-raw. Reducing
the dimensions by half (128-uint8) further decreases
the accuracy, and we see considerable deterioration with
64-uint8, especially for recall under (25cm, 2◦) error.
Hence, in our framework we choose 128-uint8 quan-
tized features because it provides a good tradeoff between
memory usage and localization performance.

Compression Time: In Table C we report the time re-
quired for scene compression by our system (compression
ratio 1.5%), QP+R.Sift [9], KC [7] and KCP [2] on the
St.Marys Church scene from the Cambridge Land-
marks dataset. For QP+R.Sift, KC and KCP we present the
compression time reported by [9]. Our compression time is
higher than QP+R.Sift because the computation of d and K



Time

Co-visible Frames Clustering 14s
Computing d and K 165s
Solving QP 319s
Total Compression 484s

Table D. Time taken by each step to process St.Mary’s
Church scene, note that the time for computing d/K and solving
QP considers all 46 clusters, both of which occupy large portions
of the total time.

Top-5 Top-15 Top-30 Top-50
Time (sec.) 0.7 1.2 1.9 2.2

Table E. Query frame registration time w.r.t top-k candidates.

is more involved with the Transformer while the QP+R.Sift
uses more efficient handcrafted rules. In addition, we use
a custom, unoptimized version of their QP solver written in
python while they use a closed source C++ implementation;
Those however do not hinder the application of our method
in practical situations since the scene compression is done
offline and an end-user directly uses the compressed scene
for online localization. The detailed breakdown of the time
required (in seconds) is listed in Table D.
Registration Time: Our framework requires 1.2 seconds
to register a query frame. This includes retrieval of top-15
cluster candidates (0.16s), aggregating 2D-3D matches us-
ing SuperGLUE against the 15 cluster candidates (1.02s),
and registering the query frame using RANSAC + PnP on
all 2D-3D correspondences (0.02s). Our runtime perfor-
mance is mainly determined by the number of top-k can-
didates selected from image retrieval. The query frame reg-
istration time with different ‘k’ are reported in Table E.

References
[1] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen

Boyd, Steven Diamond, and J Zico Kolter. Differentiable
convex optimization layers. In NeurIPS, 2019. 2, 3

[2] Song Cao and Noah Snavely. Minimal scene descriptions
from structure from motion models. In CVPR, 2014. 4

[3] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In CVPRW, 2018. 1

[4] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,
Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-
tiable soft quantization: Bridging full-precision and low-bit
neural networks. In CVPR, 2019. 2, 3

[5] Alex Kendall, Matthew Grimes, and Roberto Cipolla.
Posenet: A convolutional network for real-time 6-dof camera
relocalization. In ICCV, 2015. 4

[6] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
Epnp: An accurate o (n) solution to the pnp problem. IJCV,
81(2):155–166, 2009. 3, 4

[7] Yunpeng Li, Noah Snavely, and Daniel P Huttenlocher. Lo-
cation recognition using prioritized feature matching. In
ECCV, 2010. 4

[8] Will Maddern, Geoffrey Pascoe, Chris Linegar, and Paul
Newman. 1 year, 1000 km: The oxford robotcar dataset.
The International Journal of Robotics Research, 36(1):3–15,
2017. 3

[9] Marcela Mera-Trujillo, Benjamin Smith, and Victor Fragoso.
Efficient scene compression for visual-based localization. In
3DV, 2020. 2, 4
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