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Abstract

Standard visual localization methods build a priori 3D
model of a scene which is used to establish correspon-
dences against the 2D keypoints in a query image. Stor-
ing these pre-built 3D scene models can be prohibitively
expensive for large-scale environments, especially on mo-
bile devices with limited storage and communication band-
width. We design a novel framework that compresses a
scene while still maintaining localization accuracy. The
scene is compressed in three stages: first, the database
frames are clustered using pairwise co-visibility informa-
tion. Then, a learned point selection module prunes the
points in each cluster taking into account the final pose es-
timation accuracy. In the final stage, the features of the
selected points are further compressed using learned quan-
tization. Query image registration is done using only the
compressed scene points. To the best of our knowledge, we
are the first to propose learned scene compression for visual
localization. We also demonstrate the effectiveness and ef-
ficiency of our method on various outdoor datasets where
it can perform accurate localization with low memory con-
sumption.

1. Introduction
Visual localization aims to estimate the camera pose

(i.e., position and rotation) of an RGB query image with
respect to a known 3D scene. This is a fundamental prob-
lem in 3D computer vision with various applications such as
autonomous driving, augmented reality, indoor navigation,
etc. Classical visual localization methods build 3D point
cloud models of the scene beforehand, where each point is
associated with one or more image descriptors, which are
used to match against the 2D points detected in the query
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image. Once the 2D-3D correspondences are established,
robust pose estimation [11, 19] can be applied to recover
the camera pose. Retaining the pre-built 3D scene mod-
els costs expensive memory usage for large-scale environ-
ments, especially when deploying on mobile devices with
limited storage. Thus, many methods have been proposed
to compress 3D scene models to improve scalability while
maintaining localization accuracy.

Previous 3D scene compression methods can be roughly
divided into three categories. The first category [7, 39]
compresses the descriptors of 3D points using quantiza-
tion, inevitably sacrificing the distinctiveness of the fea-
tures while offering only a limited amount of compres-
sion. The second are learning-based visual localization
methods [14, 16, 49]. Without explicitly storing a 3D scene
model, they directly regress the camera pose or scene coor-
dinates of each pixel via deep neural networks, which can
be considered as a special type of scene compression as the
network weights encode the 3D scene information. How-
ever, these methods either have low accuracy or general-
ize poorly. The third and the most common category com-
presses the 3D models by carefully selecting a subset of 3D
points based on certain handcrafted criteria which gener-
ally include spatial coverage and visual distinctiveness of
the selected points [6,23,27]. However, these criteria fail to
directly consider the impact of the compression on the final
pose estimation. Manually designing rules to select points
is known to be a challenging problem for both absolute and
relative pose estimation [13].

Motivated by the latest hierarchical localization meth-
ods [36, 38] which lead the benchmarks for visual local-
ization, we propose a novel hierarchical strategy for 3D
scene compression. Specifically, we compress the 3D scene
model in three levels. At the coarse level, we conduct
database image clustering and divide the scene into multiple
clusters, enabling us to compress the clusters individually.
This also speeds up localization by limiting the matching
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of the query keypoints to a smaller set of 3D points. For
the middle level, we solve a QP problem [27] to select 3D
points from each cluster. However, different from [27], we
design a novel differentiable point selection method that en-
ables us to learn to select 3D points based on their 2D obser-
vations and influence on the final pose estimation. To this
end, we design a new multi-view observation fuser which
learns to extract and aggregate features for each 3D point
based on their ability to yield correct matches. With the
extracted multi-view features we can learn the distinctive-
ness scores and pairwise proximity of the points which are
used to select a subset of points via a differentiable QP
solver [1]. Our experiments show that our learned point
selection performs better than the heuristic methods. At
the finest level, we exploit the latest differentiable quantiza-
tion method [12] to further compress the feature descriptors.
With these three levels of compression, our system outper-
forms existing compression-based localization methods.

The contributions of our paper can be summarized as
follows. At first, we propose a novel hierarchical pipeline
for scene compression taking inspiration from the latest vi-
sual hierarchical localization methods. Secondly, we pro-
pose a novel differentiable point selection that learns dis-
tinctiveness scores and pairwise proximity of scene points.
We train it alongside the feature matching and pose estima-
tion, which enables the point selection to be based on the
pose estimation accuracy instead of heuristic criteria. Ex-
tensive experiments show that our method outperforms pre-
vious methods on various benchmark datasets.

2. Related Work
Camera Localization: Conventionally, the problem of
camera pose estimation has been tackled by generating 2D-
3D correspondences from handcrafted keypoint descrip-
tors [22, 24, 39–41, 45] followed by Perspective-n-Point
(PnP) algorithm [11, 19]. Despite impressive performance,
these methods are limited to well textured scenes due to the
handcrafted features.

Deep learning has been proposed as an alternative to
the traditional methods. PoseNet [16] and its follow-up
works [14,49] directly regress the absolute camera pose of a
query image using CNN and LSTM. However, these meth-
ods are more akin to image retrieval than to structure-based
pose estimation in terms of performance [43]. More robust
learning-based methods [2–4,20,21] instead learn to regress
the dense absolute scene coordinates of query images in a
scene-specific manner. Despite of some success, they per-
form poorly on larger scenes and require costly retraining
to adapt to novel scenes. Scene-agnostic regression [47,50]
alleviate the generalization limitation but are costly in terms
of memory as they need to store scene coordinate maps of
the entire database.

Many recent methods [9, 35, 46] exploit deep learning to

obtain better feature descriptors and matchers. HLoc [36]
achieves impressive results by exploiting the SuperGlue
matcher [37] along with a hierarchical, coarse-to-fine ap-
proach for pose estimation. PixelLoc [38] learns to extract
dense image features to align a query image to database im-
ages while also following the hierarchical localization strat-
egy of [37]. All of these methods still require explicit 3D
model with large amounts of points to achieve good perfor-
mance.

Scene Compression: K-cover is a popular technique to re-
duce the number of 3D scene points. Li et al. [23] use K-
cover to find a subset of points with even spatial distribution
and high visibility. Cao and Snavely [6] extend it and pro-
pose a probabilistic K-cover solution to maximize the visual
distinctiveness (expressed in terms of descriptor distance)
and the spatial coverage of the points. Camposeco et al. [5]
present a K-cover based hybrid compression algorithm with
two sets of points at different descriptor resolutions. Sun
et al. [8] proposes an adaptive weighted K-cover solution
to maximize the selected points’ visibility. These K-cover
variants are NP-hard and can only be solved approximately.

Another common formulation for scene compression is
quadratic programming (QP). Chen et al. [44] formulate a
mixed-integer QP problem to optimize visibility and spa-
tial distribution. Dymczyk et al. [10] improve the scalabil-
ity of [44] by partitioning the problem into co-visible sub-
graphs that are solved individually. Mixed-integer QP is
non-convex and therefore do not guarantee optimal solu-
tion despite being memory/time intensive. Mera-Trujillo et
al. [27] propose a convex QP formulation and design an ef-
ficient solver for their problem formulation. These methods
uses handcrafted heuristics to encode the visual distinctive-
ness which generally need to be tuned or changed altogether
based on the dataset.

A different approach to scene compression is feature
quantization. Cheng et al. [7] propose a cascaded paral-
lel filter to compresses descriptors to compact binary rep-
resentation. Sattler et al. [39] compress scene features into
quantized vocabularies.

Learned Point Cloud Sampling: While not always aimed
for localization, point cloud subsampling is a related topic.
Earlier methods use farthest point sampling which has been
extended to differentiable form and used in various neural
network architectures [31, 33, 51]. SampleNet [18] pro-
poses a learned sampling method specific to the down-
stream tasks.

Our method aims to overcome the weaknesses of ex-
isting works while preserving their strengths. We borrow
the convex QP problem formulation of [27] and implement
a differentiable solution to learn to select points directly
based on the pose estimation accuracy and eliminate the
need of handcrafted heuristics.
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Figure 1. Pipeline of our system. A scene is compressed in 3 stages: co-visible frames clustering, 3D scene points selection and feature
quantization. The compressed scene is then used for query frame registration.

3. Method
Our objective is to generate a compressed scene repre-

sentation suitable for estimating absolute camera pose ξQ
of a calibrated query image IQ w.r.t the scene. The input is a
scene database consisting of image frames {IR} (known as
reference frames) and 3D points {XR}, and their observed
2D keypoints PR = {(xR,FR)}, where xR ∈ R2 is posi-
tion of a keypoint in the image plane and F̃R ∈ R256 is its
corresponding SuperPoint [9] descriptor.

Figure 1 shows our scene compression pipeline. It can
be divided into 3 stages: 1) Coarse-Level: Co-visible
Frames Clustering where co-visible frames in the database
are grouped using hierarchical clustering [28] and only a
sparse set of frames are kept for localization (Section 3.1);
2) Middle-Level: Differentiable Point Selection, a point
selection network for compressing point clouds from each
cluster by taking into account the 2D-3D correspondences
and high-level features of the 3D points (Section 3.2);
3) Fine-Level: Feature Quantization where the selected
points’ descriptors are encoded and compressed for storage
such that they can be decompressed during runtime for fea-
ture matching (Section 3.3).

3.1. Co-visible Frames Clustering
Since compression of large-scale point clouds with mil-

lions of points is not feasible due to memory constraints of
our point selection network, we divide the scene into mul-
tiple clusters and compress each cluster individually. Addi-
tionally, we can reduce the number of database frames re-
quired for coarse, image retrieval based localization by se-
lecting fewer images that cover most of the observed points
from each cluster. We use the hierarchical clustering [28]
approach where the distance between the two frames i and
j is a co-visibility distance ψ(i, j) formulated as the log of
inverse of Intersection over Union (IoU) of their observed

3D points {Xi} and {Xj}:

ψ(i, j) = log

(
|{Xi} ∪ {Xj}|
|{Xi} ∩ {Xj}|

)
. (1)

From each cluster we keep up to 20 frames that observe the
largest number of 3D points as co-visible frames.

3.2. Learning to Select Points
We will further compress each cluster by reducing the

number of 3D points while minimizing the loss of localiza-
tion quality. It is well-known that accurate pose estimation
not only depends on correct 2D-3D correspondences which
is related to the points’ distinctiveness, but also on good
feature distribution. However, there is no golden standard
to explicitly evaluate the distinctiveness and distribution of
the points for the final pose estimation [13].

To this end, we design a differentiable point selection
module that can be trained together with the final pose esti-
mation, through which we can learn to evaluate the distinc-
tiveness and distribution from the training data.

Specifically, given m 3D points XA = {Xi ∈ R3| i =
1, ...,m}, we estimate a distribution α ∈ Rm over the
points where higher αi means higher likelihood of selecting
the point Xi. Similar to [27], we compute α by optimizing
the following QP problem:

minimize
α

αTKα− τdTα

subject to
m∑
i

αi = 1, (2)

0 ≤αi ≤
1

νm
; i = 1, ...,m

where d ∈ Rm is the distinctiveness score vector of the 3D
points, K ∈ Rm×m is the symmetric pairwise proximity
matrix between the points, ν ∈ (0, 1] is the compression
factor with ν = 1 meaning no compression and lowering
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Figure 2. Anchor-Verification fusion between verification frame
Vn and anchor set A.

ν increases the compression (i.e. selects fewer points). τ
is the scalar weight balancing the two costs. Unlike [27]
which adopts heuristic rules, we propose to calculate both
d and K from learned 3D point features. We therefore solve
the QP problem in a differentiable way [1], enabling us to
learn d and K. The points corresponding to top-νm α are
selected and the rest discarded. We explain how we obtain
d and K from the learned point features in the following
sections.

3.2.1 Multi-view Observation Fuser
In order to better estimate the visual distinctiveness of 3D
points, we first extract features of the points by using their
2D observations across multiple views. Instead of naively
aggregating the SuperPoint features of the corresponding
2D keypoints, we consider the similarity between a 3D
point and all possible 2D observations. The similarity is
defined in terms of the correlation matrix between the 2D-
3D pairs produced by a pre-trained SuperGlue matcher [37]
along with the reprojection distance of the 3D points from
the 2D keypoint positions. These respectively encode ap-
pearance and geometry similarity between 3D points and
2D observations.
Anchor-Verification Split: Exhaustively iterating over all
3D points with their paired 2D keypoints in multiple frames
is expensive, we therefore split a co-visible cluster into two
sets: anchor frames, which cover most of the 3D points,
and the rest are verification frames. The 2D-3D pairs are
then limited to 3D points from the anchor frames and 2D
keypoints from the verification frames. Only the 3D points
contained within the anchor frames are considered for sub-
sequent compression.

Specifically, let A = {Ak} be the anchor frames with
mA 3D points {Xi ∈ R3| i = 1, ...,mA} and their features
FA ∈ RmA×C . The 3D point features FA are generated by
aggregating the corresponding 2D keypoints’ features using
mean pooling. Let {Vn} be the set of verification frames
and FVn

∈ Rln×C be the features of ln 2D keypoints in
the verification frame Vn. Features of each keypoint is ob-
tained by using SuperGlue’s Keypoint Encoder which takes
as input the SuperPoint descriptor/confidence of the key-
point along with the normalized keypoint position and out-
puts a C = 256 dimensional feature.

Anchor-Verification Fusion: We then fuse anchor and ver-
ification sets based on their appearance and geometry sim-
ilarity. Figure 2 depicts the fusion of verification frame Vn
with the anchor points. The appearance similarity matrix
between keypoints of verification frame Vn and the anchor
points is represented by EVn→A ∈ RmA×ln . Here, we
use the score matrix from SuperGlue before the op-
timal transport layer (Sinkhorn Algorithm [30]) in order to
obtain continuous similarity values instead of hard assign-
ments. Let MVn→A ∈ RmA×ln be the pairwise geometry
similarity defined as the inverse of the reprojection distance
between the 2D keypoints in Vn and 2D projections of the
anchor points {Xi} on the verification frame.

The subsequent verification features GVn→A ∈ RmA×C

and HVn→A ∈ RmA×C are the weighted sum of the verifi-
cation keypoint features FVn based on the appearance and
geometry similarity to the 3D points:

HVn→A = θ(EVn→A)FVn

GVn→A = θ(MVn→A)FVn , (3)

where θ denotes row-wise normalization using softmax.
The concatenated GVn→A and HVn→A is then fed into
MLP(β) to obtain aggregated verification features OVn→A

which account for appearance and geometric similarities.
Finally, the fused feature Fagg

A ∈ RmA×C combines the
aggregated verification features {OVn→A} from all the ver-
ification frames {Vn} with the anchor features FA. This is
done using scaled dot-product attention [48]:

Fagg
A = Attention(OV1→A, ...,OVn→A,FA), (4)

where FA acts as Key and {OVn→A} as Query for the at-
tention mechanism. Please refer to the supplementary doc-
ument for more detail.

3.2.2 Learning Distinctiveness and Proximity
With the fused features Fagg

A of the anchor set A, we esti-
mate the distinctiveness d of the 3D points and their pair-
wise proximity K, which are utilized to solve the point
distribution α using Equation (2). As shown in Figure 1,
the d and K are obtained using two identical Point Trans-
former [52] networks. We choose Point Transformer in-
stead of other point-based architectures [32, 33] because
of their superior self-attention based information aggrega-
tion mechanism and impressive performance in various 3D
tasks. Please refer to our supplementary materials for more
details on the network architecture. The fused verification
features Fagg

A along with their anchor feature FA and 3D co-
ordinates XA are fed into the two point transformers to gen-
erate the distinctiveness scores d and point features f ∈ R64

of each 3D point that are used to calculate the pairwise prox-
imity matrix K.

The pairwise proximity K is conventionally set to
Kspatial [27] where each entry is a (Gaussian) radial basis

8262



function of spatial distance between pairs of points (i, j)

i.e. Kspatial
ij = RBF(∥Xi − Xj∥, σRBF) with

RBF(x, σRBF) = exp
(
− x2

2σRBF
2

)
. (5)

Instead of only using the spatial distance for K, we add a
learned matrix ∆K to obtain K = 1

2 (K
spatial +∆K). Let f̂

denote the normalized features of f. We generate ∆K using
RBF of pairwise feature distance: ∆Kij = RBF(∥̂fi − f̂j∥)
for each pair of points (i, j). This allows us to not only get a
good spatial coverage, but also to potentially reduce visual
redundancies and avoid pose estimation degeneracies with
the selected points.

After generating d and K, we optimize α in Equation (2)
with a differentiable QP solver [1] in order to backpropagate
the error gradients to K,d and τ during training.

3.3. Fine-Level Feature Quantization
For each selected point XS we need its feature FS , a

256 dimensional vector of 32-bit floating-point numbers, in
order to perform query frame registration. We compress
these descriptors using an auto-encoder network.

Our encoder contains a 2-layered MLP that reduces the
dimensions of the input descriptor FS by half, and a Differ-
entiable Soft Quantization (DSQ) [12] layer that quantizes
the MLP output from 32-bit floats to 8-bit unsigned inte-
gers. Let F̂S denote the resulting quantized features. A de-
coder consisting of MLP identical to the encoder then tries
to recover the original descriptor in the form of F′

S of same
dimensions and data type as FS . The network is trained us-
ing L2-loss: LQ = ∥F′

S − FS∥2.
After the scene compression, we only store the lower di-

mensional quantized descriptors F̂S generated by the en-
coder network, resulting in an eight-fold reduction in mem-
ory. During runtime localization the decoder network out-
puts F′

S which can be used for feature matching.

3.4. Training Losses

We use two losses Ld and Lξ to train our network to pro-
duce appropriate d, K and subsequently α. Ld encourages
the network to assigned high d values to points that are eas-
ier to track across multiple frames and is implemented as
follows:

Ld =
∑
j∈A

1

2σj2

∑
(j,i),i∈Q

∥πQ(ξgt,Xj)− xi∥

+
∑
j∈A

1

2
log(σj2), (6)

where σj represents the uncertainty of the 3D point Xj in
the anchor set A, Q is a query frame with ground truth pose
ξgt, xi ∈ R2 is the 2D image coordinates of the keypoint

High

Low

Figure 3. Visualization of the learned distinctiveness scores d.
Our system learns to assign high scores to strong features that can
be accurately matched with the query images

in query frame corresponding to the point Xj . πQ is the
projection function mapping a 3D points in world coordi-
nate frame to 2D image coordinates given the camera pose
and intrinsics. The (j, i) correspondences between refer-
ence and query points are predicted by a pre-trained Super-
Glue matcher.

The above loss function takes inspiration from Bayesian
deep learning [15]. The first term is the weighted errors of
the predicted 2D-3D matches (j, i) while the second term
serves as regularizer to prevent all the points from degener-
ating to high uncertainty. Finally, the distinctiveness score
of the point Xj is set to dj = 1

2σj
2 meaning lower uncer-

tainty in matching the 3D point with its 2D keypoint leads
to higher distinctiveness score.

Figure 3 shows the learned distinctiveness scores d
for 2 example images from the Cambridge Landmarks
dataset [16]. In the figure we can see that the distinct fea-
tures like corners and edges receive high scores. Since both
2D and 3D information are used for computation of d, the
scores can take into account the 3D structure along with the
appearance information.

Another loss term Lξ tries to maximize the accuracy of
the camera pose estimated using the points sampled from
the distribution α:

Lξ =

H∑
h=1

(( 4∏
i=1

αh
i

)
∥πQ(ξh,XR)− πQ(ξgt,XR)∥

+

4∑
i=1

αh
i ∥x

Q
i − πQ(ξgt,XR

i )∥

)
, (7)

where we randomly sample h = 1, ...,H hypotheses, with
each hypothesis h consisting of 4 points with distinctiveness
scores {αh

i | i = 1, ..., 4} randomly selected from the set of
3D points XR ∈ Rk×3. xQ

i ∈ Rk×2 represents the 2D
keypoint positions in query frame Q corresponding to XR

obtained from the SuperGlue matcher. ξh is the estimated
pose of the hypothesis h using 4 points solution of PnP [19]
and ξgt is the ground truth pose of the query frame.

The first term inside the summation in Equation (7) up-
dates the αi of all 4 points in a hypothesis based on the pose
error. Since a higher pose error does not necessarily mean
all 4 points led to incorrect matches, we add the second term
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which updates the exact αi based on the reprojection error
of predicted 2D-3D correspondence between xQ

i and XR
i .

By doing this we can encourage the point selection to make
sure that any combination of 4 selected points will lead to
good localization while also learning the distinctiveness of
individual points.

3.5. Runtime Localization
After our network is trained, we compress the point

clouds of each cluster using a custom implementation of the
Sequential Minimal Optimization (SMO) based quadratic
programming solver proposed in [27]. This allows us to
compress large point clouds efficiently using the predicted
d, K and τ . We also compress the AP-GeM [34] global de-
scriptor of the frame with the most observed 3D points from
each co-visible cluster. The same technique of Section 3.3
is used to quantize the 2048 dimensional, floating-point AP-
GeM descriptors to 1024 8-bit unsigned integer descriptors.
Only the compressed point clouds and quantized features
are kept for localization.

For runtime query frame registration, we use a strategy
similar to HLoc [36]. First, image retrieval [34] is used to
find nearest co-visible clusters similar to the query frame
IQ. We then register the query frame against each of the
compressed point cloud clusters corresponding to the image
retrieval results using PnP+RANSAC [19]. The final cam-
era pose ξQ is obtained by running PnP+RANSAC again on
all the 2D-3D correspondences from the clusters that led to
successful registration. More details about the global de-
scriptor quantization and localization process can be found
in the supplementary document.

4. Experiments
Datasets: We use the training set of the RobotCar Sea-
sons [26] dataset to train our network and evaluate the
trained network on the Cambridge Landmarks [16] and
Aachen Day-Night [42] datasets. All of the datasets are city-
scale capturing small/medium (Cambridge Landmarks) to
large (Aachen Day-Night, RobotCar Seasons) scale scenes.
Although SIFT [25] based 3D reconstructions are available
for the datasets, since our network is based on SuperPoint
features, we perform re-triangulation of the scene using the
ground truth camera poses in a similar fashion to [36].
Training Dataset: The RobotCar Seasons dataset consists
of 5.7K training images under various weather conditions
such as dawn, dusk, night etc. It also contains an addi-
tional set of 26K images called overcast-reference
which are used to generate the 3D scene point cloud and the
co-visible clusters (Subsection 3.1). There are in total 4.1K
co-visible clusters, 20% of which are used as validation set.

In one training iteration we take a set of co-visible frames
from which 30% frames are selected as anchor frames and
another 30% as verification frames. Frames within 10 me-

ters and 45° of the cluster center are used as query frames
from the remaining 40%.
Testing Dataset: Following [5,27] we select 4 scenes from
the Cambridge Landmarks dataset, viz., Shop Facade,
King’s College, Old Hospital and St.Mary
Church for evaluation, which cover small to medium-scale
scenarios. We also use the Aachen Day-Night dataset to
evaluate our method on large-scale scene and more chal-
lenging nighttime conditions. Their training sets are used
as reference frames and the test sets are used for evalu-
ation. No fine-tuning is performed on our network using
these datasets.

Similar to [36], we select top-15 image retrieval matches
of a query frame for Cambridge Landmarks dataset and top-
50 for the larger Aachen Day-Night to find the potential
clusters where the query image could belong to and then
perform finer pose estimation (Subsection 3.5).
Implementation Details: Our network is implemented in
PyTorch [29]. The training is performed on NVIDIA A5000
GPU with 24 GB memory. We use Adam optimizer [17]
with an initial learning rate 5× 10−4 and a batch size of 1.

Due to memory constraints we do not optimize the
weights of the SuperGlue network and limit the size of the
point cloud input to the QP solver to 1000 by random selec-
tion during training. Although the QP input is truncated, we
use all the points for calculating the losses in Equations 6
and 7. The RBF bandwidth (σRBF) for both spatial and
feature distance kernels are fixed to 1.0 while the learned
weight τ is initialized with 0.5. The compression ratio ν is
fixed to 1.5% during training while during testing it is 1.5%
as long as the number of compressed points in the cluster
is at least 100. Otherwise, an adaptive compression ratio is
applied such that the number of points is 100 in order to be
able to accurately localize query images belonging to those
clusters. Please refer to our supplementary document for
further details.

4.1. Quantitative Comparisons
Cambridge Landmarks dataset: We perform quantita-
tive comparison against various localization methods in Ta-
ble 1. QP+RootSIFT [27], Hybrid [5], KP [23], KCP [6]
are compression-based methods. We also include un-
compressed methods for references in our comparison.
DSAC++ [3] and PoseNet(Geo.) [14] are scene-specific
methods that implicitly encode a scene in their deep net-
work weights. The scene-agnostic SANet [50] on the other
hand stores the RGBD images of the entire training set.
Active Search (AS) [41] and HLoc [41] are sparse feature-
based methods where a scene is stored as uncompressed 3D
point cloud along with their 2D keypoint descriptors. Our
method and HLoc perform hierarchical, coarse-to-fine lo-
calization while the rest do not.

Along with the median translation error in meters and
median rotation error in degrees, we also report the size
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Shop Facade Old Hospital King’s College St. Mary’s Church
Size Trans. Err Rot. Err Size Trans. Err Rot. Err Size Trans. Err Rot. Err Size Trans. Err Rot. Err

Method (MB) (m) (°) (MB) (m) (°) (MB) (m) (°) (MB) (m) (°)
Compression-based methods

Ours 0.13 0.11 0.38 0.53 0.37 0.53 0.3 0.27 0.38 0.95 0.15 0.37
QP+RootSIFT [27] 0.41 0.72 1.4 1.1 0.9 2.17 2.2 1.53 1.09 3.3 0.56 0.89

Hybrid [5] 0.16 0.19 0.54 0.62 0.75 1.01 1.01 0.81 0.59 1.34 0.5 0.49
KC [23] 0.85 0.51 0.87 6 1.35 1.06 3.1 1.48 1.23 18 0.46 0.69
KCP [6] 1.30 0.44 0.8 8.2 1.19 1 5.9 0.99 0.86 24 0.4 0.61

Uncompressed methods

PoseNet(Geo.) [14] 50 0.88 3.78 50 3.2 3.29 50 0.88 1.04 50 1.57 3.32
AS [41] 38.7 0.12 0.41 140 0.52 1.12 275 0.57 0.7 359 0.22 0.62

SANet [50] 27 0.1 0.47 105 0.32 0.53 143 0.32 0.54 174 0.16 0.57
DSAC++ [3] 207 0.06 0.3 207 0.2 0.3 207 0.18 0.3 207 0.13 0.4
HLoc [36] 316 0.04 0.2 1335 0.15 0.3 1877 0.12 0.2 2009 0.07 0.21

Table 1. Cambridge Landmarks quantitative comparison. We report the size of the scene representation in MB, the median translation
error in meters(m) and median rotation error in degrees(°) for each method.

Size Aachen Day Aachen Night
Method (MB) 0.25m, 2° / 0.5m, 5° / 5m, 10° 0.25m, 2° / 0.5m, 5° / 5m, 10°

Compression-based methods

Ours 31 75.5 / 89.7 / 96.2 50.0 / 67.3 / 78.6
Cascaded [7] 140 76.7 / 88.6 / 95.8 33.7 / 48.0 / 62.2

QP+R.Sift* [27] 31 62.6 / 76.3 / 84.7 16.3 / 18.4 / 24.5
Uncompressed methods

PixLoc(E2E) [38] 2189 61.7 / 67.6 / 74.8 46.9 / 53.1 / 64.3
ESAC(50) [4] 1315 42.6 / 59.6 / 75.5 6.1 / 10.2 / 18.4

AS [41] 750 57.3 / 83.7 / 96.6 28.6 / 37.8 / 51.0
HLoc [36] 7828 89.6 / 95.4 / 98.8 86.7 / 93.9 / 100.0

Table 2. Aachen Day-Night quantitative comparison. We report
the size of the scene representation in MB and percentage(%) of
query frames successfully localized within the given translation
and rotation errors in meters and degrees respectively.

of scene representation in MB stored by each method.
Our method outperforms all the existing compression-based
methods while also keeping a lower memory footprint.

As for the uncompressed methods, our method outper-
forms Active Search (AS) [41] and is also on par with
SANet [50]. Although DSAC++ [3] and HLoc [36] yield
better localization performance, they come with consider-
ably high cost in memory compared with our method.
Aachen Day-Night dataset: We compare our method
against existing methods on the Aachen Day-Night dataset
in Table 2. The method “Cascaded” [7] compresses the de-
scriptor directly without reducing the number of 3D points.
Since [27] has no source code available, we use our imple-
mentation of their method but keep our image retrieval mod-
ule (denoted by QP+RootSift*). We include the uncom-
pressed method ESAC(50) [4] which extends DSAC++ [3]
along with the end-to-end method PixLoc(E2E) [38].

Our method performs better than or on par with all the
other methods, for all the thresholds with HLoc being a no-
table exception. However, the higher performance of HLoc
comes at a steep memory cost. The compression-based
method “Cascaded” [7] performs similar to ours for the
daytime images but our method significantly outperforms
theirs for the nighttime images while only using 20% of
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Figure 4. Performance of Differentiable Point Selection with
different inputs. 3D points are selected based on a threshold on
the distinctiveness scores d (shown in x-axis) and the percentage
of selected points that have less than 10 pixel re-projection error
against their 2D correspondences are reported in y-axis.

their memory.

4.2. Ablation Study
Effectiveness of using verification set: In this experiment
we use the 4 scenes of Cambridge Landmarks dataset and
select three different types of input to feed to our Differ-
entiable Point Selection (DPS) module and examine how
it affects the distinctiveness score d: 1) the anchor and
verification frame features are aggregated using appear-
ance and geometric similarities (Equation (3)), denoted by
Appear.+Geo.; 2) using only the appearance similar-
ity (referred to as Appear.) for aggregating the anchor
and verification features; 3) SuperPoint features of the an-
chor frames are directly used without fusing with verifica-
tion frames, denoted by SuperPoint feat. Figure 4
shows the predicted distinctiveness score (normalized) of
the 3D scene points against the percentage of correct 2D-
3D matches in the query frames. Here we select the sub-
set of scene points with distinctiveness score higher than a
given threshold (x-axis). After reprojecting those 3D points
to the query image planes using ground-truth camera poses,
we then evaluate the percentage of the points where the re-
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Figure 5. Performance of our system when using learned ker-
nel vs fixed spatial kernel. We report the localization recall un-
der the translation and rotation error thresholds (0.5m, 5°). The
random selection and naive selection of the top distinct points
(Top-k dist.) baselines are also included in the comparison.

projection distance against their matched query keypoints is
under 10 pixels (y-axis).
Learned vs Fixed Kernel: We evaluate the localiza-
tion performance when using fixed spatial distance kernel
Kspatial instead of the learned kernel K when solving Equa-
tion (2) to find the selected point. For comparison, we also
show the accuracy when we randomly select the points and
when we directly choose the points with highest distinc-
tiveness score d (Top-k dist.). We select the Kings
College scene for our experiment and the results are
shown in Figure 5. The gap between random selection and
other methods is large indicating that our learned distinc-
tiveness score d correspond to the ability to correctly match
the 3D points with query image keypoints. Using Kspatial

along with d performs better than Top-k dist. and the
learned K performs the best, especially at higher compres-
sion (corresponding to lower compression ratio). The dif-
ference in accuracy between learned kernel, fixed kernel
and top distinctiveness score gets lower when compression
ratio is increased. This is because a larger number of points
will be used for localization which increases the number of
correct 2D-3D matches and the PnP with RANSAC [19]
scheme becomes more robust against outliers.

Figure 6 shows the points selection on two frame in a
co-visible cluster using the fixed and learned kernels re-
spectively. Both use a compression ratio of 1.5%. The
fixed kernel only uses the 3D position information while
the learned kernel considers 2D position and feature infor-
mation as well. The learned kernel therefore leads to better
feature distribution, in the image coordinates and not just
the 3D coordinates. This can explain why the learned ker-
nel performs better than the fixed spatial kernel in Figure 5.
Compression Time: In Table 3 we report the time re-
quired for scene compression by our system (compression
ratio 1.5%), QP+R.Sift [27], KC [23] and KCP [6] on
the St.Marys Church scene from the Cambridge Land-
marks dataset. For QP+R.Sift, KC and KCP, we present the
compression time reported by [27]. Our compression time
is similar to KC and lower than KCP, but it is significantly

Fixed Kernel Kspatial Learned Kernel K

Figure 6. Visualization of the points selected using fixed and
learned kernels. The selected 3D points are reprojected to the
image plane and shown as Green dots.

Our QP+R.Sift [27] KC [23] KCP [6]

484 18 328 798

Table 3. Compression time (seconds) of different methods.

higher than QP+R.Sift since our computation of d and K is
more involved than QP+R.Sift.

5. Limitations
There are several limitations of our system: 1) Our co-

visible clusters consist of maximum 20 frames, 30% of
which are anchor frames. Although we select the frames
with the most observed points, some points are still ignored.
A smarter strategy that takes both efficiency and wider cov-
erage into account could be used for improvement; 2) Due
to the limited capacity of the existing point transformer, we
can only process one cluster at a time. This may cause
unnecessary costs for processing overlapping clusters; 3)
Multiple retrieval candidates are required to get an accu-
rate registration of a query image. With larger scenes such
as Aachen Day-Night [42], a larger number of candidates
are needed to tackle ambiguous retrievals. This can be too
expensive for real-time applications, especially for mobile
platforms where the computational resources are limited.

6. Conclusion
We present a novel method for compressing a scene

while retaining visual localization accuracy. Our scene
compression is done in three stages: co-visible frames clus-
tering, learned point selection and learned feature quantiza-
tion. Unlike existing methods [5, 6, 23, 27], we do not use
handcrafted heuristics but learn to select a subset of scene
points that can maintain pose estimation accuracy. Experi-
ments on various datasets corroborate our method’s ability
to perform accurate localization with low memory footprint.
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[28] Daniel Müllner. Modern hierarchical, agglomerative cluster-
ing algorithms. arXiv preprint arXiv:1109.2378, 2011. 3

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NeurIPSW, 2017. 6
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