
Robust Collaborative Visual-Inertial SLAM
for Mobile Augmented Reality

Xiaokun Pan Gan Huang Ziyang Zhang Jinyu Li Hujun Bao Guofeng Zhang

Collaborative Mapping

User #1 User #2 User #n

Multi-User AR Application

Top View

Real-time Pose

Devices

Odometry

Odometry

Odometry

Camera IMU

Side ViewScene Geometry
Network

Observation

Structure Info.

Fig. 1: We propose a robust centralized collaborative SLAM system with multiple agents. Each agent communicates with the server
backend process via a wireless network connection. The system is capable of real-time camera pose tracking and global map
reconstruction, with each camera and its corresponding scene view annotated in the same color. Leveraging multi-agent collaboration,
we demonstrate interactive augmented reality technology involving multiple users.

Abstract—Achieving precise real-time localization and ensuring robustness are critical challenges in multi-user mobile AR applications.
Leveraging collaborative information to augment tracking accuracy on lightweight devices and fortify overall system robustness emerges
as a crucial necessity. In this paper, we propose a robust centralized collaborative multi-agent VI-SLAM system for mobile AR interaction
and server-side efficient consistent mapping. The system deploys a lightweight VIO frontend on mobile devices for real-time tracking,
and a backend running on a remote server to update multiple submaps. When overlapping areas between submaps across agents are
detected, the system performs submap fusion to establish a globally consistent map. Additionally, we propose a map registration and
fusion strategy based on covisibility areas for online registration and fusion in multi-agent scenarios. To improve the tracking accuracy
of the frontend on agent, we introduce a strategy for updating the global map to the local map at a moderate frequency between
the camera-rate pose estimation of the frontend VIO and the low-frequency global map optimization, using a tightly coupled strategy
to achieve consistency of the multi-agent frontend poses estimation in the global map. The effectiveness of the proposed method
is further confirmed by executing backend mapping on the server and deploying VIO frontends on multiple mobile devices for AR
demostration. Additionally, we discuss the scalability of the proposed system by analyzing network traffic, synchronization frequency,
and other factors at both the agent and server ends.

Index Terms—SLAM, VIO, Collaborative, Tightly coupled, Map fusion

1 INTRODUCTION

In recent years, state-of-the-art VIO/VI-SLAM systems have witnessed
significant advancements in terms of accuracy and robustness within
single-agent frameworks. This progress has prompted researchers to ex-
plore the extension of these systems to multi-agent applications. Such
exploration involves harnessing sensor inputs from multiple agents,
encompassing cameras, inertial measurement unit (IMU), or GPS data,
to collaboratively amalgamate information. This collaborative effort
aims to achieve a comprehensive perception of the environment and to

• Xiaokun Pan, Gan Huang, Ziyang Zhang, Hujun Bao, Guofeng Zhang are
with State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058,
China. E-mails: {xkpan, huanggan, zhangzion, baohujun,
zhangguofeng}@zju.edu.cn

• Jinyu Li is with Dreame Techonlogy. E-mail: mail@jinyu.li
• Corresponding Author: Guofeng Zhang.

enhance the localization capabilities of individual agents. Multi-agent
collaborative perception systems hold vast potential in efficiently ex-
ploring uncharted environments, updating and maintaining dynamic
digital maps, and facilitating immersive multi-user augmented reality
(AR) experiences. With the prosperous interest in AR applications, fa-
cilitating interactive AR interactions among multiple users has emerged
as a critical requirement. Nevertheless, the deployment of multi-agent
systems is fraught with challenges, including map registration across
agents, constraints related to network bandwidth and latency, and the
issue of pose drift in AR scenarios within single-agent contexts. These
challenges pose significant obstacles to the effective implementation
and broader adoption of multi-agent systems in the realm of AR and
beyond.

VIO has emerged as a crucial area of SLAM research, owing to its
proficiency in delivering real-time estimations of 6-degree of freedom
(DoF) poses while effectively resolving scale ambiguities. The integra-
tion of multi-sensor fusion techniques further augments the robustness
of VIO-based methodologies, rendering them superior to their purely
visual SLAM counterparts. In the realm of single-agent applications,

https://orcid.org/0000-0002-7438-1665
https://orcid.org/0000-0001-8515-2721
https://orcid.org/0009-0004-4169-2282
https://orcid.org/0000-0002-5206-8600
https://orcid.org/0000-0002-2662-0334
https://orcid.org/0000-0001-5661-8430

particularly within augmented reality (AR) and virtual reality (VR),
VIO’s capability for real-time tracking and local map reconstruction in
uncharted environments has been instrumental. Notable implementa-
tions in this sector include augmented reality platforms such as ARKit1
and ARCore2. These platforms leverage visual-inertial fusion for en-
hanced tracking accuracy, while also maintaining local backend maps
to assure spatial consistency.

In contrast to VIO’s emphasis on local tracking, the essence of a
collaborative SLAM system is the establishment and maintenance of
a globally coherent map. This is achieved by sharing mapping data
among multiple agents and refining uncertain state estimations. As a
result, the system not only ensures global map coherence but also signif-
icantly improves localization precision with efficiency and robustness.
Current collaborative systems built upon VIO frameworks, whether they
adopt centralized methodologies [19,30,33,34] or distributed [6,38,39],
typically focus on integrating local maps from individual agents into
a unified global map at the backend. Such methods often neglect the
potential of the globally consistent maps to correct the frontend drift
accumulation, or they only employ loosely coupled strategies, which
can result in discontinuities in the VIO frontend poses. Additionally,
the intricate process of cross-agent map alignment poses challenges for
efficient deployment in multi-user AR scenarios.

In this work, our focus is the development of a robust collabora-
tive SLAM system for multi-user AR interactions, concentrating on
collaborative localization and consistent mapping between multiple
agents. Unlike previous research that mainly concentrated on backend
collaborative processing of agent data for accurate mapping [6, 19, 30],
our proposed framework intends to deploy lightweight algorithms on
consumer-grade mobile devices, such as smartphones and AR glasses.
This deployment provides frontend states with consistent map states in
the backend for states fusion, while also enhancing the efficiency and
accuracy of collaborative systems.

As shown in Fig. 1, the proposed collaborative framework with
multi-agent efficiently accomplishes cross-agent map registration and
exhibits high-precision real-time pose estimation in AR scenarios. The
main contributions of this paper are as follows:

• We present a robust multi-agent collaborative SLAM framework
that achieves real-time and precise localization for resource-
constrained frontends across multiple agents, coupled with collab-
orative and consistent mapping on the backend. Our frontend can
be deployed on the mobile devices with limited computing capa-
bilities, while the backend is designed for cloud or local server to
facilitate collaboration.

• A lightweight and efficient online cross-agent map fusion strategy
based on covisibility is introduced, which mitigates the latency
and inefficiency in cross-agent map registration and fusion stem-
ming from bag-of-words loop detection. This approach enhances
the efficiency of cross-agent map registration and fusion in AR
scenes.

• We propose a tightly coupled approach that synchronize the back-
end structure with the frontend’s real-time pose estimation. By
integrating the backend’s map points and keyframes, which are
constrained by global consistency, with the VIO frontend’s slid-
ing window state, our system dynamically corrects for drift in
real-time, resulting in enhanced pose accuracy.

• The entire codebase of our system and the dataset will be made
publicly available, including the frontend VIO for agents, the
backend server code, and an iOS project tailored for mobile AR,
thereby contributing to the open-source community and facilitat-
ing further advancements in this field.

Through extensive comparative evaluations conducted on the EuRoC
dataset [4] and our newly collected VICON dataset, our approach is
shown to outperform existing state-of-the-art multi-agent collaborative
SLAM methodologies in both accuracy and robustness. We not only

1https://developer.apple.com/documentation/arkit
2https://developers.google.com/ar

validated the effectiveness of the proposed map fusion strategy based
on online covisibility area but also demonstrated that the precision
of the frontend agents benefits from the tightly-coupled architecture
we have introduced. Remarkably, our framework is well-suited for
deployment on mobile devices with limited computational resources.
We have developed an AR demonstration using consumer-grade mobile
phones to showcase the practical applicability and effectiveness of our
proposed collaborative SLAM framework in real-world scenarios.

2 RELATED WORKS

In the realm of real-time tracking and mapping tasks for augmented
reality based on multi-agent collaboration, this study is aimed at ad-
dressing several key challenges. These challenges include effectively
utilizing an individual agent to construct a local map and achieve posi-
tioning within an independent coordinate system, as well as leveraging
multiple agents to establish a structurally consistent global map. Ad-
ditionally, it is crucial to explore mechanisms for delivering reliable
localization outcomes and ensuring map consistency from the global
map to the frontend. Ongoing research in this field is investigating
innovative strategies, including SLAM systems that integrate advanced
deep learning solutions [26, 36, 37, 40, 43] and the incorporation of
additional prior information, such as diverse sensors [7, 10, 28, 45]
or pre-built maps [2, 17, 18, 25], to optimize key modules within the
system, thereby enhancing tracking accuracy and overall performance
efficiency.

2.1 VIO/SLAM

VIO/VI-SLAM have emerged as a significant area of interest within the
realm of computer vision research. Visual-only odometry is detailed
in [41]. Due to the scale ambiguity of monocular VO and VSLAM,
scale is typically recovered by fusing inertial measurements from an
IMU with visual measurements. VIO systems can be categorized into
two types based on the fusion technique: filter-based [3, 13, 16, 20] and
optimization-based [5, 11, 20–22, 31].

Filter-based methodologies have been among the first to be vali-
dated due to their computational advantages. A significant advance-
ment in this area is MSCKF [27], an early VIO system grounded in
Kalman filtering. It coalesces geometric constraints and IMU measure-
ments within a multi-state constrained Extended Kalman Filter (EKF).
ROVIO [3] is another innovative system that champions the use of
photometric error in visual measurements, thereby obviating the need
for pre-extracted feature points as necessitated by MSCKF. Moreover,
OpenVINS [13], a widely used open-source platform, modularizes a
positioning and navigation system based on the MSCKF.

With the advancement and increasing sophistication of nonlinear
optimization techniques, optimization-based VIO/SLAM systems have
emerged and demonstrated higher accuracy in localization and map-
ping. Recent VI-SLAM systems, including VINS-Mono [31] and
VINS-Fusion, adopting keyframe-based bundle adjustment and sliding
window techniques in the frontend, as well as pose graph optimization
(PGO) based loop closure in the backend to mitigate drift accumu-
lation, thereby achieving better accuracy. In the latest development,
ORB-SLAM3 [5] has demonstrated a hightly tightly coupled system
that can produce precise results, solving the complete SLAM problem.
However, due to the need for early poses to be optimized through sub-
sequent observations, this is impractical for real-time applications. On
the other hand, RD-VIO [21] proposes a moving point removal strategy
in dynamic scenes and a subframes mechanism for camera motion
degradation, aiming to achieve lightweight, high-precision real-time
tracking on mobile devices.

In VIO-based AR systems, fusing observations from multiple sensors
can significantly enhance accuracy. However, despite these improve-
ments, the accumulation of drift in VIO systems remains an inevitable
issue as tracking distances increase. This phenomenon is primarily
attributed to factors such as measurement noise and the inherent non-
convexity of the SLAM least squares problem, among others.

Table 1: Comparison of different Collaborative SLAM methods. In the
architecture, C represents centralized, and D represents distributed.
Compared to previous work, our proposed method adopts a tightly cou-
pled optimization for frontend camera-rate pose estimation and is capable
of running on mobile phones.

Method Arch. Camera IMU Coupled Mobile

CoSLAM [44] C Mono No No No
CVI-SLAM [19] C Mono Yes No No
CCM-SLAM [33] C Mono No No No
COVINS(-G) [30, 34] C Mono Yes No No
Kimera-Multi [6] D Stereo/Depth Yes - No
D2SLAM [38] D Mono Yes - No
Ours C Mono Yes Yes Yes

2.2 Collaborative SLAM

The collaborative SLAM systems for multi-agent setups can be cat-
egorized into centralized and distributed architectures based on their
architectures design.

In a distributed architecture [6, 38, 39, 42], each agent independently
processes its own sensor inputs while sharing data with other agents.
This approach enables faster localization and map reconstruction by
processing local information, and enhances system robustness by elimi-
nating reliance on a central server. However, it requires frequent com-
munication and data synchronization, potentially increasing network
latency and communication overhead.

In contrast, centralized solutions use a client-server model where a
central server handles data storage and dissemination. This allows the
server to manage computationally intensive tasks, reducing the load
on local agents and enabling them to focus on real-time processing.
Most research supports the centralized approach, as seen in studies
like [19, 30, 32–34].

C2TAM [32] proposed an early framework attempting collaborative
tracking and mapping. It deployed all mapping tasks on the server,
while the frontend agents relied on limited computational resources
for visual tracking. However, this work did not optimize robustness
and system efficiency. [29] leverages edge servers to maintain map
databases, perform global optimization, and design an efficient com-
munication channel for real-time information sharing among robots.
However, the frontend needs to maintain local maps and real-time
data sharing, resulting in significant communication overhead. CVI-
SLAM [19] adopts a centralized collaborative approach and introduces
bidirectional communication to provide feedback from the backend
map optimization to the frontend VIO system. [23] focuses on collabo-
rative dense reconstruction with multiple agents, employing a compact
3D representation for map transmission. It also introduces a robust
map fusion algorithm based on joint optimization of trajectories and
submaps, enabling real-time generation of globally consistent dense
maps with reduced transmission load. [44] proposed a system where
multiple monocular visual agents collectively uphold a global map con-
taining static background points and dynamic objects. COVINS [34]
developed a novel multi-robot system framework to achieve efficient
and accurate frontend data processing at the server while reducing
redundant information in data communication, showing significant
advantages in cooperative overhead. Furthermore, COVINS-G [30]
discussed a frontend-agnostic collaborative backend framework, aiming
to deploy various types of VIO frontends. The Kimera-Multi [6] pro-
posed a robust collaborative framework under limited communication
bandwidth conditions, employing a fully distributed communication
scheme to implement the global consistency metric-semantic 3D grid
model for environment reconstruction. In Tab. 1, we present a com-
parison between our method and state-of-the-art collaborative SLAM
approaches. The coupled means the tightly coupled between frontend
and backend in centralized architecture, and the mobile means it can
be deployed on a mobile device with limited resource such as a mobile
phone.

3 OVERVIEW

3.1 Framework

Fig. 2 illustrates our system framework, which employs a centralized
server-client architecture. A lightweight VIO frontend is deployed
on the mobile device (e.g., mobile phone or AR glasses), while a
backend process operates on the server side. The mobile frontend and
the server backend establish a connection via wireless communication
to enable smooth interaction and data synchronization between the
two components. By presetting a listening port on the server side, we
can establish communication with an indeterminate number of agents,
engaging them in collaborative localization and mapping.

Frontend: The VIO frontend consists of a feature extractor and a
tracking module based on a sliding window, similar to the approach
in [21,31]. Therefore, during the tracking thread, it is only necessary to
maintain a local map determined by the sliding window for localizing
the latest image. The feature tracking module utilizes the KLT [24] opti-
cal flow algorithm to establish feature correspondences by maintaining
feature points across consecutive frames. We maintain a fixed-size NW
sliding window composed of the latest keyframes, and through frequent
bundle adjustment (BA) executions, we achieve joint optimization of
pose and local map points. Simultaneously, we employ motion-only
visual-inertial optimization to output state estimates at the camera rate.

Backend: The server side consists of three modules: map main-
tenance module, loop detector and closure module, and optimization
module.

• Map Maintenance: It is responsible for receiving keyframes from
the frontend VIO localization, constructing a local map, and,
when the system detects that multiple agents have covisibility
area, completing map registration and fusion. This aspect will be
detailed in Sec. 4.2.1 .

• Loop Detector and Closure: We adopt a strategy similar to [11,
31] for loop detection, using a bag-of-words model to describe
images and maintain a keyframe database of the current map for
detecting similar areas in the scene. We will introduce this in the
Sec. 4.3.

• Optimizer: This module includes local bundle adjustment (LBA)
for the local map, pose graph optimization (PGO) during loop
closure, and the final global bundle adjustment (GBA). When
registering a new keyframes in the backend, we execute LBA to
achieve joint optimization of the current frame and the local map.
Upon detecting a loop, we first execute PGO to correct the drift
of keyframes. Once this is completed and the system state allows,
GBA is executed in a separate thread.

3.2 Notation

To ensure clarity and conciseness, we first define the symbols and
coordinate systems used in this work. Due to the timeliness of IMU
pre-integration, the state of frames in the frontend VIO differs slightly
from that in the backend. In the frontend VIO, the state vector of the
k-th frame is parameterized as

sk =
{

pk,qk,vk,b
g
k ,b

a
k
}
, (1)

where these variables represent position p, orientation q, velocity v,
gyroscope bias bg, and accelerometer bias ba, respectively. We use
the Hamilton quaternion form q to denote rotation, and R denotes the
corresponding matrix form, means camera to world. In frontend, we
employ the inverse depth parameterization [8] to represent landmark.
Therefore, the state of landmark x j includes only a one-dimensional
inverse depth parameter d j , and its position in the k-th frame is denoted
as zk, j , which is associated with the reference keypoint position zk,r on
the reference frame r. For simplicity, we assume the intrinsic camera
parameter matrix K is constant, and the extrinsic parameters between
the camera and IMU are ideal, i.e., their relative transformation is
represented by the identity matrix. In the backend, as the IMU pre-
integration information is removed, the state of the k-th keyframe can
be simply parameterized as sb

k =
{

pb
k ,q

b
k
}

, and the global map points
are parameterized based on Cartesian coordinates, representing 3DoF

AR Application Frontend - Mobile Agent

Image

IMU

Agent #1

Real-time Pose

Image

IMU

Agent #n

Real-time Pose

Sliding Window

Sliding Window

Backend - Server

Global Map

Map Maintainer

Database

Relocalization Optimization

Local Mapping #1

Local Mapping #n

DBoW2 Pose Graph

Global BALo
ca

l B
A

1 …2 3 n

Register/Fusion

Fig. 2: System architecture of RCO-SLAM: The system is designed for deployment across a variable number of mobile devices in conjunction with
a central server. The system’s frontend utilizes image and IMU data to facilitate camera-rate 6DoF pose estimation. Data from the frontend is
transmitted to the server side via a wireless network, where the backend performs consistent mapping. This is achieved through various modules,
including multi-map management, relocalization, and optimization processes.

as xb
j = {x,y,z}. We use Π(·) to denote normailized projection and

represent a vector’s homogeneous form as z =
(

z
1

)
. Therefore, 3D

representation of the frontend map point is given by

x j =
1
d j

RrK−1
r zk,r/

∥∥∥K−1zk,r

∥∥∥+ pr. (2)

Subsequently, we will no longer explicitly distinguish between the
specific forms of frontend map points and backend map points.

4 APPROACH

4.1 Frontend VIO
Mainstream approaches for VIO frontend can be broadly categorized
into two types. The first type, exemplified by works such as [21,
31], utilizes a sliding window mechanism to construct a local map.
This method employs the KLT [1] optical flow based feature tracking
algorithm to establish inter-frame data associations. Subsequently, it
achieves frame localization by constraining visual tracking within the
sliding window and IMU pre-integration. The second type, represented
by works like [5, 11], adopts feature matching based on descriptor for
local mappings. This approach involves extracting redundant feature
points and descriptors from images, ensuring an adequate number of
correspondences, typically around 1000 [11], and performing matching
verification for each point to ensure stable matching. In contrast to the
feature matching based approach, the sliding window based method
offers performance advantages. It requires extracting only 200~300
points per frame and does not necessitate feature matching. Therefore,
our frontend adopts the sliding window based strategy. However, for
maintaining the backend map, we still rely on feature-based methods,
which will be elaborated on in Sec. 4.2.1.

The sliding-window-based VIO frontend is designed to solve a bun-
dle adjustment problem by incorporating visual-inertial constraints
across a sequence of keyframes (KF) and the corresponding observa-
tions of landmark. Its objective is to refine the extrinsic parameters of
KFs and estimate the states of landmark. The optimization process of
the sliding-window frontend encompasses both visual constraints and
IMU pre-integration constraints. Specifically, reprojection residuals are
formulated as follows:

ek, j
r = zk, j−Π(KkR−1

k (x j− pk)). (3)
The residual for IMU pre-integration has been derived in reference [22,
31], and we ultimately adopt the following form for the keyframe k
with its last one:

ek
i = [ek

q,e
k
p,e

k
v,e

k
g,e

k
a]
⊤, (4)

Here, ek
q = log(q̂−1

k qk), ek
p = pk− p̂k, ek

v = vk− v̂k, ek
g = bgk−1 − bgk ,

ek
a = bak−1 − bak . The variables with ˆ(·) in the state sk represent the

measured motion state obtained by pre-integrating of IMU frame k.
Additionally, log(·) denotes the distance between two quaternions on
the Lie-algebra manifold.

In addition, we also consider the marginalization error em [35],
which is used to simplify the discarded states when keyframes slide out
of the window. Then the total residual for sliding-window-based VIO
can be described as

arg min
F ,M

∑
k∈F

∑
j∈M

ρ

(∥∥∥ek, j
r

∥∥∥2

W k, j
r

)
+ ∑

k∈F

(∥∥∥ek
i

∥∥∥2

W k
i

)
+∥em∥2 . (5)

Here, F = {si} and M = {xi} represent the sets of keyframes and
landmarks, respectively. ∥·∥W denote the squared Mahalanobis distance
with their corresponding covariances.. We set the size of our sliding
window as NW = 8 and use a Cauchy kernel function ρ(·) for visual
residuals to reduce the impact of outliers, with c controls the width of
the kernel, it is defined as

ρ(r) =
c2

2
log

(
1+

(r
c

)2
)
. (6)

4.2 Backend Map Maintenance

4.2.1 Local Mapping

As described in Sec. 4.1, our approach adopts a lightweight sliding-
window-based frontend VIO method, which necessitates the mainte-
nance of map descriptors in the backend to construct a globally consis-
tent map and establish data associations across agents. Consequently,
we build a keyframe-based local map on the server side using these
descriptors. This strategy aligns with the methods employed in [11,31],
where keyframes from each agent’s sliding window are integrated into
the local map, and additional 3D landmarks are triangulated to enhance
the map’s accuracy. For each keyframe received from the frontend,
we transmit ORB features along with their corresponding descriptors
and other relevant information to the server. Then, we carry out the
registration of the nearest keyframe, which is based on 2D matches be-
tween image descriptors for initialization and 2D-3D matches between
keyframe and point clouds for tracking. Moreover, the descriptors of
the 3D points within the map are updated accordingly. Given that the
keyframes obtained from the frontend VIO already possess relatively
reliable poses, projecting the 3D point clouds onto these keyframes
enables us to achieve accurate image matching relationships, thereby
enhancing the overall performance of our proposed system in construct-
ing a globally consistent map.

To avoid redundancy in the keyframe database, we have applied
certain selection criteria for keyframe selection:

• The current frame can track a proportion p of map points from
the previous keyframe.

• The maximum frame interval between the current frame and the
previous keyframe is NG. In our subsequent experiments, we set
this to NG = 10.

To maintain the consistency and stability of the local map, we per-
form local bundle adjustment (LBA), which involves the current frame
and its associated covisiability keyframes as well as the map points
observable by these keyframes. Covisiability keyframes are defined as
frames where the number of covisiability map points exceeds a certain
threshold thcovis. The optimization objective of LBA is:

arg min
KL,M b

L

∑
k∈KL

∑
j∈M b

L

ρ

(∥∥∥ek, j
r

∥∥∥2

W k, j
r

)
, (7)

where KL =
{msb

i
}

represents the set of keyframes in the local map,
and M b

L =
{mxb

i
}

denotes the set of backend local map points. Here,
m(·) indicates from the m-th agent, and (·)L denotes the local map.
Unlike in single-agent backend mapping, after completing the fusion
of submaps from agents m and n, KL and M b

L may be shared by the
two agents.

4.2.2 Online Map Fusion

1 2 n

Offline Loop Detection

Agent

Latest Keyframe Buffer

Latest Keyframe

Online Covisibility Area Detection

From Agent#2 Failed

Map Fusion

Succ. Succ.

DatabaseBoW

query

Fig. 3: Online map fusion and offline loop closure in collaborative map-
ping

Cross-agent map registration and fusion can be achieved using loop
detection modules (Sec. 4.3), which is a common practice in previous
work [19, 30]. However, we argue that cross-agent map registration
based on loop detection often encounters issues such as registration
failures or delayed registration. This is because the use of image re-
trieval based on the bag-of-words model [12] only provides results that
are similar in the image-words space, and the presence of considerable
noise leads to inefficiencies in the map registration. Therefore, we
propose an online map registration and fusion approach based on covis-
ibility area. The term online here indicates that the keyframe database
at this time consists of “the latest keyframes from other agents,” as
opposed to historical keyframes based on the bag-of-words model.

As shown in Fig. 3, we maintain a buffer of the latest keyframes
from each agent, through which we can also obtain the locally observed
map points (MPs). In this module, for each newly arrived keyframe
and other keyframes in the buffer, we perform descriptor-based 2D-2D
image matching. Based on this cross-agent matching situation, after
consistency verification using the RANSAC algorithm and surpassing a
predefined matching threshold, we consider it highly likely that agents
a and b are observing the same area. We then proceed to a 2D-3D
verification stage. For the keyframe pair (KFa,KFb) from the two
related agents, we attempt cross-agent frame registration using the
PnP [15] algorithm to obtain T b

a , the pose of keyframe KFa in the local
map point constraints of KFb. Using this transformation for projection
matching, we can obtain more geometric constraints between KFa and
KFb. At this point, it can be assumed that the two agents can register or
fuse their maps.

4.3 Loop Detection and Closure
The online map fusion method based on covisibility area proposed in
Sec. 4.2.2 is applicable to cross-agent scenarios. For offline map fusion,

Algorithm 1 Online Covisibility-Area-based Map Fusion

1: Buffer = [KF0,KF1, ...,KFn]
2: function COVISIBILITY MAP REGISTRATION(Buffer)
3: [KFa,KFb,M2D2D]← Search 2D-2D Matching in Buffer
4: if len(M2D2D)> th2D2D then
5: TKFa ← PnP(KFa,MPsb,M2D2D)

6: KFcovis
a ←CovisiableGraph(KFa)

7: M2D3D← Pro jectionMatching(KFcovis
a ,TKFa ,MPsb)

8: for MP ∈MPsa do
9: Fuse(MP,MPsb)

10: end
11: end
12: end function

Intra-loop Inter-loop

Loop link

Sequential link

Inter-graph-edge

Graph edge

Agent #i

Agent #j

Fig. 4: Loop closure in collaborative mapping

we utilize the bag-of-words model [12] for keyframe database queries,
used for loop detection, similar to approaches such as [11, 31]. We
identify a candidate set C by searching all map data for KFq, and then
perform descriptor-based brute-force matching with each keyframe in
C . By setting a specific matching quantity threshold, we successfully
match KFm, determining whether KFq and KFc are in the same submap.
We then execute different map maintenance strategies, as illustrated in
the Fig. 4.

Intra-loop: When the matched frame KFm and the query frame
KFq belong to the same submap, comprehensive optimization of the
entire loop is necessary. Initially, we apply a RANSAC-based PnP
solution [15] on the map points in KFq and KFm, followed by outlier
rejection, resulting in an initial correction transformation Tmq. Subse-
quently, we utilize Tmq for additional map point projection matching for
KFq and its co-observing frames. Following this, similar to [31], we
conduct pose graph optimization, as shown in Fig. 5. Upon completion
of the optimization, the associated map points are transformed. Finally,
global bundle adjustment is executed.

Inter-loop: In the scenario where the loop frame KFm and the query
frame KFq originate from different submaps, after completing the fu-
sion of local maps based on the consensus graph, if it is the first
cross-agent loop closure, a map fusion strategy is executed. The fused
map is then distributed to the local mapping threads of different agents,
enabling map sharing between these agents.

The optimization objective of PGO involves the poses of adjacent
keyframes, KF i and KF j in the sequence edge set S , while main-
taining the relative pose of keyframes in the loop edge set L fixed, as
defined in [31]. Thus, residual constraints can be introduced:

ei j
l =

[
R−1

i (p j− pi)− p̂i, j.

R−1
i R jR̂−1

i j

]
. (8)

R̂i j and p̂i j is obtained from the loop closure. Therefore, the entire pose
graph optimization problem can be formulated as the minimization of:

arg min
S ,L

∑
(i, j)∈S

∥∥∥ei j
l

∥∥∥2
+ ∑

(i, j)∈L
ρ(

∥∥∥ei j
l

∥∥∥2
). (9)

For global bundle adjustment, we execute the following objective func-
tion:

arg min
KG,M b

G

∑
k∈KL

∑
j∈M b

L

ρ

(∥∥∥ek, j
r

∥∥∥2

W k, j
r

)
, (10)

where KG =
{

sb
i
}

represents the set of keyframes in the global map,

Mirrored Backend Map Points

Sliding Window Map Points

𝑇! 𝑇"𝑇#$"𝑇#𝑇% 𝑇&

Fixed

(𝑣, 𝑏)! (𝑣, 𝑏)!"# (𝑣, 𝑏)$ (𝑣, 𝑏)#

SW. Keyframe Status

IMU Status

Backend Keyframe Status

SW. Map Point
Reprojection Factor

IMU Factor

Margin Factor

𝑇

𝑇

(𝑣, 𝑏)

Backend Map Point
Reprojection Factor

Backend Map Points

𝑇" 𝑇' 𝑇% 𝑇& 𝑇(

Intra-loop Inter-loop Agent # k

Agent # 0 Agent # k Agent # k+1

Server

𝑇'𝑇" 𝑇% 𝑇& 𝑇(

PGO
PGO FactorBA

Fig. 5: A schematic diagram illustrating the fusion process of the map state in backend with the frontend sliding window state. On the server side, we
first utilize pose graph optimization to constrain the poses between keyframes involved in intra-loop and inter-loop closures. Subsequently, bundle
adjustment is performed to achieve joint optimization of keyframes and map points across agents. The state of the local map in backend is then
synchronized with the agent’s sliding window, completing the correction of drift in the frontend’s local tracking. It is important to note that we have
simplified the representation of the marginalization factor in the diagram.

and M b
G =

{
xb

i
}

denotes the set of global map points. We utilize scale-
aware frontend information to initialize the backend map. During each
global bundle adjustment, we maintain the scale of the backend map by
fixing the scale of the initialized window.

As shown in Fig. 3, the two map fusion strategies are not mutually
exclusive. Through online covisibility area detection, we can continu-
ously detect potential geometric constraints between the current agents
in real time. If none are found, we continue with offline loop detection
to update the keyframe database and perform detection.

4.4 Visual-Inertial State Fusion
In related work [30, 34], these collaborative system directly compares
the states of the backend’s keyframes from global map with the esti-
mated states of the keyframes in the local tracking, thereby estimating
the drift of the frontend VIO. Although the keyframes from the back-
end map undergo drift correction through global optimization, this
loosely-coupled behavior for drift correction disrupts the smoothness
of trajectory in frontend VIO, which is significantly impacting the AR
experience based on the camera-rate output of frontend. Drawing inspi-
ration from works such as [2, 7] we adopt a tightly-coupled approach
based on the collaborative consistency map in backend, fusing the states
of the global map from backend with those in the sliding window in the
frontend. Fig. 6 illustrates a schematic diagram of our approach.

B
ac

ke
nd

 S
er

ve
r

f1 f2f0

Camera

Fr
on

te
nd

 A
ge

nt

Sliding Window

IMU

f’0 f’1
f’2

Agent # k

Backend Keyframe

Sliding Window Frame

Mirrored Sliding Window
Frame in Backend

ORB Feature

Frontend Feature

Mirrored Feature
in Frontend

IMU Constraints

Mirrored Backend
Keyframe In Frontend

Mirror Operation

Other Agent

Fig. 6: Illustration the tightly couple strategy of sliding window in frontend
with backend information. On the server side, we achieve a more robust
map state estimation with multiple agents’ observations and integrate it
into the frontend sliding window by wirelessly transmitting. This integra-
tion aims to constrain the accumulated drift caused by the local tracking
in frontend.

In the map registration module, we do not predefine the pivot map.

Instead, we merge maps solely based on covisibility area or loop detec-
tion schemes. Consequently, for a given agent, its corresponding back-
end map undergoes global coordinate transformations once it merge
with another agent. For convenience, we maintain only one global
transformation (RCi

G , tCi
G) from the backend map to the corresponding

frontend i, which is updated upon map fusion. As illustrated in Fig. 6,
when features fi from the backend map are sent to the frontend, they
are transformed into f

′
i . Additionally, the frames observing these fea-

tures are divided into two categories: those found within the sliding
window, denoted as K l , and those that have slid out of the window,
denoted as K g. The map points are represented as L . At this point,
the introduction of the backend map state results in the new residual
terms.

bek, j
r = zk, j−Π(KkR−1

k (RCi
G xb

j + pCi
G − pk)). (11)

Fig. 5 show the factor graph of our sliding widnow optimization
with the backend map states, the optimization objective now is updated
to:

arg min
F ,M

∑
k∈F

∑
j∈M

ρ

(∥∥∥ek, j
r

∥∥∥2

W k, j
r

)
+ ∑

k∈K l∪K g
∑

j∈L
ρ

(∥∥∥bek, j
r

∥∥∥2

W k, j
r

)
+ ∑

k∈F

(∥∥∥ek
i

∥∥∥2

W k
i

)
+∥em∥2 .

(12)
Relative to other residual factors, the influence factors of bek, j

r include
the current network traffic status and the mapping quality of the back-
end, among others. In the case of low mapping quality in the backend,
on the one hand, strict observation thresholds are set for the backend
map points, while on the other hand, robust kernels are utilized to
constrain deviations of the backend map state from the sliding window.
Regarding the network traffic status, considering the delay in synchro-
nizing the backend map to the frontend, if the backend state is outdated
in the frontend window, we can consider the frontend to have degraded
to a completely independent VIO, i.e., as the Eq. 5.

4.5 Communication
We establish TCP full-duplex communication between the agents and
the server, similar to [30, 34], for serializing and deserializing shared
data and transmitting it over the network in the form of byte streams. On
the server, we listen on a predefined port, enabling dynamic connections
with an unspecified number of agents.

As shown in Fig. 7, The data flow primarily consists of two types:
1) The frontend VIO transmits keypoint information, feature descrip-
tors, initial poses of the frontend keyframes, and corresponding sliding
window information. 2) The backend transmits optimized map states,
encompassing mirrored keyframes, mirrored map points, as well as
the poses and keypoint positions of corresponding non-sliding win-
dow keyframes. A comprehensive analysis of network traffic will be

Table 2: Comparison of Keyframe Accuracy in Different Collaborative
Scenarios of EuRoC. The best results are highlighted in bold.

Sequence VINS CVI-SLAM COVINS Ours
MH01 & MH02 0.148 0.050 0.065 0.069
MH02 & MH03 0.204 0.073 0.081 0.079
MH04 & MH05 0.178 0.115 0.270 0.109
MH01,02,03 0.133 - 0.063 0.060
MH01,02,03,05 0.284 0.156 0.125 0.113

presented in Sec. 5.4.

Agent Server

Kps.

Desc.

SW Info.

Init Pose

…

Δ𝑡

LMs.

KFs.

Obs.

…

(pt, octave,…)
(0,1,0,…)

(p, q)

(head, end, …)

(x, y, z), …

(m, n)

(p, q, idx)

Fig. 7: Illustration of communication module. We establish TCP connec-
tions and facilitate data transmission between the agent and the server
through the serialization and deserialization of data flow.

5 EXPERIMENTS

In this section, we conducted a series of experiments to evaluate the
robustness of our collaborative SLAM system and the effectiveness of
the proposed methods. We assessed the collaborative localization accu-
racy of the multi-agent system, specifically focusing on the frontend
localization accuracy of multiple agents and the precision of backend
keyframes localization under consistent mapping conditions. Addi-
tionally, to evaluate the proposed tightly coupled strategy with sliding
window , we compared the quality of the pose estimation in frontend in
a single-machine scenario. We also qualitatively analyzed the proposed
online map fusion strategy based on covisibility areas. Furthermore, we
systematically analyzed the performance of the multi-agent framework,
including network traffic, communication overhead, etc., to discuss
the system’s scalability. Finally, we deployed the frontend of the sys-
tem on mobile phone for real-time demonstration, while the backend
consistency mapping was performed on a server for real-world test.
Our approach is built upon RD-VIO [9, 21], and due to the absence of
dynamic scenes in our experimental setup, we removed the dynamic
point removal strategy, considering this VIO as our frontend baseline.
The proposed method is referred to as RCO-SLAM.

To evaluate on datasets, we deployed the frontend on a personal
computer in the same subnet as the server, and data was transmitted
wirelessly to the server. Our testing environment is as follows:

• Server: AMD Ryzen 9 7950x 5GHz x 16, 125GB memory,
Ubuntu 20.04

• Agent: AMD Ryzen 7 3800x 2.8GHz x 8, 32GB memory, Ubuntu
20.04

In subsequent performance comparisons, unless otherwise stated,
we will use the above experimental setup. To eliminate the interference
of random factors, we run each set of experiments 5 times and take the
average value.

5.1 EuRoC Datasets

We first conducted a comparison between our method and state-of-
the-art approaches on the public available EuRoC [4] dataset. The
EuRoC dataset serves as a benchmark for VIO and SLAM algorithms.
It comprises 11 sequences, including five Machine Hall sequences
(MH_01~MH_05) and 6 Vicon Room sequences(V1,V2). Each sequence
provides stereo grayscale images at 20Fps and ADIS16448 IMU data
at 200Hz. We use evo [14] to evaluate the accuracy of the estimated
trajectory and report the RMSE of absolute pose error (APE) for each
method.

Table 3: The evaluation of real-time camera estimated pose on the
EuRoC dataset. In this table, we focus on pose estimation at camera
rate. we denoted the top 3 result in each sequcne, and underlined to
indicate a higher accuracy than the baseline.

Algorithm V1-01 V1-02 V1-03 V2-01 V2-02 V2-03

ORB-SLAM3 (offline) 0.043 0.019 0.031 0.049 0.017 0.027

MSCKF 0.520 0.567 - 0.236 - -
OKVIS 0.139 0.232 0.262 0.163 0.211 0.291
RD-VIO 0.060 0.091 0.168 0.058 0.100 0.147
VINS-Fusion (online) 0.066 0.287 0.169 0.131 0.226 0.172
ORB-SLAM3 (online) 1.624 0.399 1.506 0.343 1.225 1.753

Baseline-VIO 0.056 0.101 0.134 0.066 0.089 0.122
Ours(online) 0.057 0.093 0.111 0.059 0.083 0.123

Collaborative Mapping: We initially compared the overall accuracy
of the entire SLAM system. Adhering to the experimental method-
ology of CVI-SLAM [19], we evaluated the localization accuracy of
keyframes in collaborative mapping within multi-agent scenarios. The
compared methods include VINS-Fusion [31], which is not specifically
designed for collaborative SLAM, its capability of multi-session make
it possible to perform registration within an existing map. Consequently,
we executed the sequences sequentially. Since CVI-SLAM is not open-
source, we utilized the data from their paper for reference. Additionally,
we compared COVINS [34], which alos use the centerized architecture
and extends the backend to support collaborative mapping with multiple
agents. We designed five collaborative scenarios, each involving 2, 3,
or 4 agents. During the final accuracy calculation, we considered the
error of the trajectories of multiple agents in the global map. As illus-
trated in Tab. 2, our results demonstrate close accuracy comparability
to COVINS, as exemplified by the MH_01&MH_02 and MH_02&MH_03
scenarios, since we employed similar backends for multi-agent collabo-
ration. However, our approach significantly outperforms COVINS in
some scenarios, such as MH_04&MH_05. These two scenarios in the MH
sequence are more challenging than previous ones, which we attribute
to potential advantages in loop detection and initialization from pre-
cise estimates in the frontend, ultimately leading to better convergence
during backend optimization.

Tightly-Coupling: We focus on the effectiveness of the proposed
tight-coupling scheme involving the state fusion between backend and
frontend. Therefore, we evaluated the real-time pose estimation accu-
racy of the single-agent frontend on the V1 and V2 sequences of EuRoC.
The compared approaches include MSCKF [27] which are filter-based
solutions, while OKVIS [20] and RD-VIO [21] are optimization-based
VIO solutions. VINS-Fusion and ORB-SLAM3 are full SLAM solu-
tions with backend maps that provide robust map maintenance capa-
bilities. However, we only utilize their real-time output poses for the
final evaluation, denoted with online. As shown in Tab. 3, compared
to the baseline, we synchronize the backend map state to the frontend
sliding window through the tight-coupling scheme, merging it with the
frontend sliding window state. The trajectory accuracy of this approach
is slightly higher than that of the baseline. We attribute the impact of
our tight-coupling scheme on the results to consistency in mapping.
When loop closures are not detected, the backend map cannot guarantee
global consistency, even if the backend state is synchronized to the
frontend. Therefore, it cannot correct drift, leading to insignificant
improvements in performance , as observed in V1_01, V2_03. Instead,
due to the noise in the map structure information at the backend, the
trajectory accuracy slightly decreases after coupling with the sliding
window. However, in collaborative scenarios, frequently loop closures
can significantly enhance global map consistency, as demonstrated in
the results of Tab. 2. It is important to note that the online trajectory
of ORB-SLAM3 exhibits jitter and a significant APE. Our analysis
attributes this to ORB-SLAM3’s atlas management strategy, where a
new map is initialized upon tracking failure, leading to discontinuities
in the online trajectory. Additionally, the online pose estimation may
suffer from poor convergence due to continuous backend optimization,
and global optimization by the backend may cause sudden shifts in the
trajectory. Furthermore, we report the accuracy of ORB-SLAM3’s of-

Table 4: The accuracy of frontend tracking on the VICON dataset. The
best results are highlighted in bold.

Sequence VINS COVINS Ours(Baseline) Ours(w/o. CA) Ours
scene 1 0.150 0.090 0.114 0.091 0.096
scene 2 0.195 0.380 0.264 0.095 0.094
scene 3 0.295 0.183 0.201 0.192 0.171
scene 4 0.115 0.071 0.110 0.103 0.069
scene 5 0.128 0.093 0.094 0.093 0.085

fline trajectory, which is denoted offline, acknowledging the high APE
RMSE at this stage. But it is essential to recognize that post-optimized
poses hold little significance for real-time AR applications.

5.2 Multi-User AR Datasets
The EuRoC dataset captures indoor drone movements, ensuring dif-
ferent sequences within the same environment. However, it lacks
collaborative observations similar to covisibility areas in AR interac-
tive scenes. Therefore, we collected sequences under 5 settings, each
consisting of 3 segments, simulating scenarios with 3 agents. Ad-
ditionally, we utilized VICON motion capture to obtain the motion
trajectories of the recording devices, enabling post-processing to ac-
quire ground truth body/camera trajectories. We setup a collaborative
system based on baseline VIO, denoted as Ours(Baseline). To validate
the covisibility-area-based map fusion strategy, we conducted a control
experiment by removing the online covisibility-area-based map fusion
strategy, denoted as (w/o. CA). As the result shown in Tab. 4, in the
simplest scenario, scene 1, multiple cameras rotate around a central
scene, and a sufficient number of co-observable constraints lead to
both our approach and COVINS [34] achieving similar levels of result
accuracy. We observed that COVINS performed poorly on scene 2,
experiencing erroneous optimizations during pose graph optimization,
causing trajectories from different agents to deviate increasingly from
the ground truth. Our final approach slightly outperformed the version
without covisibility area detection, indicating that in this scenario, the
covisibility-area-based approach could add more constraint edges to the
fused map which across agents, thereby enhancing global map consis-
tency. However, this indirect enhancement led to limited improvements
in frontend accuracy.

5.3 Qualitative Comparison
5.3.1 Collaborative Mapping

COVINS Ours

Fig. 8: Illustration of collaborative mapping in Machine Hall sequences
for 3 agents. The top view of the hall.

In the EuRoC MH sequences, we utilized MH_01, MH_02 and MH_03
to perform collaborative mapping. All agents initiated from a stationary
position on a wooden board, completed the local area motion in the hall,
and then returned to the starting point, collaborating during this process
to reconstruct the cross-agent map. Similar to COVINS, we were able to
achieve cross-agent map registration and fusion during the brief motion
on the wooden board. However, our point cloud structure was more
prominent than that of COVINS, particularly in areas such as the wall,
as shown in Fig. 8. This area, due to being observed from a very narrow
baseline range by only MH_01 and MH_02, exhibited significant depth
uncertainty, resulting in a cluttered point cloud structure. Nevertheless,

through a more flexible map fusion strategy, we were able to maximize
the utilization of cross-agent co-observations to constrain map points,
thereby obtaining a more consistent map structure.

5.3.2 Online Covisiability-Area-based Loop Detection

#416 #413

#922 #919

Agent-1 (MH-01)
Agent-2 (MH-02)
Loop edge

Keyframe id

Fig. 9: Illustration of the online covisibility-area detection and the feature
matching of image pairs from the latest keyframe buffer.

To validate the effectiveness of the online covisibility-area-based
map fusion strategy proposed in Sec 4.2.2, we conducted a qualitative
test in a collaborative scenario involving two agents, MH_01 and MH_02.
The two agents had long-term real-time covisibility fields and consistent
motion areas, which provided an ideal test environment for the proposed
strategy. To mitigate the impact of bag-of-words model-based loop
detection, we disabled the offline loop closure module. This allowed
us to focus solely on the performance of the covisibility-area-based
approach. The results of the test showed that the online approach was
able to sensitively achieve cross-agent place recognition, thereby timely
completing map fusion. Fig. 9 illustrates the results of the test. The
left map shows the covisibility areas of the two agents, while the right
image pair depicts the latest keyframe in buffer when a similar area is
recognized. We also visualized the 2D2D ORB-based feature matching,
which revealed a few outliers. However, these outliers can be robustly
filtered out during the later RANSAC stage.

5.4 System Performance
In addition to pursuing higher localization accuracy and more consistent
map structures, collaborative SLAM systems also pay close attention
to the overall system performance.

Fig. 10: The relationship between the time cost of frame tracking in
frontend and keyframe registration in backend collaborative mapping with
the number of participated agents.

We conducted a comparative analysis of the temporal expenditure
associated with frame tracking in the frontend and keyframe registra-
tion in the backend collaborative mapping, with varying quantities of
agents within the system. We test on MH sequences and the result is
depicted in Fig. 10.As the number of agents increasing, the average
time required for tracking in the frontend maintains a stable range,
approximately around 45ms. Conversely, the time expenditure for
backend keyframe registration at the server exhibits a linear increase.
This trend is attributed to the server’s necessity to initiate additional
threads to accommodate requests from an increasing number of agents,
consequently leading to a linear decline in overall system performance.

Fig. 11: The network traffic at the agent side in the 3 collaborative
scenarios, where the green arrows represent the mean values.

Table 5: The average network traffic between the server side and the
agent side in single and multiple scenarios. The unit is kB/s.

Sequence COVINS [34] Ours

Agent→ Server Server→ Agent Agent→ Server Server→ Agent

Avg. (8 seq.) 493.36 2.31 276.8 259.56
MH1 422.83 2.29 258.52 269.97
MH5 540.37 2.32 269.56 270.19
V103 609.22 2.31 405.26 313.33

We analyzed the network traffic at the agent side in three collabora-
tive scenarios, as shown in Fig. 11, where the MH sequences involves 5
agents, and V1, V2 involve 3 agents each. In each scenario, as the index
of the agents increases, their motion patterns become more challenging
(e.g., vigorous movements, rapid rotations). We observed that as the
agents’ movements become more vigorous, they require sending more
data (in V1 and V2), whereas the agents’ movements in MH_01~MH_05
are relatively gentle, resulting in similar amounts of network traffic.
However, the received data does not exhibit a specific correlation with
the agents’ motion patterns, generally ranging between 200~400KB.
This can be attributed to the fact that the frontend VIO must promptly
synchronize complex scene variations with the server during track-
ing, resulting in increased network traffic. Furthermore, we compared
the average traffic and individual traffic of specific sequences with
COVINS [34], as demonstrated in the Tab. 5. Our network traffic
for communication from agents to the server is lower compared to
COVINS. This is due to the fact that while COVINS necessitates syn-
chronizing the total frontend map points with the backend, our approach
only requires synchronizing the initial state of frontend keyframes with
the backend.

The tightly coupled approach we propose requires timely states syn-
chronization between the backend map and the frontend sliding window.
If the backend map fails to synchronize with the frontend in time, the
capability of drift correction of backend map observation constraint
term in the optimization objective Eq. 12 is lost. At this point, the
constraints on the sliding window state degrade to Eq. 5. We conducted
experiments to investigate the impact of such synchronization delays on
the final accuracy of the frontend trajectory. As illustrated in the Fig. 7,
we set the time interval ∆t for server-side synchronization and tested
the single-agent trajectory accuracy under different ∆t conditions. As
shown in Tab. 6, when ∆t is sufficiently large (200ms), the frontend slid-
ing window state tends to degrade into local odometry tracking, thereby
affecting accuracy due to synchronization delay. However, setting a
lower delay allows timely state synchronization, thereby benefiting the
tracking accuracy of the frontend through the coupled strategy.

Table 6: Frontend tracking performance of a single agent under different
synchronization delay settings. The best results are highlighted in bold.

Delay(ms) MH01 MH03 MH05 V102 V202
∆ t=30 0.104 0.129 0.237 0.090 0.089
∆ t=50 0.104 0.125 0.241 0.096 0.088
∆ t=100 0.106 0.133 0.239 0.093 0.090
∆ t=200 0.109 0.131 0.244 0.094 0.093

5.5 AR Demo

User #1 User #3 – View AUser #2

User #3 – View B

User #3

User #2

User #1

Fig. 12: Collaborative AR in a multi-user setting. We employed three
iPhone 12 and placed a virtual Ferrair on the table. By capturing differ-
ent perspectives simultaneously, we could confirm that the multi-agent
system had successfully completed map fusion.

To better illustrate the practical application value of our approach,
we implemented an AR demo based on the iOS. We deploy the frontend
VIO on three iPhone 12, with a personal computer (the Agent men-
tioned in experimental configuration) serving as the server running the
backend collaborative mapping service. We demonstrated a multi-user
AR scene involving three users, as shown in Fig. 12. As there are
no other open-source works available for collaborative AR on mobile
devices, we solely presented our own results. Due to the lack of ground
truth, we relied on the relative position of AR objects with respect to
the static environmental background to intuitively assess the reliability
of pose estimation. During the demonstration, leveraging a map fusion
strategy based on online covisibility areas enabled direct mutual regis-
tration of multi-agent submaps. At the same time, we demonstrated the
registration of virtual Ferrair from the perspectives of different users
(User #1, #2, #3) in the global map, as well as the registration from the
viewpoints (View A, View B) of User #3, showcasing the consistency of
the global map across agents and the accuracy of local pose estimation.
We capture AR demonstration through screen recording and confirm
the smooth operation of the application on the mobile device from a
third-person perspective. All demonstrations are presented in real time.
Please refer to our supplementary materials for further details.

6 CONCLUSION

We have proposed a centralized multi-agent collaborative SLAM sys-
tem tailored for mobile AR, capable of achieving precise real-time
6-DoF pose estimation at the frontend and efficient, consistent collabo-
rative mapping at the backend. Compared to state-of-the-art methods,
our approach achieves better accuracy and robustness. Furthermore,
we demonstrate the effectiveness of the system by deploying the pro-
posed system on both mobile devices and servers. We also discuss
the system’s scalability, which exhibits a certain level of robustness
when integrating more agents into the system. We believe that this
work contributes to interactive AR experiences based on collaborative
SLAM and will also explore different system architectures to enhance
the robustness of collaborative systems in the future.

However, due to the constraints in network bandwidth and server con-
currency performance in our experiments, our system has a restricted
capacity of connecting agents, which limits simultaneous access for
a larger user base. Therefore, enhancing network bandwidth capacity
and server concurrency performance is crucial for further improving
the system’s scalability. Additionally, our method works under the
assumption of static world for tracking and mapping. Achieving the
collaborative SLAM in dynamic scene will be our future work.

7 ACKNOWLEDGMENTS

This work was partially supported by NSF of China (No. 61932003).
The authors would like to thank Tianxing Fan for his kind help in demo
recording and advice on paper formatting.

REFERENCES

[1] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying frame-
work. International journal of computer vision, 56:221–255, 2004. 4

[2] H. Bao, W. Xie, Q. Qian, D. Chen, S. Zhai, N. Wang, and G. Zhang.
Robust tightly-coupled visual-inertial odometry with pre-built maps in
high latency situations. IEEE Transactions on Visualization and Computer
Graphics, 28(5):2212–2222, 2022. 2, 6

[3] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart. Iterated ex-
tended Kalman filter based visual-inertial odometry using direct photomet-
ric feedback. The International Journal of Robotics Research, 36(10):1053–
1072, 2017. 2

[4] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart. The EuRoC micro aerial vehicle datasets. The
International Journal of Robotics Research, 35(10):1157–1163, 2016. 2, 7

[5] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós.
ORB-SLAM3: An accurate open-source library for visual, visual–inertial,
and multimap SLAM. IEEE Transactions on Robotics, 37(6):1874–1890,
2021. 2, 4

[6] Y. Chang, Y. Tian, J. P. How, and L. Carlone. Kimera-multi: a system
for distributed multi-robot metric-semantic simultaneous localization and
mapping. In 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 11210–11218. IEEE, 2021. 2, 3

[7] G. Cioffi and D. Scaramuzza. Tightly-coupled fusion of global positional
measurements in optimization-based visual-inertial odometry. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 5089–5095. IEEE, 2020. 2, 6

[8] J. Civera, A. J. Davison, and J. M. M. Montiel. Inverse depth parametriza-
tion for monocular SLAM. IEEE Transactions on Robotics, 24(5):932–
945, 10 2008. 3

[9] X. Contributors. Openxrlab visual-inertial SLAM toolbox and benchmark.
https://github.com/openxrlab/xrslam, 2022. 7

[10] B. Dong and K. Zhang. A tightly coupled visual-inertial gnss state estima-
tor based on point-line feature. Sensors, 22(9):3391, 2022. 2

[11] R. Elvira, J. D. Tardós, and J. M. Montiel. ORBSLAM-Atlas: a robust and
accurate multi-map system. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 6253–6259. IEEE, 2019. 2,
3, 4, 5

[12] D. Galvez-López and J. D. Tardos. Bags of binary words for fast
place recognition in image sequences. IEEE Transactions on Robotics,
28(5):1188–1197, 2012. doi: 10.1109/TRO.2012.2197158 5

[13] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang. OpenVINS:
A research platform for visual-inertial estimation. In IEEE International
Conference on Robotics and Automation, pp. 4666–4672. IEEE, 2020. 2

[14] M. Grupp. evo: Python package for the evaluation of odometry and slam.
https://github.com/MichaelGrupp/evo, 2017. 7

[15] J. A. Hesch and S. I. Roumeliotis. A direct least-squares (dls) method for
pnp. In 2011 International Conference on Computer Vision, pp. 383–390,
2011. doi: 10.1109/ICCV.2011.6126266 5

[16] Z. Huai and G. Huang. Robocentric visual-inertial odometry. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
6319–6326. Madrid, Spain, 2018. 2

[17] H. Huang, H. Ye, J. Jiao, Y. Sun, and M. Liu. Geometric structure aided
visual inertial localization. arXiv preprint arXiv:2011.04173, 2020. 2

[18] H. Huang, H. Ye, Y. Sun, and M. Liu. Gmmloc: Structure consistent
visual localization with gaussian mixture models. IEEE Robotics and
Automation Letters, 5(4):5043–5050, 2020. 2

[19] M. Karrer, P. Schmuck, and M. Chli. CVI-SLAM—collaborative visual-
inertial SLAM. IEEE Robotics and Automation Letters, 3(4):2762–2769,
2018. 2, 3, 5, 7

[20] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale.
Keyframe-based visual–inertial odometry using nonlinear optimization.
The International Journal of Robotics Research, 34(3):314–334, 2015. 2,
7

[21] J. Li, X. Pan, G. Huang, Z. Zhang, N. Wang, H. Bao, and G. Zhang.
RD-VIO: Robust visual-inertial odometry for mobile augmented reality in
dynamic environments. IEEE Transactions on Visualization and Computer
Graphics, 2024. 2, 3, 4, 7

[22] P. Li, T. Qin, B. Hu, F. Zhu, and S. Shen. Monocular visual-inertial state
estimation for mobile augmented reality. In IEEE international symposium
on mixed and augmented reality, pp. 11–21. IEEE, 2017. 2, 4

[23] X. Liu, W. Ye, C. Tian, Z. Cui, H. Bao, and G. Zhang. Coxgraph: multi-
robot collaborative, globally consistent, online dense reconstruction sys-

tem. In 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 8722–8728. IEEE, 2021. 3

[24] B. D. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. In IJCAI’81: 7th international joint
conference on Artificial intelligence, vol. 2, pp. 674–679, 1981. 3

[25] S. Lynen, T. Sattler, M. Bosse, J. A. Hesch, M. Pollefeys, and R. Siegwart.
Get out of my lab: Large-scale, real-time visual-inertial localization. In
Robotics: Science and Systems, vol. 1, p. 1, 2015. 2

[26] H. Matsuki, R. Murai, P. H. Kelly, and A. J. Davison. Gaussian splatting
SLAM. arXiv preprint arXiv:2312.06741, 2023. 2

[27] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint Kalman filter
for vision-aided inertial navigation. In Proceedings IEEE International
Conference on Robotics and Automation, pp. 3565–3572, 4 2007. 2, 7

[28] T.-M. Nguyen, S. Yuan, M. Cao, T. H. Nguyen, and L. Xie. Viral
SLAM: Tightly coupled camera-imu-uwb-lidar SLAM. arXiv preprint
arXiv:2105.03296, 2021. 2

[29] M. Ouyang, X. Shi, Y. Wang, Y. Tian, Y. Shen, D. Wang, P. Wang, and
Z. Cao. A collaborative visual SLAM framework for service robots.
In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 8679–8685. IEEE, 2021. 3

[30] M. Patel, M. Karrer, P. Bänninger, and M. Chli. Covins-g: A
generic back-end for collaborative visual-inertial SLAM. arXiv preprint
arXiv:2301.07147, 2023. 2, 3, 5, 6

[31] T. Qin, P. Li, and S. Shen. VINS-Mono: A robust and versatile monocular
visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–
1020, 2018. 2, 3, 4, 5, 7

[32] L. Riazuelo, J. Civera, and J. M. Montiel. C2tam: A cloud framework for
cooperative tracking and mapping. Robotics and Autonomous Systems,
62(4):401–413, 2014. 3

[33] P. Schmuck and M. Chli. CCM-SLAM: Robust and efficient centralized
collaborative monocular simultaneous localization and mapping for robotic
teams. Journal of Field Robotics, 36(4):763–781, 2019. 2, 3

[34] P. Schmuck, T. Ziegler, M. Karrer, J. Perraudin, and M. Chli. Covins:
Visual-inertial SLAM for centralized collaboration. In 2021 IEEE Inter-
national Symposium on Mixed and Augmented Reality Adjunct (ISMAR-
Adjunct), pp. 171–176. IEEE, 2021. 2, 3, 6, 7, 8, 9

[35] G. Sibley, L. Matthies, and G. Sukhatme. Sliding window filter with
application to planetary landing. Journal of Field Robotics, 27(5):587–
608, 2010. 4

[36] Y. Tang, J. Zhang, Z. Yu, H. Wang, and K. Xu. Mips-fusion: Multi-implicit-
submaps for scalable and robust online neural rgb-d reconstruction. ACM
Transactions on Graphics (TOG), 42(6):1–16, 2023. 2

[37] H. Wang, J. Wang, and L. Agapito. Co-SLAM: Joint coordinate and sparse
parametric encodings for neural real-time SLAM. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13293–13302, 2023. 2

[38] H. Xu, P. Liu, X. Chen, and S. Shen. D2-SLAM: Decentralized and dis-
tributed collaborative visual-inertial slam system for aerial swarm. arXiv
preprint arXiv:2211.01538, 2022. 2, 3

[39] H. Xu, Y. Zhang, B. Zhou, L. Wang, X. Yao, G. Meng, and S. Shen.
Omni-swarm: A decentralized omnidirectional visual–inertial–uwb state
estimation system for aerial swarms. IEEE Transactions on Robotics,
38(6):3374–3394, 2022. 2, 3

[40] X. Yang, H. Li, H. Zhai, Y. Ming, Y. Liu, and G. Zhang. Vox-Fusion:
Dense tracking and mapping with voxel-based neural implicit representa-
tion. In IEEE International Symposium on Mixed and Augmented Reality,
pp. 499–507. IEEE, 2022. 2

[41] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad. An overview to visual
odometry and visual SLAM: Applications to mobile robotics. Intelligent
Industrial Systems, 1(4):289–311, 2015. 2

[42] P. Zhu, Y. Yang, W. Ren, and G. Huang. Cooperative visual-inertial odom-
etry. In 2021 ieee international conference on robotics and automation
(icra), pp. 13135–13141. IEEE, 2021. 3

[43] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and
M. Pollefeys. NICE-SLAM: Neural implicit scalable encoding for SLAM.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12786–12796, 2022. 2

[44] D. Zou and P. Tan. CoSLAM: Collaborative visual slam in dynamic envi-
ronments. IEEE transactions on pattern analysis and machine intelligence,
35(2):354–366, 2012. 3

[45] X. Zuo, P. Geneva, Y. Yang, W. Ye, Y. Liu, and G. Huang. Visual-
inertial localization with prior lidar map constraints. IEEE Robotics and
Automation Letters, 4(4):3394–3401, 2019. 2

https://github.com/openxrlab/xrslam
https://doi.org/10.1109/TRO.2012.2197158
https://github.com/MichaelGrupp/evo
https://doi.org/10.1109/ICCV.2011.6126266

	Introduction
	Related Works
	VIO/SLAM
	Collaborative SLAM

	Overview
	Framework
	Notation

	approach
	Frontend VIO
	Backend Map Maintenance
	Local Mapping
	Online Map Fusion

	Loop Detection and Closure
	Visual-Inertial State Fusion
	Communication

	Experiments
	EuRoC Datasets
	Multi-User AR Datasets
	Qualitative Comparison
	Collaborative Mapping
	Online Covisiability-Area-based Loop Detection

	System Performance
	AR Demo

	Conclusion
	Acknowledgments

