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1. Implementation Details of the Pose Tracking
Module

In this section, the implementation details of our online
feature-based pose tracking module are explained. In gen-
eral, our pose tracking module works similar to a SLAM
system to reconstruct a 3D map which is optimized together
with predicted poses on-the-fly.

1.1. Pose Initialization

The pose estimation module is executed every five
frames, returning a set of 2D keypoints {pt

k} as well as
their corresponding 3D keypoints in the SfM map {Pj}.
Mt

3D(j) defines the mapping from the index of 2D key-
points index to 3D keypoints. The number of keypoints in
each image nk is omitted for simplicity. For the coming
frame with index t + 1, we use sparse optical flow [6] to
track the 2D keypoints from the last frame:

pt+1 = opticalFlow(It, It+1,p
t)

where It and It+1 denotes consecutive input images. Then
the 2D-3D correspondences between the query image and
the SfM map can be then propagated to the new frame as
Mt+1

3D , from which we can obtain the predicted pose with
Perspective-n-Points (PnP) algorithm:

ξt+1
PnP = PnP(pt+1,PMt+1

3D
).

To handle the potential failures of tracking by optical flow ,
we further implement a policy to reject ξt+1

PnP if they are too
far from the last optimized frame:

ξt+1 =

{
ξt+1

PnP , if diff(ξt+1
PnP , ξ̂

t) < δtrans

extrapolate(ξ̂t, ξ̂t−1), otherwise.

where ξ̂t denote the optimized pose for frame t and
extrapolate(·) denotes the extrapolation operation given
optimized poses of previous frames. We use 10 cm and 25◦

as the threshold δtrans in our implementation.

1.2. Bundle Adjustment

After pose initialization, 2D features are extracted from
current frame with SuperPoint [5] which are matched with
2D features of the last keyframe in the keyframe pools.
Combined with the correspondence information of the
matched keyframe, the 2D-3D correspondences between
the current frame and the online-built 3D map can be es-
tablished. With the predicted pose from pose initialization,
we are able to apply bundle adjustment (BA) within a local
window of keyframes to optimize for a more precise pose
and refine the 3D map. The refined pose by BA is used as
the output of the tracking module at each time step.

1.3. Keyframe Creation

We create a new keyframe every 3 frames instead of rely-
ing on the number of newly created map points in the coun-
terpart [7], due the tremendous amount of detected key-
points in each frame. New map points are created with
keyframes by triangulating 2D matches without 2D-3D cor-
respondences within the frame.

2. 2D Object Detection via Feature Matching
When deploying OnePose to a real-world system, an off-

the-shelf category-level 2D object detector like [3] can be
used. However, this could defeat the category-agnostic na-
ture of OnePose. We can instead use a feature-matching-
based pipeline for 2D object detection, which locates the
scanned object on the query image through 2D feature
matching.

Specifically, we first sample n reference images from the
reference images {Ii} and then perform 2D matching be-
tween the query image and the object Regions-of-Interest
(RoIs) in each reference image. The object RoIs can be de-
termined by projecting the annotated B to each reference
view. We use SuperPoint [5] and SuperGlue [10] for the
matching. The reference-query image pair with the most
inliers is selected and used to estimate their affine transfor-
mation by the 2D matches. The 2D bounding box can be
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#Samples Large Objects Medium Objects Small Objects Time (ms)1cm-1deg 3cm-3deg 5cm-5deg 1cm-1deg 3cm-3deg 5cm-5deg 1cm-1deg 3cm-3deg 5cm-5deg
HLoc (SIFT + NN)

2 0.214 0.418 0.449 0.292 0.489 0.519 0.177 0.357 0.398 47.79
5 0.311 0.559 0.597 0.346 0.571 0.610 0.223 0.429 0.487 116.27

10 0.359 0.622 0.668 0.384 0.608 0.649 0.228 0.443 0.507 218.82
HLoc (SPP + NN)

2 0.257 0.486 0.517 0.350 0.538 0.561 0.229 0.455 0.524 54.61
5 0.333 0.618 0.661 0.425 0.654 0.693 0.304 0.576 0.651 136.98

10 0.388 0.682 0.730 0.464 0.707 0.747 0.325 0.609 0.705 231.89
HLoc (SPP + SPG)

2 0.308 0.553 0.584 0.438 0.618 0.628 0.294 0.542 0.619 221.43
5 0.426 0.789 0.835 0.541 0.779 0.815 0.390 0.711 0.822 555.56

10 0.479 0.846 0.879 0.580 0.839 0.869 0.422 0.754 0.876 1094.25

Table 1. Experiment on the effects of number of images sampled (i.e., retrieved) for HLoc. We evaluate our visual localization
baselines based on HLoc [9] with differnt number of images sampled.

1cm-1deg 3cm-3deg 5cm-5deg
Ground-truth box (same w/ the main paper) 0.497 0.775 0.841

Matching detector n = 4 0.442 0.726 0.791
Matching detector n = 10 0.471 0.762 0.832
Matching detector n = 15 0.473 0.770 0.839

Table 2. Results of pose estimation with different object detec-
tors. The metrics are averaged across all objects in the evaluation
set.

thus estimated by transforming the object RoI corners to the
query image with the estimated affine transformation. With
the estimated 2D bounding box, 2D-3D feature matching
with GATs can be performed as described in the main pa-
per to estimate the 6D poses of the object. Note that the
2D object detection will not slow down the entire pipeline
since it is only necessary during the initialization. After
the initialization, the 2D bounding box can be obtained by
projecting the previously detected 3D bounding box to the
current camera frame.

The quantitative results of pose estimation using a dif-
ferent number of reference images for object detection are
shown in Tab. 2. In these results, feature-matching-based
2D object detection is used in every frame (instead of only
the first frame of a video sequence) to better reflect the pose
estimation accuracy.

3. Multi-Sequence Alignment in Dataset
Preparation

In this section, we introduce the implementation details
of the post-processing steps for dataset preparation. The
main purposes of this step are to 1) ensure the 3D bound-
ing box annotations are consistent across sequences and 2)
eliminate the potential drifting in the camera poses tracked
by ARKit.

The inconsistency of annotations mainly comes from the
deviations in different bounding box annotations between

multiple sequences of the same object. To make the bound-
ing box annotations consistent, we first align the sequences
of each object by converting the camera poses to the object
frame with the annotated 3D bounding boxes. The inconsis-
tency of the annotations is propagated to the camera poses
during the conversion of coordinate frames and further in-
troduces inaccuracies into the camera poses estimated by
ARKit. We alleviate these problems by applying bundle ad-
justment to the camera frames. After the pose refinement,
positions and orientations of the annotated 3D bounding
boxes should be naturally aligned. To obtain a consistent
definition for the dimensions, we simply compute the mean
of dimensions in all annotations for each object.

We demonstrate the quality of our sequence alignment
method by projecting points triangulated from one sequence
to images from another sequence. As shown in Fig. 1, the
reprojected points are highly overlapped with 2D keypoints
extracted from the original image, indicating the accuracy
of our sequence alignment method.

4. Experiment Details of Comparison with
Baselines

In this section, some implementation details for the ex-
periments of our baseline methods are further explained.

4.1. Implementation Details of the Evaluation of
HLoc

As mentioned in the main paper, the original image re-
trieval module cannot generalize to the object-centric set-
ting and we obtain retrieved images by sampling a fixed
number of images with the same interval instead. To select a
proper number for the images to be sampled, we further ap-
ply experiments on HLoc with different number of sampled
images. As shown in Tab. 1, sampling 5 images can brought
evident improvements of more than 10% compared to sam-
pling 2 images, while sampling 5 more images only brings



Figure 1. Alignment quality across sequences. Triangulated
point clouds from one sequence are projected to images from an-
other sequence of the same object. The quality of alignment can
be measured by the differences between projected 3D points (in
blue) and the original 2D keypoints (in red) on the images.

Figure 2. Examples of generated masks for PVNet training.
The generated masks are overlayed on the original image in blue.

marginal improvement at an average 5% for most of metrics
at a cost of doubled runtime. Thus, we choose to sample 5
images for our experiments in the main paper since it best
balances the precision and the inference efficiency.

4.2. Implementation Details of the Evaluation of
PVNet

For the experiments of evaluating PVNet [8], we directly
use the original implementation and training configurations
provided by the authors at [1]. To train PVNet, we addition-
ally apply reconstruction and mask rendering on our dataset
and manually pick objects with high reconstruction quality
for experiments. Some results for the reconstructed meshes
and generated masks for training are as shown in the Fig. 2.

4.3. Implementation Details of the Evaluation of
Objectron

For the experiments of evaluating Objectron [4], we di-
rectly use the Python APIs provided in Mediapipe [2] for in-

ference where only the models for Shoe, Chair, Cup, Cam-
era are provided which greatly limited our choices for ob-
jects to use in the experiments. Objectron can only produce
object poses up to a scale, and requires additional plane in-
formation for scale recovery which are provided in the orig-
inal Objectron dataset but unavailable in our dataset. There-
fore, we are unable to evaluate the 3D IoU metrics in the
metric scale as the original paper.
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