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Fig. 1. (a) The marker correspondence predicted by our NeuralMarker for an offhand marker. (b) We can easily embed advertisement into movies and TV
series via NeuralMarker. (c) We can edit a frame in a video clip and propagate the editing effects to the whole video clip. (d) The marker-based Augmented
Reality (AR). Please refer to the supplemented video for more results.
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We tackle the problem of estimating correspondences from a general marker,
such as a movie poster, to an image that captures such a marker. Conven-
tionally, this problem is addressed by fitting a homography model based on
sparse feature matching. However, they are only able to handle plane-like
markers and the sparse features do not sufficiently utilize appearance infor-
mation. In this paper, we propose a novel framework NeuralMarker, training
a neural network estimating dense marker correspondences under various
challenging conditions, such as marker deformation, harsh lighting, etc.
Deep learning has presented an excellent performance in correspondence
learning once provided with sufficient training data. However, annotating
pixel-wise dense correspondence for training marker correspondence is too
expensive. We observe that the challenges of marker correspondence estima-
tion come from two individual aspects: geometry variation and appearance
variation. We, therefore, design two components addressing these two chal-
lenges in NeuralMarker. First, we create a synthetic dataset FlyingMarkers
containing marker-image pairs with ground truth dense correspondences.
By training with FlyingMarkers, the neural network is encouraged to capture
various marker motions. Second, we propose the novel Symmetric Epipolar
Distance (SED) loss, which enables learning dense correspondence from
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posed images. Learning with the SED loss and the cross-lighting posed im-
ages collected by Structure-from-Motion (SfM), NeuralMarker is remarkably
robust in harsh lighting environments and avoids synthetic image bias. Be-
sides, we also propose a novel marker correspondence evaluation method
circumstancing annotations on real marker-image pairs and create a new
benchmark. We show that NeuralMarker significantly outperforms previous
methods and enables new interesting applications, including Augmented
Reality (AR) and video editing.

CCS Concepts: • Computing methodologies → Vision for robotics;
Visual inspection; Image processing.

Additional Key Words and Phrases: marker, correspondence, augmented
reality, video editing
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1 INTRODUCTION
General marker correspondence estimation aims at finding corre-
sponding locations at a reference image for each pixel in the query
marker. In contrast to fiducial markers that are designed patterns,
such as learned pattern [Hu et al. 2019; Yaldiz et al. 2021] and binary
pattern [Wang and Olson 2016], a general marker is an offhand arbi-
trary marker given by the user. Without a strong prior of the pattern
structure, general marker correspondence estimation is quite chal-
lenging. Meanwhile, general marker correspondence serves as a core
module in many downstream applications, such as marker-based
Augmented Reality (AR) and video editing. Conventional general
marker correspondence estimation is implemented by fitting a ho-
mography [Szeliski et al. 2007] with sparse features [Lowe 2004].
However, representing a marker or an image as a set of individual
sparse features is ineffective, and the homography model only sup-
ports an SE(3) transformation of a plane, which is unable to handle
deformed markers. In recent years, deep learning has presented an
extraordinary performance in correspondence estimation [Huang
et al. 2022; Teed and Deng 2020] but training data [Mayer et al. 2016]
is the foundation of the data-driven methods. We propose a novel
framework NeuralMarker, including a neural network, the training
data preparation, and the corresponding loss functions, to learn to
estimate pixel-wise marker correspondence. The architecture design
of our neural network follows the principle of RAFT [Teed and Deng
2020], which computes the correlation of image features encoded
by siamese image feature encoders as appearance similarity and
infers pixel-wise correspondences from the appearance similarity
via a motion regressor. NeuralMarker directly estimates pixel-wise
dense correspondences from the entire marker and image without
the homography model, which fully utilizes the appearance infor-
mation and gets rid of the plane constraints. However, annotating
the ground truth dense correspondence for real marker-image pairs
by humans is infeasible because the number of marker pixels is
quite large. We observe that the challenges in marker correspon-
dence learning can be summarized as two aspects and are relative
individual: 1) The geometry variations such as complex marker

deformations. The motion regressor needs to capture various ge-
ometry variations in case of facing extrapolation in test scenarios.
2) The appearance variation such as lighting changes, requires the
image feature encoder invariant to lighting so that we can obtain a
robust appearance similarity pattern to support the correspondence
estimation. We thus design two components, each of them consist-
ing of the training data with corresponding loss functions in our
NeuralMarker to address these two challenges.
Motivated by FlyingChairs and FlyingThings [Dosovitskiy et al.

2015; Mayer et al. 2016] for optical flow estimation, we create a syn-
thetic dataset FlyingMarkers for learning marker correspondence.
Given a marker and a reference background image, we warp the
marker according to a randomly generated geometric transforma-
tion and blend it with the reference background image as the synthe-
sized reference image. The marker, the geometric transformation,
and the synthesized reference image constitute a training sample
in FlyingMarkers. Training with our FlyingMarkers makes the mo-
tion regressor encode sufficient geometric transformation priors.
However, in contrast to optical flow where consecutive images’ ap-
pearance varies little, the reference image in practical scenarios may
consist of significant appearance variations and they are difficult
to synthesize. Besides, the image feature encoder would be biased
by synthesized images if it is only trained on synthesis images. We
thus propose the second component, learning from real images to
cover various real appearance conditions. We observe that Structure-
from-Motion [Schönberger and Frahm 2016] can collect real images
covering various appearance conditions and compute their camera
poses. We propose the Symmetric Epipolar Distance (SED) loss,
which constrains the predicted correspondences based on camera
poses. Fueled by the SfM-collected images with ground-truth poses
and supervised by the SED loss, the image feature encoder is able
to learn robust features against appearance variations and avoids
the synthesis-image bias.

Besides NeuralMarker, we also present a new benchmark to mea-
sure marker correspondence quality on real marker-image pairs in
terms of marker deformation, viewpoint variation, and lighting vari-
ation, dubbed as DVL-Markers. Similar to obtaining training data,
building a marker correspondence benchmark is also faced with
the difficulty of annotating ground-truth correspondences. Actually,
the estimated marker correspondence should be able to warp the
original marker to align it to the captured marker in the reference
image. We, therefore, propose to measure the estimated marker
correspondence via marker alignment consistency.

In this paper, we demonstrate 1) a synthetic dataset FlyingMark-
ers mimicking various marker motions for training and evaluating
marker correspondence, 2) a SED loss with real posed images for
training image feature encoders, which can be robust to appearance
variation and removes the synthetic image bias, 3) a benchmark
DVL-Markers to evaluate marker correspondence on real images,
and 4) a series of interesting applications (see Fig. 1).

2 RELATED WORK
Marker Correspondence Estimation. Marker correspondence esti-

mation aims at estimating dense correspondences from a marker to
a reference image that captures the marker. This task can be divided
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into fiducial marker correspondence and general marker correspon-
dence in terms of the type of used markers. Fiducial marker meth-
ods [Hu et al. 2019; Olson 2011; OpenCV 2015; Wang and Olson
2016; Yaldiz et al. 2021] are only interested in pre-defined markers,
which are always binary patterns, and try to recover information
encoded in the markers. General marker methods [Sarosa et al.
2019; Simonetti Ibanez and Paredes Figueras 2013] estimate dense
correspondences for any markers given by users offhand instead
of pre-defined markers. Compared with fiducial markers, general
markers do not require pre-arrangement of the scene so that they
can be used in normal images and videos and support more inter-
esting applications. Traditional methods estimate correspondence
for fiducial marker and general marker in a similar way, i.e., es-
timating marker pose via sparse correspondences [Szeliski et al.
2007]. A series of works [Bencina et al. 2005; DeGol et al. 2017;
Narita et al. 2016; Uchiyama and Marchand 2011; Xu and Dudek
2011] are devoted to designing better fiducial markers or utiliz-
ing marker prior more effectively. Researchers also try to generate
fiducial markers and estimate their correspondence through neu-
ral networks [Grinchuk et al. 2016; Peace et al. 2021; Yaldiz et al.
2021], which significantly improves the accuracy and robustness.
However, to our best knowledge, no previous work addresses the
general marker correspondence problem with deep neural networks.
Existing general marker correspondence estimation still follows the
sparse feature matching, RANSAC [Fischler and Bolles 1981] with
Homography, and Homography fitting pipeline [Baker et al. 2006;
Szeliski et al. 2007]. Although sparse features [DeTone et al. 2018;
Dusmanu et al. 2019; Revaud et al. 2019; Sarlin et al. 2020] have
been improved by neural networks since SIFT [Lowe 2004], this
framework is still limited by the homography model, and sparse
feature extraction is not a sufficient information encoding. In this
paper, we propose NeuralMarker, a novel framework for learning
general marker correspondence estimation. Compared with previ-
ous feature matching based methods, NeuralMarker gets rid of the
homography model and regresses correspondences from the whole
marker and image, so it is able to handle deformed markers and
obtains higher accuracy and robustness.

Learning to Estimate Dense Correspondence. Optical flow is a main-
stream dense correspondence estimation task, which concerns con-
secutive images in a video clip. With abundant synthetic train-
ing data [Dosovitskiy et al. 2015; Mayer et al. 2016], optical flow
learning has achieved great success [Huang et al. 2022; Teed and
Deng 2020]. FlowFormer [Huang et al. 2022] pushes the accuracy
further by utilizing transformers [Chu et al. 2021; Vaswani et al.
2017]. Semantic correspondence [Rocco et al. 2017; Shen et al. 2020;
Truong et al. 2020] is another genre that learns the dense correspon-
dences of semantic objects between image pairs via data augmenta-
tion. Truong et.al. [Truong et al. 2021] achieves the state-of-the-art
and extends the neural networks to learn geometric correspon-
dences. As most contents in images are static and rigid, epipolar
constraints are widely employed in traditional optimization-based
optical flow [Valgaerts et al. 2008; Wedel et al. 2009; Yamaguchi et al.
2013]. Some local feature learning methods leveraged epipolar con-
straints to train detectors [Yang et al. 2019] and descriptors [Wang
et al. 2020]. In NeuralMarker, we propose to use the Symmetric

Epipolar Distance (SED) as a weakly supervision loss. Fueled by
abundant cross-lighting posed images obtained from Structure-from-
Motion (SfM) [Agarwal et al. 2011; Schönberger and Frahm 2016],
the image feature encoder learns robust features against lighting
variations, which largely improves the following correspondence
regression robustness.

3 NEURALMARKER
Given a marker and a reference image that contains the marker, we
propose a novel framework NeuralMarker, which trains a neural
network identifying the marker’s corresponding locations at the
reference image for each pixel in the query marker. In this section,
we will elaborate NeuralMarker in three aspects: 1) the neural net-
work architecture, 2) supervised training with the synthetic dataset
FlyingMarkers, and 3) weakly supervised training with real images
and camera poses estimated by Structure-from-Motion (SfM).

3.1 Marker Correspondence Neural Network
Intuitively, marker correspondence should be inferred from the
appearance similarity between the query marker and the reference
image, which is similar to the optical flow estimation principle. We
thus build our neural network architecture following RAFT, which
can be viewed as two stages. First, encoding feature maps from both
marker and the reference image through a siamese image feature
encoder and computing their correlations, which measures their
appearance similarities. To fully utilize the marker’s information,
we use the pre-trained Twins-SVT [Chu et al. 2021], a transformer
architecture encoding global features, as the image feature encoder,
which has also been validated in the recent FlowFormer [Huang
et al. 2022]. Second, iteratively regressing correspondence residuals
with a motion regressor, which is a ConvGRU module [Cho et al.
2014], from the correlations and context features.

Optical flow only concerns temporally consecutive images, which
generally share similar lighting and has small motion. In contrast
to optical flow, the marker usually undergoes large motion in the
reference image, and the reference image may be captured in harsh
lighting environments, which might cause its appearance to be sig-
nificantly different from the marker. We tackle these two challenges
in the two stages of our neural network. In the first stage, once
the image feature encoder learned to encode lighting-invariant fea-
tures, the correlations computed from such image features would
remain constant regardless of the lighting variation of the reference
image, and thus the motion regressor would not be affected. We
propose the SED loss to encourage our image feature encoder to be
invariant to lighting variations. In the second stage, the existence
of large motion requires the motion regressor to be able to regress
large displacement. We thus propose FlyingMarkers, which provides
synthesized reference images with various marker deformations to
train a capable motion regressor.

3.2 Supervised Training with FlyingMarkers
It is challenging to collect the ground truth dense correspondences
for marker-image pairs in real scenes and annotating such data by a
human is infeasible. Inspired by the success of FlyingChairs [Doso-
vitskiy et al. 2015] and FlyingThings [Mayer et al. 2016], which
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(a) Marker (b) Synthesized Reference Images
Fig. 2. FlyingMarkers. (a) A randomly selected marker. (b) Synthetic refer-
ence images of the marker (a).

are synthetic datasets for optical flow training, we propose Flying-
Markers, a synthetic dataset for marker correspondence training.
FlyingMarkers generates training data, including marker-image
pairs with their ground truth dense correspondences, by synthesiz-
ing a marker deformed in an image. Specifically, we select pairs of
images from the MegaDepth dataset [Li and Snavely 2018]. In each
pair, one image is regarded as the marker and the other image as
the background image. We can synthesize a reference image that
contains the marker via warping the marker and placing the marker
in the background image. Affine and homography transformations
can fully represent geometric transformations of plane-like markers
but cannot handle more complicated deformations. Inspired by pre-
vious data augmentation techniques [Melekhov et al. 2019; Truong
et al. 2020], we include a thin-plate spline (TPS) model to synthesize
the marker deformation. We thus use the three following kinds of
geometric transformations to warp markers:

• Affine transformation contains rotation, shear, and transla-
tion. We uniformly sample the rotation angle from -𝜋3 to 𝜋

3 ,
the shear angle from -𝜋2 to 𝜋

2 , and the translation from 0.75
to 1.25.
• Homography has 8 degrees of freedom (DoF), which can be
defined as the translation of four points from one image to
another image. Therefore, we select the four corner points
of the markers, randomly generate the four corners on the
reference background image, and compute the homography
matrix from the four-point translations as the randomly gen-
erated homography transformation.
• TPS. We use a thin plate spline with 18 parameters, including
6 global affine motion parameters and 12 coefficients for con-
trollable points. We also start from an identity mapping and
randomly add a float number to each parameter from -0.5 to
0.5, where the pixel coordinates have been normalized to -1
to 1.

By computing the corresponding locations of the warped marker
pixels, we obtain the dense correspondences from the marker to the
reference image as ground truth. We randomly sample a geometric
transformation T from such three candidates, and directly supervise
the neural network with the ground truth correspondences:

𝐿𝑆𝑦𝑛 (𝐼𝑀 , 𝐼𝑅) =
∑︁
x𝑖 ∈𝑆
| |𝑓𝑅←𝑀 (x𝑖 ) − T(x𝑖 ) | |1 . (1)

𝑥

𝑙

𝑥! = 𝑓"←$(𝑥)

𝑙′
𝐸𝐷(𝑥, 𝑥!, 𝐹)𝐸𝐷(𝑥′, 𝑥, 𝐹%)

𝐼! 𝐼"

Fig. 3. SED loss for SfM data. We compute camera poses with SfM for a
collection of images that cover various lighting conditions. Given a pair
of images with their relative camera poses, the SED loss constrains the
location of a pixel location 𝑥 ∈ 𝐼𝐴 to be on the corresponding epipolar line
𝑙′ (derived from the camera pose) in 𝐼𝐵 , and vice versa.

𝐿𝑆𝑦𝑛 is the loss used with the synthesized FlyingMarker dataset.
Given the marker 𝐼𝑀 and the reference image 𝐼𝑅 , our neural network
predicts the correspondence 𝑓𝑅←𝑀 from 𝐼𝑀 to 𝐼𝑅 for all pixels x𝑖 in
the marker, where 𝑆 contains all pixels in 𝐼𝑀 . With the generated
geometric transformation T, we can compute their corresponding
locations in the reference image T(x𝑖 ), and supervise the predicted
correspondences with L1 loss. As the example shown in Fig. 2, we
can easily generate abundant marker-image pairs with proper super-
vision signals in this way. FlyingMarkers contains 176,167 training
samples, which cover various marker motions and deformations
in total. The motion regressor in our neural network is trained on
FlyingMarkers sufficiently.

3.3 Weakly Supervised Training with SfM Data
Although FlyingMarkers provides abundant training data, it is syn-
thetic and does not contain varying lighting marker-image pairs.
We propose a symmetric epipolar distance (SED) loss to address
this limitation. As shown in Fig. 3, we can collect real images that
cover various lighting conditions and compute their camera poses
with SfM. The proposed SED loss can train our neural network
with such real and natural lighting-varying images. Specifically, we
compute the fundamental matrix F from an image 𝐼𝐴 to another
image 𝐼𝐵 according to their camera intrinsic parameters and relative
camera pose from SfM. F restricts that a pixel location x ∈ R2 in
image 𝐼𝐴 can only be mapped to one of the points on a line 𝑙 ′ = Fx,
referred to as the epipolar line in image 𝐼𝐵 . For each point x in image
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𝐼𝐴 , our network estimates its corresponding point in image 𝐼𝐵 as
x′ = 𝑓𝐵←𝐴 (x). If the 𝐼𝐴-to-𝐼𝐵 correspondences are ideal, the dis-
tance of the corresponding pixel location 𝑥 ′ to the epipolar line
𝑙 ′, named epipolar distance (ED), shall be zero. Reversely, 𝑥 is also
supposed to lie on the epipolar line 𝑙 derived from 𝑥 ′ in image 𝐼𝐵 if
the reverse flows are ideal, and the distance from 𝑥 to the epipolar
line 𝑙 should also be zero. The sum of the two epipolar distances is
defined as the SED. According to the epipolar geometry, the inverted
fundamental matrix equals the transpose of the fundamental matrix,
we can therefore compute the SED loss as

𝑆𝐸𝐷 (x, x′, F) = 𝐸𝐷 (x, x′, F) + 𝐸𝐷 (x′, x, F𝑇 ). (2)

Given the 𝐼𝐴-to-𝐼𝐵 dense correspondences 𝑓𝐵←𝐴 estimated by
our neural network, we define the following SED loss to evaluate
their accuracies by computing SED for all correspondences in 𝑓𝐵←𝐴 ,

𝐿𝑆𝐸𝐷 (𝐼𝐴, 𝐼𝐵) =
∑︁
x𝑖 ∈𝑆

𝑆𝐸𝐷 (x𝑖 , 𝑓𝐵←𝐴 (x𝑖 ), F), (3)

where 𝑆 is the set containing all pixel locations in 𝐼𝐴 . The proposed
SED loss is only derived from the fundamental matrix (or relative
camera pose). Therefore, the SED loss works even when there exist
significant lighting variations between the pair of images. The SED
loss coupled with the SfM data serving as weak supervision effec-
tively mitigates bias of the synthesis image and constant lighting.

3.4 Training Neural Network
As themarkers used in FlyingMarkers come fromMegaDepth dataset [Li
and Snavely 2018], we can identify other images in MegaDepth sur-
rounding the images that are used as markers. For each training
sample, including a marker 𝐼𝑀 and a synthesized reference image
𝐼𝑅1, in FlyingMarkers, we sample another image 𝐼𝑅2 that has com-
mon visible observations with 𝐼𝑀 in the MegaDepth dataset. With
such a triplet, we can train our neural network with both the super-
vised loss and the SED loss,

𝐿𝑎𝑙𝑙 (𝐼𝑀 , 𝐼𝑅1, 𝐼𝑅2) = 𝐿𝑆𝑦𝑛 (𝐼𝑀 , 𝐼𝑅1) + 𝐿𝑆𝐸𝐷 (𝐼𝑀 , 𝐼𝑅2). (4)
We use a learning rate of 10−4, a weight decay of 5 × 10−5, the

one-cycle learning rate scheduler, 12 recurrent iterations, a batch
size of 12, 640×480 image size, and 100k training iterations.

4 MARKER CORRESPONDENCE BENCHMARK
In this section, we introduce two benchmarks, including Flying-
Markers and DVL-Markers, and corresponding metrics to evaluate
marker correspondence quality.

4.1 FlyingMarkers
Following the image synthesis and ground-truth marker correspon-
dence generation introduced in Sec. 3.2, we create a test set to
evaluate marker correspondence. Given the estimated marker cor-
respondence 𝑓𝑅←𝑀 and the ground-truth transformation T, we
can compute the End-Point Error (EPE) for each marker pixel as
𝐸𝑃𝐸 (x𝑖 ) = | |𝑓𝑅←𝑀 (x𝑖 ) − T(x𝑖 ) | |2. In line with other dense corre-
spondence evaluation [Truong et al. 2021], we employ the Percent-
age of Correct Keypoints (PCK) metrics. PCK-𝛿 is the percentage of
marker pixels x̂𝑖 whose correspondence EPE is smaller than a given
threshold 𝛿 .

𝐼!𝐼"

𝑆𝑆𝐼𝑀 𝐼#𝑃𝑆𝑁𝑅 𝐼"$

𝑓"←!𝑊𝑎𝑟𝑝𝑖𝑛𝑔

𝑀𝑎𝑟𝑘𝑒𝑟 𝐶𝑜𝑟𝑟

!!!"

""!# !#$"%& !"$

'"←!()*+,-.

#)*/0* 12**

!!!"

""!# !#$"%& !"$

'"←!()*+,-.

#)*/0* 12**

Fig. 4. DVL-Markers Benchmark. Given the predicted correspondence
𝑓𝑅←𝑀 from the marker 𝐼𝑀 to the reference image 𝐼𝑅 , evaluate it through
the SSIM and PSNR metrics between the ground-truth image 𝐼𝑅′ and the
synthesis image 𝐼𝑤 that is warped from 𝐼𝑀 .

4.2 DVL-Markers Benchmark
Existing benchmarks for optical flow [Butler et al. 2012; Geiger
et al. 2013] only evaluate correspondences between consecutive im-
ages in a video clip, which have small motions and similar lighting
conditions. Although FlyingMarkers provides quantitative marker
correspondence evaluation, it still has two significant limitations:
1) the reference image is synthesized, and 2) the warped marker
has the same lighting conditions as the original marker. What if we
would like to evaluate marker correspondence estimation with real
images and varying lighting conditions? The challenge of creating
such a benchmark is similar to the problem in the training data
generation: it is difficult to annotate pixel-wise correspondences for
marker-image pairs, especially when there are marker deformations
and challenging lighting. We observe that if the estimated marker
correspondences are of high quality, the marker warped accord-
ing to the marker correspondences should be well aligned to the
marker captured in the image. We, therefore, tackle the challenge by
evaluating the correspondences according to marker alignment con-
sistency. We propose a new benchmark, DVL-Markers, containing
marker-image pairs for marker correspondence evaluation and the
images are pictures taken in real scenes. DVL-Markers contain three
sets: deformation, viewpoint, and lighting, respectively, standing
for challenging cases of marker deformation, viewpoint variation,
and harsh lighting. Specifically, we warp the marker 𝐼𝑀 with the
estimated correspondences 𝑓𝑅←𝑀 , denoted as 𝐼𝑤 (Fig. 4).

𝐼𝑤 = 𝑤𝑎𝑟𝑝 (𝐼𝑀 , 𝑓𝑅←𝑀 ),
𝑆 ′ = {x𝑖 |x𝑖 ∈ 𝑆, 𝐼𝑤 (x𝑖 ) ≠ (0, 0, 0)}.

(5)

The warped marker is assumed to be consistent with the image
content inside the covered area 𝑆 ′. Structural Similarity (SSIM) and
Peak Signal-to-Noise Ratio (PSNR) are classical metrics evaluating
image reconstruction quality. We thus compute the marker align-
ment quality of such marker-image pair, 𝑆𝑆𝐼𝑀𝐼 and 𝑃𝑆𝑁𝑅𝐼 , which
are the average of SSIM and PSNR for all valid pixels x𝑖 ∈ 𝑆 ′ between
the warped marker 𝐼𝑤 and the reference image 𝐼𝑅 :
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Fig. 5. Test images in DVL-Markers. Each image is assigned a difficulty level. The 3/4 label means the image will be labeled as 3 or 4 according to the
deformation degree.

𝑆𝑆𝐼𝑀𝐼 =
1
| |𝑆 ′ | |

∑︁
x𝑖 ∈𝑆′

𝑆𝑆𝐼𝑀 (𝐼𝑤 (x𝑖 ), 𝐼𝑅 (x𝑖 )),

𝑃𝑆𝑁𝑅𝐼 =
1
| |𝑆 ′ | |

∑︁
x𝑖 ∈𝑆′

𝑃𝑆𝑁𝑅(𝐼𝑤 (x𝑖 ), 𝐼𝑅 (x𝑖 )).
(6)

This strategy is effective for evaluating marker-image pairs of
viewpoint variation and deformation but is unable to work on pairs
of images with lighting variation because of the nature of SSIM
and PSNR metrics. Therefore, for each picture 𝐼𝑅 took under low-
lighting in the lighting set, we take another picture 𝐼𝑅′ using the
same camera pose and with abundant lighting. We still feed the low-
light image 𝐼𝑅 to correspondence estimation methods but compute
the SSIM and PSNR metric with the well-lit image 𝐼𝑅′ .

4.3 Difficulty Levels in DVL-Markers
In DVL-Markers, we prepare 10 markers and take 10 pictures for
each marker under each condition, which consists of 300 test images.
We show the test images of one test marker in Fig. 5. Each row con-
tains test images of a subset and we further divide the deformation,
viewpoint, and lighting subsets into 5, 4, and 10 difficulty levels.
Each test image is assigned a difficulty level.
In the deformation subset, we take 2 horizontally concave, 2

horizontally convex, 2 vertically concave, 1 vertically convex, 1 diag-
onally concave, 1 diagonally convex, and 1 wave-like deformation,
which corresponds to test images in columns 1-10 of row 1. We
observe that convex deformation is more difficult than concave de-
formation, so small and large concave deformations are labeled as 1
and 2, and small and large convex deformations are labeled as 3 and
4. The wave-like deformation is the most challenging case, which is

labeled as 5. Test images in columns 7, 8, and 9 are labeled as two
different levels according to the deformation degree.
In the viewpoint subset, we take test images according to the

angle between the camera viewpoint and the marker’s negative
normal. We take test images at around 10°, 25°, 50°, and 75°, which
are labeled from 1 to 4.

In the lighting subset, we control the lighting condition by turn-
ing on/off the light and adjusting the camera shutter. We set 10
illumination levels ranging from underexposure to overexposure.
The image in column 2 is regarded as a well-lit image, which is
labeled as level 1. The overexposed image in column 1 is labeled as
level 2. Then the images from column 3 to column 10 are captured
under decreasing lighting, so the difficulty level gradually increases.

5 EXPERIMENTS
We conduct a series of experiments and provide results to evaluate
the marker correspondence accuracy. To our best knowledge, we are
the first that focuses on the general marker correspondence problem
with deep neural networks. Previous marker correspondences are
derived from sparse feature matching-based homography fitting.
We thus select SIFT [Lowe 2004] and SuperPoint [DeTone et al.
2018] as sparse features for homgography fitting as the competitive
counterparts. Based on SuperPoint, SuperGLUE [Sarlin et al. 2020]
is a state-of-the-art feature point matcher so we adopt it and denote
this combination as SP+SG. ‘+H’ denotes that the matched sparse
features are used to fit a homography model. We also select two
general correspondence estimation methods: RANSAC-Flow [Shen
et al. 2020] and PDC-Net [Truong et al. 2021] for comparison. PCK
metric requires ground-truth pixel-wise correspondences, which are
unable to be collected in real scenes. To evaluate the correspondence
quality in real scenes, wewarp themarker according to the estimated
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Fig. 6. Marker Correspondence Visualization on the DVL-Markers Benchmark. We show an extreme reference image of the same marker for each condition
and visualize the estimated marker correspondences.

Table 1. Evaluation on the DVL-Markers benchmark. We evaluate marker correspondence methods by warping markers according to predicted correspondences
and compute the image consistency. We use SSIM (mean/median) and PSNR (mean/median) as the image consistency metric. NeuralMarker obtains
extraordinary accuracy and robustness compared with all other methods.

Method Deformation Viewpoint Lighting

SSIM↑ PSNR↑ Failed↓ SSIM↑ PSNR↑ Failed↓ SSIM↑ PSNR↑ Failed↓
SIFT+H [Lowe 2004] 0.27/0.25 10.97/10.68 0% 0.46/0.57 12.59/13.21 0% 0.64/0.58 13.94/12.80 25%

SP+SG+H [Sarlin et al. 2020] 0.33/0.29 11.36/10.93 12% 0.66/0.63 14.53/13.89 19% 0.70/0.67 14.34/13.52 21%
R-Flow [Shen et al. 2020] 0.32/0.30 11.42/10.89 0% 0.42/0.52 12.04/12.18 0% 0.68/0.77 14.63/14.96 0%
PDC [Truong et al. 2021] 0.24/0.23 10.46/10.27 0% 0.38/0.32 11.40/11.07 0% 0.46/0.46 11.59/11.47 0%
NeuralMarker (Ours) 0.65/0.69 14.38/14.28 0% 0.70/0.77 15.20/15.96 0% 0.79/0.82 16.29/15.66 0%

Table 2. Evaluation on the test set of FlyingMarkers with PCK-1, PCK-3,
and PCK-5.

Method PCK-1 PCK-3 PCK-5
SIFT+H [Lowe 2004] 0.57 0.71 0.74

SP+SG+H [Sarlin et al. 2020] 0.38 0.63 0.70
R-Flow [Shen et al. 2020] 0.10 0.42 0.48

PDC-Net [Truong et al. 2021] 0.75 0.82 0.82
NeuralMarker (Ours) 0.89 0.99 0.99

marker correspondence and compute the marker alignment quality,
i.e., SSIM and PSNR. Therefore, we use PCK on FlyingMarkers, a
synthetic dataset, and SSIM and PSNR on DVL-Markers, a real scene
dataset.

FlyingMarkers. Our NeuralMarker obtains superior performance
and outperforms compared methods on the FlyingMarkers test set.
Note that the PCK-5 of NeuralMarker achieves 99%, which denotes
that the motion regressor in our neural network is able to capture
almost all markers’ transformations and deformations. PDC-Net
presents consistently inferior performance and its precision from
PCK-1 to PCK-5 does not significantly vary, which denotes that
PDC-Net totally fails in these cases rather than lacks accuracy.

DVL-Markers Benchmark. As shown in Tab. 4, We compute the
mean and median of 𝑆𝑆𝐼𝑀𝐼 and 𝑃𝑆𝑁𝑅𝐼 . Note that homography
fitting requires at least 4 correspondences, so homography-based
methods may fail when valid feature matches are less than 4. We
thus also present the failure percentage and compute their mean
SSIM and PSNR from valid data. NeuralMarker shows dominant su-
periority compared with all previous methods across all of the three
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Table 3. PCKwith different scales of training data. Themodels are evaluated
on the test set of FlyingMarkers.

Scene num. 1 10 50 100 176
PCK-1 0.042 0.335 0.799 0.848 0.887
PCK-3 0.259 0.818 0.976 0.985 0.989
PCK-5 0.453 0.915 0.991 0.994 0.996

sets. In the Deformation set, all methods present inferior perfor-
mance except NeuralMarker. Although RANSAC-Flow and PDC-Net
do not use a homography model, they do not show significant ad-
vantages over SIFT+H and SP+SG+H. In the Viewpoint set, SIFT+H
and SP+SG+H show better performance compared with other meth-
ods because this set conforms to the homography model that they
used, but our NeuralMarker still significantly outperforms them
even without the homography model. In the Lighting set, SIFT+H
does not obtain reasonable performance. The 25% failure ratio de-
notes its vulnerability to lighting variation. The other learning-based
methods are consistently better than SIFT+H because the learned
features are more robust than SIFT features against lighting varia-
tions. The most competitive method is RANSAC-Flow, but it is still
inferior compared to our NeuralMarker and does not obtain good
performance under the other two conditions. We also qualitatively
compare marker correspondences in Fig. 6. SIFT+H is limited by the
homography model and fails in the low-lighting image. PDC-Net
predicts many chaotic correspondences, which will severely im-
pact downstream applications. RANSAC-Flow consistently presents
correspondence leakage over the boundary of the image. Please
zoom in to see the details. Marker correspondences estimated by
NeuralMarker are coherent and accurate.
Performance in increasing difficulty levels. (Fig. 7). We further

divide the deformation, viewpoint, and lighting subsets into 5, 4, and
10 difficulty levels according to deformation degree, viewpoint angle,
and lighting intensity. Our NeuralMarker presents extraordinary
performance, especially in the Deformation and Lighting subset. In
the deformation set, the PDC-Net and the SIFT+H rarely achieve
12 PSNR or 0.4 SSIM. which denotes that they are fragile when
the marker is deformed. SIFT+H fails in the lighting subset when
the difficulty level equals 9 and 10 because there are no sufficient
features for homography fitting. The performance of the other two
competitors is closest to NeuralMarker in the Viewpoint set but still
presents an evident gap.

PCK with different scales of training data. . In FlyingMarkers, we
obtain 176 scenes from theMegaDepth and extract 1k images in each
scene for training. To present the performance of models that are
trained by different scales of data, we now train our neural network
with images from 1, 10, 50, 100, and 176 scenes and evaluate the
models on the test set of FlyingMarkers. As shown in Tab. 3, our
NeuralMarker achieves the best performance when using images
from all scenes.

Ablation Study. We use the PCK-1 on FlyingMarkers and the
median of SSIM on DVL-Markers in the ablation study. We start
from the baseline ‘CNN + 𝐿𝑆𝑦𝑛 ’, which uses the CNN image feature
encoder following RAFT, then replaces the CNNwith the pre-trained

Table 4. Ablation study. ‘Twins + 𝐿𝑆𝑦𝑛 + 𝐿𝑆𝐸𝐷 ’ is the final model we use.

FlyingMarkers DVL-Markers

PCK-1 D V L
CNN + 𝐿𝑆𝑦𝑛 0.95 -0.02 0.01 0.06
Twins + 𝐿𝑆𝑦𝑛 0.95 0.52 0.39 0.46

Twins + 𝐿𝑆𝑦𝑛 + 𝐿𝑆𝐸𝐷 0.89 0.69 0.77 0.82

Twins-SVT (‘Twins + 𝐿𝑆𝑦𝑛 ’), and finally adds the SED loss (‘Twins
+ 𝐿𝑆𝑦𝑛 + 𝐿𝑆𝐸𝐷 ’). The baseline shows good performance on the
synthetic data but can not be generalized to real-world data. Twins-
SVT improves the generalization but is still unsatisfactory. The SED
loss sacrifices little accuracy on the synthetic data for much better
generalization in the real world.

6 APPLICATIONS
Compared with fiducial markers, a general marker does not need to
pre-arrange the environment, which makes NeuralMarker capable
of processing general videos, such as live streaming, movies, and
TV series. For example, advertising in TV series with the guidance
of marker correspondences in Fig. 1 (b). Besides, even in homemade
videos, we can use an elegant marker that can be recognized by
humans rather than unmeaning binary patterns.
Compared with previous sparse feature-based general marker

correspondence estimation, NeuralMarker demonstrates superior-
ity in robustness and accuracy and supports deformed markers.
Marker-based AR is one of the mainstream AR applications in many
commercial AR systems [Simonetti Ibanez and Paredes Figueras
2013]. These functionalities that are extended by our NeuralMarker
can enable more interesting AR effects. In Fig. 8, we present that
we can realize AR effects in harsh lighting environments according
to marker correspondence predicted by NeuralMarker. We replace
the reflectance of the poster in the real image (a) guided by marker
correspondence and preserve the shading through NIID-Net [Luo
et al. 2020]. We also identify the marker in such a low-light envi-
ronment and insert a virtual object on the marker plane. Besides,
NeuralMarker also supports editing contents on a deformed marker.
A common requirement in video editing is to add some effects to an
object and expect the editing results to propagate over the video clip
while maintaining consistency in the content. GANGealing [Peebles
et al. 2021] reveals that we can edit a template image and propagate
the results to the related images through predicted correspondences.
However, the template image and the correspondence learning in
GANGealing require a pre-trained generative model for each target
object. In contrast, our NeuralMarker is able to predict correspon-
dences for an offhand given marker. We therefore can extract one
frame from the video clip as the marker, edit the marker, and then
propagate the editing effects to the whole video clip guided by
marker correspondences. Please refer to the supplemented video
for more results.

7 LIMITATIONS
NeuralMarker cannot simultaneously estimate marker correspon-
dence formultiplemarkers. Besides, NeuralMarker does not estimate
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Deformation Viewpoint Lighting

Fig. 7. Performance in increasing difficulty levels on DVL-Markers.

(a) Real Image (b) Edited Image (c) Virtual Object Insertion

Fig. 8. AR in harsh lighting environments.

Original Image Edited Image

Fig. 9. Limitations. Row 1: NeuralMarker still fails when the motion blur is
so severe. Row 2: Without occlusion mask prediction, the marker directly
warped by predicted correspondences will cover the occluder.

the occluded regions, so directly editing the images according to
estimated marker correspondences will cover the occluding object.

In the future, we can design a one-shot marker detector to crop each
marker for the following accurate marker correspondence estima-
tion, which enables multi-marker correspondence estimation. To
avoid affecting the occluder in front of the marker when editing
the image according to marker correspondences, we can augment
the FlyingMarker dataset by randomly inserting occluders and ad-
ditionally learn to predict the occlusion mask. The predicted mask
can assist in image editing. The DVL-Markers benchmark does not
quantitatively evaluate the performance for test images with motion
blur. We qualitatively compare NeuralMarker with other methods
in the supplemented video. Although NeuralMarker presents the
best robustness but still fails when the motion blur is so severe. We
show two failed image editing cases in Fig. 9.

8 CONCLUSION
We have developed NeuralMarker, a novel framework for learning
general marker correspondence. To tackle the challenges of lack-
ing training image pairs with realistic lighting and deformation
variations, we propose the novel Symmetric Epipolar Distance loss
to train image pairs with only ground-truth relative camera poses.
NeuralMarker significantly outperforms previous general marker
correspondence methods on both synthetic and real-world data.
Based on the marker correspondence predicted by NeuralMarker,
some interesting but challenging applications can be realized now,
such as AR in harsh lighting environments and video editing.
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