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NerfCap: Human Performance Capture with
Dynamic Neural Radiance Fields

Kangkan Wang, Sida Peng, Xiaowei Zhou, Jian Yang, and Guofeng Zhang

Abstract—This paper addresses the challenge of human performance capture from sparse multi-view or monocular videos. Given a
template mesh of the performer, previous methods capture the human motion by non-rigidly registering the template mesh to images with
2D silhouettes or dense photometric alignment. However, the detailed surface deformation cannot be recovered from the silhouettes,
while the photometric alignment suffers from instability caused by appearance variation in the videos. To solve these problems, we
propose NerfCap, a novel performance capture method based on the dynamic neural radiance field (NeRF) representation of the
performer. Specifically, a canonical NeRF is initialized from the template geometry and registered to the video frames by optimizing the
deformation field and the appearance model of the canonical NeRF. To capture both large body motion and detailed surface deformation,
NerfCap combines linear blend skinning with embedded graph deformation. In contrast to the mesh-based methods that suffer from
fixed topology and texture, NerfCap is able to flexibly capture complex geometry and appearance variation across the videos, and
synthesize more photo-realistic images. In addition, NerfCap can be pre-trained end to end in a self-supervised manner by matching the
synthesized videos with the input videos. Experimental results on various datasets show that NerfCap outperforms prior works in terms
of both surface reconstruction accuracy and novel-view synthesis quality.

Index Terms—Human performance capture, dynamic neural radiance fields, human deformation fields.
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1 INTRODUCTION

Human performance capture is an important problem
in computer vision and graphics that has a variety of ap-
plications such as telepresence, film production, and sports
broadcasting. From a multi-view or monocular video of a
human performer in general daily clothing, the goal is to
reconstruct a dynamic 3D model sequence of the performer
with space-time coherent geometry and appearance that
enable photo-realistic rendering of the performer. This is an
extremely challenging problem as the human motion could
be arbitrarily complex with non-rigid surface deformations
and the appearance may be temporally varying from frame
to frame due to geometry and illumination change.

Previous human performance capture systems either
rely on well-controlled multi-camera studios [1], [2], [3],
[4], [5] or require depth sensors [6], [7], [8], [9], [10] for
high-quality 3D reconstruction. The complicated hardware
of multi-view setups or depth sensors prohibit these systems
from being widely deployed for daily applications. On the
contrary, monocular human performance capture method-
s [11], [12], [13] leverage observations in color images, e.g.,
body joints and silhouettes, and non-rigidly fit an off-line
reconstructed template model to these observations. But
detailed surface deformation cannot be recovered from these
sparse features. LiveCap [12] tracks the deforming surface
using a dense photometric constraint between the projected
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Qualitative results of our method on different humans with varying types of apparel. For each 
example, we show the ground truth image, the recovered geometry (overlayed on the image), 
and the novel-view synthesis. Note that the recovered geometry precisely overlays to the novel-
view image and the novel-view synthesis is photorealistic. The views of these examples are not 
used in the training. 

Fig. 1. Given a sparse-view or monocular video of a performer in
general clothing, NerfCap captures the space-time coherent geometry
and appearance that enable photo-realistic rendering of the performer.
For each example in this figure, we use four views for performance
capture and show the ground-truth image in a novel view, the recovered
geometry (overlayed on the image), and the novel-view synthesis result.

template color and the pixel color. The template textures are
fixed and usually cannot match the observed images due to
illumination change or self-shadowing, making the tracking
fail. In addition, it is difficult to render photo-realistic videos
without modeling the temporally-varying appearance.

In this paper, we propose a novel performance capture
method named NerfCap by representing the 3D performer
as a neural radiance field (NeRF) [14]. Compared against
polygon meshes, NeRFs can more flexibly represent tem-
porally varying geometry and appearance without being
concerned about the topological change, while being able
to render more photo-realistic images with neural volume
rendering [15], [16], [17], [18], [19]. Specifically, we first
learn a canonical NeRF from the given 3D template model
of the performer. To enable the NeRF model to track detailed
human motion in the videos, we equip the NeRF with a de-
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formation field and optimize both the canonical NeRF and
the deformation field by comparing the rendered images
with the input video frames, so that both the temporally
varying geometry and appearance can be captured.

To represent the deformation field, previous methods
either adopt the linear blend skinning [15], [16] that cannot
capture nonlinear local deformation or combine the linear
blend skinning with a residual displacement [20], [21] that
is unconstrained by any motion prior. These related works
do not adopt any motion prior in the human NeRF to
effectively model the motion of loose clothes (e.g., dresses).
Without a motion prior to regularize the dense motion
field, the joint optimization of the canonical NeRF and de-
formation fields forms an under-constrained problem [18],
[19]. Thus, these methods mainly handle dynamic humans
with tight clothes since the clothing motion is small, but
may fail to accurately reconstruct the local deformations of
loose clothes that have arbitrary and complex deformations.
Instead, we propose to model the deformation field as
the sum of skeleton-driven deformation and the non-rigid
surface deformation regularized by embedded graph, so
that we are able to capture both large body movement and
detailed surface deformation during the performance. In our
deformation model, we explicitly represent the nonlinear
local deformation by utilizing the embedded graph prior
defined on the template surface, so local deformations on
moving clothes can be recovered reliably. In addition, the
prior works [15], [16], [20], [21] are primarily proposed to
synthesize novel views for dynamic humans, while our goal
is to not only achieve high-quality novel-view synthesis but
also capture the dense space-time coherent geometry with
frame-to-frame correspondences by integrating the human
template tracking into the dynamic NeRF. The experimental
results on DynaCap [22], DeepCap [13], MIT datasets [4] and
our own captured dataset demonstrate that the proposed
method can accurately capture human performance and
synthesize photo-realistic novel views of the performer from
a sparse-view or monocular video.

In summary, the main contributions of this work are:

• A novel human performance capture method Ner-
fCap that is able to accurately recover temporally-
varying geometry and appearance of the performer.
The dense geometric and photometric constraints
presented in the dynamic human NeRF obviously
improve both the accuracy and robustness of the
human template tracking compared to the state-of-
the-arts [12], [13].

• A dynamic NeRF model that combines the embed-
ded graph deformation with the linear blend skin-
ning to represent complex deformation of humans in
general clothing. The embedded graph prior is incor-
porated in the dynamic human NeRF to effectively
model nonlinear local deformations of loose clothes
which is not handled in the prior works.

• Our framework is trained in an end to end manner
which takes advantages of the input video frames as
the supervision data.

• The state-of-the-art performance on DynaCap [22],
DeepCap [13] and MIT datasets [4] in terms of sur-
face reconstruction and view synthesis.

2 RELATED WORK

2.1 Template-free human performance capture

Template-free methods [6], [7] based on depth sensors ob-
tain impressive human reconstruction in realtime by volu-
metrically fusing captured depth maps, but they only works
reliably for small and slow motions. Some approaches [8],
[9], [10] increase tracking robustness for large human mo-
tions by integrating a skeletal motion prior or a parametric
model which shows the significance of motion prior in
performance capture. Recent works [23], [24] adopt deep
neural networks to recover 3D humans from depth scans.
For example, SCANimate [24] presents an end-to-end train-
able framework that creates an animatable avatar without
template surface registration. However, these methods re-
construct 3D humans from depth scans and cannot synthesis
photo-realistic videos. Also, depth-based methods do not di-
rectly generalize to the video-based setting because of high
power consumption and data capture limitations (e.g., cap-
ture distance and sensitive to sunlight). With the progress
in deep learning, many template-free approaches estimate
3D detailed human shapes from color images through im-
plicit function [25], [26], hierarchical mesh deformation [27],
normal map refinement [28], or UV mapping [29]. Although
these methods can recover the surface details, the recovered
shapes lack of semantic information that parameterizes hu-
man pose, shape and clothing. Also, they do not recover
per-vertex correspondences between different frames which
limits the applications like video editing and augmented
reality. Recent works [30], [31] reconstruct a personalized
high-fidelity avatar from a monocular video, which is re-
stricted to self-rotating humans with A-pose.

2.2 Template-based human performance capture

Many deep learning based methods directly learn a para-
metric model (e.g., the SMPL model [32]) from a single
color image [33], [34], [35], [36], [37], [38], point cloud-
s [39], [40], [41], or videos [42], [43], [44], [45] through
convolutional neural networks. These methods can yield
good performance on recovering the naked body shape
under clothing but fail to reconstruct clothing details be-
cause parametric models do not represent garments. Some
works try to parameterize the clothed humans through an
extra displacement layer [46], [47], [48] or by modeling
the clothing explicitly [49], [50]. However, it is difficult for
these methods to deal with loose clothes or predict realistic
clothing deformations.

Template mesh-based human performance capture em-
ploys a template mesh as prior and exploits multi-view
geometry to track the motion of a person. Typical ap-
proaches [11], [12], [13] align a person-specific template
model to the 2D observations using non-rigid registration.
With a person-specific template mesh, these methods can
achieve realistic performance capture, and recover semantic
information of the humans, and obtain space-time per-
vertex correspondences. DeepCap [13] estimates the non-
rigid surface deformation of the template mesh with weak
supervision of multi-view joints and silhouettes. But only
with these sparse features, they cannot accurately recover
the detailed surface deformation of the human. LiveCap [12]
combines dense photometric constraints with silhouette



3

constraints, but their template with fixed texture cannot ex-
press appearance variations in the videos. In this work, the
dynamic NeRF flexibly represents the temporally-varying
geometry and appearance of the performer, enabling our
method recover surface geometry accurately and render
photo-realistic videos from novel views.

2.3 Neural implicit representation-based methods

The 3D surfaces can be reconstructed by learning implicit
representations such as voxel representation [28], [51], im-
plicit function [25], [26], or neural radiance fields [14], [16],
[17], [18], [19]. Voxel representation is memory intensive
which restricts its ability to produce fine-scale detailed
surfaces. The implicit function based methods can produce
high-resolution surfaces, but the human limbs are often
missing due to occlusion or difficult poses. Neural radiance
fields (NeRF) [14] represents scenes with implicit fields of
density and color and can achieve photo-realistic synthesis.
NeRF is extended for dynamic scenes by jointly optimizing a
canonical NeRF and a set of deformation fields represented
as translational vector field [17], [18] or SE(3) field [19]. To
regularize the dense motion field, these methods adopt an
as-rigid-as-possible constraint [18], [19], and obtain good
performance on small deformations. However, they are not
adaptable for dynamic humans because without human
motion prior jointly optimizing NeRF with the deformation
field is an extremely under-constrained problem.

Neuralbody [15] and AniNeRF [16] represent a dynamic
human NeRF based on the SMPL model [32] or by com-
bining skeleton-driven deformation [52] with learned blend
weights, which regularizes the learning of deformation
fields and achieves impressive novel-view synthesis. How-
ever, their performance degrades dramatically on the hu-
mans in loose clothes because the linear bend skinning can-
not capture nonlinear local deformation of moving clothes.
The extended work, AniSDF [53] of AniNeRF [16] utilizes
signed distance fields to model the human geometry, and
achieves better geometry reconstruction accuracy compared
to the density fields [16]. However, with the same limitation
of AniNeRF, AniSDF [53] cannot accurately reconstruct hu-
mans in loose clothes. H-NeRF [54] unifies NeRF and signed
distance field for recovering dynamic humans, which adopt-
s the articulated deformation model similar to [15], [16].
The other kind methods of human NeRF [20], [21] represent
nonrigid deformation as a displacement on top of the linear
blend skinning. However, without any constraint of motion
prior, the residual displacement cannot capture the motion
of loose clothes effectively, and the clothing geometry fails
to be recovered under complex and arbitrary deformations.
In our work, we model nonrigid deformations using an
embedded deformation graph on the human template since
the embedded deformation is effective to model the motion
of loose clothes. In addition, motion tracking of human ge-
ometry [9], [12], [13] is to reconstruct not only the geometry
of each frame but also space-time dense correspondences
across the sequences, which are crucial for the downstream
applications in AR/VR. However, the existing human NeRF
methods [15], [16], [20], [21], [53], [54] build temporal cor-
respondences among the video frames using the skeleton-
driven framework, which fails to represent the motion of
loose clothes. In contrast, our method mainly focuses on the

tracking of a human template as [12], [13] and thus obtains
the frame-to-frame dense correspondences.

3 PROPOSED APPROACH

Given a sparse-view or monocular video of a human in
general clothing and a 3D template model of the human,
our goal is to capture the densely deforming surface and
synthesize free-viewpoint videos of the human. We achieve
this goal with a novel method of human performance
capture with dynamic neural radiance fields (NeRF) which
mainly consists of two components, namely the human
deformation field network and the canonical NeRF network.
Figure 2 illustrates an overview of the proposed framework.
The human deformation field network regresses the non-
rigid deformation of the dense surface. Combined with the
skeleton-driven deformation, it captures the dense deforma-
tion field between the canonical frame and video frames
(Sec. 3.2). The canonical NeRF network estimates a radiance
field in the canonical frame which is dynamically warped
to video frames with the deformation field (Sec. 3.3). The
dynamic NeRF allows us to render images of the performer
from any viewpoint. By comparing the rendered images
with the input video frames, the dynamic NeRF can capture
the temporally-varying geometry and appearance of the
moving human.

3.1 Pre-processing
We assume a rigged 3D template mesh of the performer
has been reconstructed off-line, e.g., using image-based re-
construction method as in [12]. Then, a canonical NeRF
of the performer is constructed from the template model
by supervising the occupancy network with the template
geometry. The canonical occupancy network is pre-trained
and frozen in the training of other networks. During train-
ing, we randomly sample one image Ii,c, where i ∈ [0, F ]
and c ∈ [0, C] denote the frame index and camera index,
respectively. For each frame Ii,c, we extract the foreground
human mask using [55] and obtain the 3D human pose
with [56]. In the framework overview illustrated in Fig. 2,
we assume the input data have been pre-processed.

3.2 Human Deformation Field
The 3D skeleton pose alone is hardly able to model non-rigid
deformations of the human in general clothing such as the
swinging of a skirt. To address this issue, we disentangle
the human deformation field into the non-rigid surface
deformation and the articulated skeletal motion. After non-
rigid surface deformation is performed on the canonical
template, we apply skeleton-driven deformation to model
articulated motions. This significantly simplifies the learn-
ing of non-rigid deformations by alleviating ambiguities in
the movements of mesh vertices caused by pose variations.

3.2.1 Non-rigid Surface Deformation
We model non-rigid surface deformation with embedded
deformation [57] that computes a warping field based on
a deformation graph. An embedded deformation graph G
with K nodes (K is around 500 in our experiments) is
automatically built on the template. The node transforma-
tions are parameterized with Euler angles A ∈ RK×3 and
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Fig. 2. Overview of the proposed framework. Our framework can capture the human performance and synthesize novel-view videos from a sparse-
view or monocular video. We jointly optimize the human deformations and a canonical neural radiance field (NeRF) defined on the template model.
Please refer to Sec. 3 for detailed description. To simplify the framework overview, we illustrate the extraction process of deformation features and
appearance features in Fig. 3.

translations T ∈ RK×3. For point v, its new position y after
the non-rigid deformation is computed as,

y =
∑

k∈N (v)

w(v, gk)[R(Ak)(v − gk) + gk + Tk], (1)

whereN (v) denotes the set of neighboring nodes that influ-
ence the movement of point v, R(·) : R3 → SO(3) converts
the Euler angles to rotation matrices, and w(v, gk) is the de-
formation weight of the k-th neighboring node on v which
can be pre-computed [57]. The feature extraction process is
illustrated in Figure 3. We extract the deformation features
using ResNet50 as [13] and modify the last fully connected
layer to output a L1-dim feature vector ωi,c = Fd(Ii,c). The
multi-view features are then aggregated with a max pooling
operator to output the deformation feature of each frame
ωi = MaxPool(ωi,1, ...,ωi,C). From the deformation feature
ωi, the non-rigid deformation is estimated using an MLP
network F(A,T ) : ωi → (Ai,Ti). It has been demonstrated
in [9], [11], [13] that the embedded deformation is effective
to capture the performance of humans in daily clothes.
In our method, we contribute to introduce the embedded
graph prior in the dynamic NeRF to enhance its capability
of representing humans in various clothes.
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Fig. 3. Illustration of the feature extraction. The deformation features
are used to regress the non-rigid deformation, while the appearance
features of sampled points are input to the color model of the canonical
NeRF. The extraction methods for deformation features and appearance
features are described in Sec. 3.2.1 and Sec. 3.3.1, respectively.

3.2.2 Skeleton-Driven Deformation
We use the 3D human skeleton to model the articulation
deformation. For each frame in the video, we obtain the
SMPL model with [56]. For each vertex on the 3D template,
we compute its skinning weight by finding the closest
surface point on the SMPL model as [16]. Based on the
non-rigidly deformed mesh using the embedded graph, we
further apply the linear blend skinning [52] to obtain the
deformed and posed point in the observation space as,

v̂ = [
J∑
j=1

w(y)jGj ]y, (2)

where J is the number of joints in the human skele-
ton, w(y)j is the skinning weight of j-th part on y, and
Gj ∈ SE(3) denotes the rigid transformation matrices.

3.3 Human Performance Capture
In this section, we first introduce the dynamic NeRF for
modeling dynamic humans and then describe the method
for human performance capture with the dynamic NeRF.

3.3.1 Dynamic Neural Radiance Fields for Humans
Neural Radiance Fields (NeRF) [14] represents a static scene
using a neural implicit 3D volume. The 3D volume is ap-
proximated with an MLP network Fθ : (x,d)→ (c,σ) that
maps a 3D position x ∈ R3 and viewing direction d ∈ R3 to
an RGB color c = cθ(x,d) and a density σ = σθ(x).

Some recent works extend the original NeRF to dynamic
humans, but they are limited to small and slow motions [18],
[19] or cannot recover detailed deformations for humans in
loose clothes [16], [17], [20]. Here, we present a dynamic hu-
man NeRF which can recover the geometry and appearance
of humans in general clothing and with large body motions.

To obtain the dynamic NeRF at frame i, we transform the
sampled observation-space point x to canonical space with
xcan = Ti(x). The transformations Ti are obtained with
the inverse deformation fields of 3D template surface. In
this way, our method associates the deformation field of the
canonical NeRF with the human deformation, allowing us
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to optimize the canonical NeRF and capture human perfor-
mance simultaneously. Specifically, for an observation-space
point x, we search the closest vertex v on the deformed
3D template, and transform it with the inverse linear blend
skinning of v:

x̂ = [
J∑
j=1

w(v)jGj ]
−1x. (3)

Then, we apply the inverse graph deformation of v to x̂:

xcan = [
∑

k∈N (v)

w(v, gk)Ak]
−1 · (4)

[
∑

k∈N (v)

w(v, gk)(x̂− gk − Tk +Akgk)],

where the notations are the same with Eq. (1). The corre-
spondence finding based on the closest point is iterative
similar to the traditional deformation process [57]. Through
the two-step inverse deformation, we obtain the canonical-
space point xcan for the observation-space point x.

The occupancy and color are predicted for xcan based on
the canonical NeRF. Instead of using the volume density in
the original NeRF [14], we represent the geometry with an
occupancy network [58], which can represent high-quality
geometry. We pre-train the canonical occupancy network
with the supervision of the template geometry and recov-
er the temporally-varying geometry by transforming it to
observation frames with the human deformation field. The
canonical occupancy model Fo is defined as,

o(xcan) = Fo(γx(x
can)), (5)

where γx is the positional encoding [14] for the spatial loca-
tion. The positional encoding allows the network to better
capture high frequency signals. To encode the temporally-
varying factors such as illumination variation and exposure,
we extract the appearance feature ϕi(x) for each sampled
point x in observed frame i. The process of this feature
extraction is shown in Figure 3. Given the input image
Ii,c ∈ RH×W×3, we use a U-Net network Fa to extract dense
features Ui,c ∈ RH×W×L2 representing local image appear-
ance. For the spatial point x, we project it into view c at q
and fetch the corresponding feature vector Ui,c(q). The ag-
gregated feature of x is then computed as a weighted sum-
mation of image features as ϕi(x) =

∑C
c=1 wc(x)Ui,c(q)

over all views. Similar to IBRNet [59], we use a MLP
network to estimate the blending weights wc(x) as:

wc(x) = Fw(dc(x), Ui,c(q)), (6)

where Fw denotes the MLP network, and dc(x) is ray
direction of x to view c. The canonical color model Fc is
defined as,

ci(x
can) = Fc(γx(x

can), γd(d),ϕi(x)), (7)

where γd is the positional encoding for viewing direction.
Finally, the rendered color is obtained by integrating

all sampled points in the ray with the volume rendering
technique [58]. In [16], all the sampled points along the
ray within a human bounding box are contributed to the
volume rendering (as illustrated in Figure 4 (a)). We find
it leads to obvious artifacts on the synthesized images

(a) (b)

Fig. 4. Illustration of the mesh-guided point sampling. (a) The volume
rendering of [16] integrates all the space points along the ray. (b)
Our method only utilizes the points near the surface of the deformed
template mesh (green points). Our method can obtain higher quality of
novel-view synthesis as demonstrated in the ablation study.

in the experiments (shown in Figure 12). This is because
observation-space points far from the human surface (red
points in the Figure 4) may be deformed to points near the
canonical template and fetch spurious occupancy. Actually,
only the space points close to the deformed mesh (green
points in the Figure 4) should have positive effects on the
rendering process. Based on this fact, we take advantage of
the deformed template mesh to guide the point sampling
(as illustrated in Figure 4 (b)). Thus, the rendered color for
ray r at frame i is define as:

Ĉi(r) =
N∑
l=1

m(xl)o(x
can
l )

∏
j<l

(1−m(xj)o(x
can
j ))ci(x

can
l ),

(8)
where N is the total number of sampled points on the ray,
and m(xl) is a mask (m(xl) = 1 if the distance of xl is
less than a threshold ε to the deformed mesh, otherwise
m(xl) = 0).

3.3.2 Performance Capture with Dynamic NeRF

The dynamic NeRF is obtained in the observation frame
by deforming the canonical NeRF with the per-frame de-
formation fields of the human. From the dynamic NeRF,
we are able to synthesize pixel color from free viewpoints
through the volume rendering. By minimizing the error
between the rendered pixel color Ĉi(r) and the observed
pixel color Ci(r), we enable the dynamic NeRF to capture
the temporally-varying geometry and appearance of the
human. Formally, the parameters of the color model Fc, the
deformation network F(A,T ), feature extracting networks
Fd and Fa, and blend weight network Fw are jointly op-
timized over the video:

Lrgb =
∑
r∈R
‖Ĉi(r)−Ci(r)‖2, (9)

where R is the set of casted rays.
To enforces local smoothness of the deforming surface,

we impose an as-rigid-as-possible loss [57] on the non-rigid
deformation:

Larap =
∑
gi

∑
gj∈N (gi)

w(gi, gj)‖di,j(A,T )‖2, (10)

where

di,j(A,T ) = Aj(gi − gj) + gj + Tj − (gi + Ti).
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Fig. 5. Qualitative results of our method on different humans with varying types of apparel. For each example, we show the ground truth image in a
novel view, the recovered geometry (overlayed on the image), and the novel-view synthesis result. From top to bottom: “FranziRed” and “LingPurple”
from DynaCap dataset [22], and the subject S4 and S1 from DeepCap dataset [13]. Note that the recovered geometry precisely overlays to the
image and the novel-view synthesis is photo-realistic.

Then, the total loss of our method is defined as:

L = Lrgb + λLarap, (11)

where λ is a balance weight. The intuition of our method
is that the learning of the NeRF and human deformations
can benefit each other during the joint optimization. By
minimizing the error between the rendered color and ob-
served color (defined in Eq. 9), observed points on the
human body are matched to the corresponding vertices
on the template in terms of both geometry and color. The
canonical NeRF is dynamically warped to the observation
space with the estimated human deformation. Thus, dense
geometric and photometric constraints are formed on the
human deformation estimation during the learning of NeRF.
With the strong ability of representing photo-realistic colors,
the temporally-varying appearance and geometry of the
human can be effectively captured in the dynamic NeRF.

3.4 Fast Fine-tuning

Our framework can be trained in a self-supervised manner
by matching the synthesis images with the input video
frames. When tested on the sequences with unseen human
poses or new lighting environment, the pre-trained model
may generate unsatisfactory results due to the limited train-
ing data. To obtain more accurate results, we directly apply
a fast fine-tuning on the test sequences using the pre-trained
model as an initialization. As verified in the ablation study,
the fast fine-tuning can obviously improve the accuracy of
both human performance capture and novel-view synthesis.

4 EXPERIMENTS

4.1 Datasets and metrics

We conduct experiments on the publicly challenging
datasets, DynaCap [22], DeepCap [13], and MIT datasets [4].
Both DynaCap and DeepCap datasets are recorded in a
calibrated multi-camera studio with green screen, providing
multi-view videos of 4 or 5 actors doing various actions.
The videos in the DynaCap dataset are recorded with 50 to
101 synchronized and calibrated cameras at a resolution of
1285×940. The DeepCap dataset contains between 11 and 14
camera views at a resolution of 1024× 1024. 3D template of
all actors with texture are also provided in both datasets. We
uniformly sample 15 camera views from DynaCap dataset
and use all views of DeepCap dataset. We pre-train the
networks on their training dataset about 20, 000 frames in
total, and fine-tune on the test sequences. Note that the
test data are not included in the training dataset. Four
cameras around the performer are used for training and
the remaining camera is selected for test. MIT dataset [4]
provides the per-frame mesh in a sequence, and we use
them to compare the 3D model reconstruction accuracy.
We also capture multi-view videos in our motion capture
system, and apply our method on the videos to recover the
human performance. Qualitative results of our method on
different persons are shown in Figure 5. More experimental
results can be found in the supplementary video.

To evaluate the accuracy of silhouette alignment, we
compute the intersection over union (IoU) (%) between the
ground truth foreground mask and the 2D projection of the
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estimated shape. Following [13], we evaluate the IoU on all
views, on all views except the input view, and on the input
view which are referred to as AMVIoU, RVIoU and SVIoU,
respectively. Following [16], we evaluate the novel-view
image synthesis using two metrics: peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM). For
evaluation of 3D surface reconstruction, we compute mean
average vertex error (MAVE) [41] in millimeter between
vertices on the recovered models and the corresponding
vertices on the ground truth models.

4.2 Implementation details
Our canonical NeRF implementation closely follows the
original one [14], and we only use the single level NeRF.
In the occupancy network, we add an occupancy layer
defined in [58] at the end of the density network of [14]
which maps the occupancy value into [0, 1]. The occu-
pancy network is pre-trained by sampling points around
the surface similar to [25], and frozen in the training of
other networks. We use the same color network as [16]
without outputting the density and extract the appearance
features from input images instead of the per-frame latent
code [16]. We use a non-rigid deformation network with
depth 8, hidden size 1024, and a skip connection at the 4th
layer. The blend weight network composes of three fully-
connected layers with (131, 64, 32, 1) neurons. The size of
deformation features L1 and size of appearance features
L2 both have dimensions of 128. The loss weight λ is set
to 0.005 empirically. The Adam optimizer [60] is adopted
for the training. The learning rate starts from 5e−4 and
decays exponentially to 5e−5 along the optimization. The
experiments are conducted on a 2080 Ti GPU. The training
time of our network is about 3 days on four-view videos
about 20, 000 frames. The time of the fine-tuning depends
on the number of video frames and input views. For a four-
view video of 300 frames with 1024 × 1024 resolution, the
fine-tuning takes less than 1 hour. For a monocular video
of 300 frames, the fine-tuning takes less than 15 minutes,
which is very fast compared to the prior works [15], [16].

4.3 Comparison to state-of-the-art methods
To validate our method, we compare with three state-
of-the-art methods for human body reconstruction using
NeRF, Neuralbody [15], AniNeRF [16], and AniSDF [53]
(the extended work of AniNeRF). We also compare with
D-NeRF [17] which is proposed for dynamic scenes and
applied on the human body in their paper. These methods
can synthesize novel-view images, and we use their released
codes for implementation. In addition, we compare with
two state-of-the-art methods for human performance cap-
ture, DeepCap [13] and LiveCap [12]. Since their codes are
not released, we implement them by following the imple-
mentation details and parameter settings described in their
papers. The results of DeepCap [13] and LiveCap [12] are
the best that we can obtain in the experiments. To make fair
comparisons, we also compare our results with that of [12],
[13] provided in their original video. The two methods
synthesize free-viewpoint videos with a fixed texture which
cannot match the varying human appearance and is not re-
alistic as the input images. Based on the human deformation

Method Silhouette Alignment Image Synthesis
AMVIoU RVIoU SVIoU PSNR SSIM

AniNeRF [16] 88.50 87.08 90.98 21.77 84.97
D-NeRF [17] 91.66 90.36 93.93 21.84 85.93

Neuralbody [15] 89.89 89.03 91.40 22.92 88.29
AniSDF [53] 93.37 92.05 95.67 23.08 88.26

DeepCap [13] 86.17 85.75 86.90 21.37 85.52
LiveCap [12] 87.72 87.17 88.69 21.74 86.15
Our method 88.96 88.32 90.09 24.52 90.79

Tested on the subject S4 of DeepCap dataset [13].

Method Silhouette Alignment Image Synthesis
AMVIoU RVIoU SVIoU PSNR SSIM

AniNeRF [16] 80.89 79.45 84.87 17.10 71.82
D-NeRF [17] 91.76 91.33 92.93 20.08 83.44

Neuralbody [15] 89.92 89.53 90.98 21.24 87.61
AniSDF [53] 91.78 91.49 92.59 19.89 86.52

DeepCap [13] 85.38 85.37 85.41 19.38 85.39
LiveCap [12] 85.95 85.92 86.04 19.79 85.94
Our method 88.08 88.07 88.12 23.18 91.49

Tested on the “FranziRed” of DynaCap dataset [22].
TABLE 1

Comparison to state-of-the-art methods in terms of silhouette
alignment and image synthesis. Note that, the silhouette IoUs of the

first four methods are high because they use multi-view human masks
in recovering the human geometry, and their reconstructed surfaces

are bumpy and lack details as shown in Figure 6. In contrast, our
method can capture the space-time coherent geometry and obtain the

frame-to-frame dense correspondences across the videos.

recovered using the two methods, we synthesize novel-view
images with the color model estimated by our method.

(a) (c)(b) (d) (f) (h)(g)(e)

Fig. 6. Comparison to the state-of-the-arts. (a) Ground truth. (b) AniN-
eRF [16]. (c) D-NeRF [17]. (d) Neuralbody [15]. (e) AniSDF [53]. (f)
DeepCap [13]. (g) LiveCap [12]. (h) Our method. In each example, we
show the novel-view synthesis and reconstructed geometry.

4.3.1 Comparison to novel-view synthesis methods of dy-
namic humans [15], [16], [17], [53]
We perform both qualitative and quantitative comparisons
on “FranziRed” from DynaCap and subject S4 of DeepCap.
The qualitative results are shown in Figure 6 and the quan-
titative results are listed in Table 1. Without any motion
prior, D-NeRF [17] cannot estimate the human motion accu-
rately (e.g., the missing limb on “FranziRed’) in the under-
constrained problem. The performance of Neuralbody [15],
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AniNeRF [16], and AniSDF [53] degrades dramatically on
humans in loose clothes, and AniNeRF even cannot con-
verge on the “FranziRed” data. AniSDF [53] performs better
than AniNeRF, but they fail to recover the geometry details
of loose skirts accurately. This is because the skeleton-driven
deformation adopted in [15], [16], [53] cannot represent the
motion of loose skirts. By combining skeleton-driven de-
formation with embedded graph deformation, our method
can not only model large body motions but also recover
the detailed surface deformations of humans in general
clothing. With the robust and accurate motion prior, our
method reliably estimates both the human deformation and
canonical NeRF, resulting in higher quality novel-view syn-
thesis. Instead of introducing a per-frame latent code as [15],
[16], [53], our method extracts deep features from the input
images, allowing us to train the networks end to end.

Using a personalized template is not a restriction in our
method since a template can be obtained conveniently with
many robust methods [6], [8], [9]. We do not use a template
model in the implementation of the four compared methods
(i.e., [15], [16], [17], and [53]) because incorporating a tem-
plate needs to estimate non-rigid deformations and requires
large changes in the method. Note that the methods of [15],
[16], [53] use the SMPL template models. These methods
obtain high accuracy of silhouette alignment because they
recover the human geometry by using multi-view human
masks which is similar to the process of visual hull [4]. Also,
their reconstructed surfaces are bumpy and lack details as
shown in Figure 6. On the contrary, our method tracks the
deforming geometry of the template surface and provides
the frame-to-frame correspondences.

(a) (c)(b) (d) (e) (f)

Fig. 7. Comparisons with the original results of DeepCap [13] and
LiveCap [12]. (a,d) LiveCap [12]. (b,e) DeepCap [13]. (c,f) Our method.
We show the reconstructed geometry overlayed on the input view (first
row) and reference view (second row). The results of DeepCap [13] and
LiveCap [12] are from the original video of [13]. The comparisons show
that our method captures the deforming geometry more accurately.

4.3.2 Comparison to human performance capture method-
s [12], [13]

DeepCap [13] is trained with the weak supervision of multi-
view joints and silhouettes. With these sparse features, the
detailed surface deformations cannot be recovered. In addi-
tion to silhouettes, LiveCap [12] also utilizes a photometric
alignment constraint by matching the template with fixed
color to pixel color on the images. Since the appearance

Method AMVIoU RVIoU SVIoU MAVE ↓
DeepCap [13] 84.19 84.12 84.32 17.24
LiveCap [12] 86.64 86.13 87.52 13.59
Our method 91.15 90.91 91.58 11.16

TABLE 2
Reconstruction accuracies using different methods on the “samba”

data from MIT dataset [4].

varies in different frames and views, the photometric con-
straint leads to erroneous alignment. In our method, the
dynamic NeRF captures the temporally-varying appear-
ance from the input images and forms dense constraints
for human deformation estimation in both geometry and
appearance. Thus, our method can recover the deforming
surface more accurately than these state-of-the-art methods
as shown in Figure 6. In addition, we compare the frame-
by-frame rendering result on the same sequence with Deep-
Cap [13] and LiveCap [12]. Similar to [13] and [12], our
results are generated on the input monocular video. The
comparison results are shown in Figure 7. For the complete
sequence, please refer to our supplementary video. Both
[13] and [12] temporally smooth the output mesh vertices
with a filter to mitigate the jitter problem, while our method
recovers the smoothly deforming geometry without using
any temporal filter. The comparison results demonstrate
our method is more robust and accurate than [13] and [12]
on human performance capture. Another significant im-
provement of our method is photo-realistic free-viewpoint
synthesis compared to [13] and [12].

150error (in cm):

(a) (c)(b) (d)

Fig. 8. The visualization of reconstruction accuracies using different
methods on the “samba” data from MIT dataset [4]. (a) Input image.
(b) Our method. (c) LiveCap [12]. (d) DeepCap [13]. Our method can
recover detailed surface deformations more accurately (e.g., the skirt in
this example).

4.4 Comparison to [13] and [12] in terms of surface
reconstruction accuracy
To further demonstrate the superiority of our method over
the state-of-the-art methods for human performance cap-
ture, i.e., DeepCap [13] and LiveCap [12], we perform the
comparison in terms of 3D model reconstruction accuracy.
We choose the “samba” data in loose skirt (about 140
frames) from MIT dataset [4]. This dataset is very challeng-
ing with complex clothing motions of swinging skirt. We
synthesize videos of 14 views using the same camera param-
eters of DeepCap dataset [13]. Since there is no texture for
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Method AMVIoU PSNR SSIM
1 camera view 88.07 21.10 86.44
2 camera views 88.43 23.34 89.81
6 camera views 89.02 24.81 91.10
50 video frames 92.06 23.99 90.26
150 video frames 95.63 24.53 90.70
600 video frames 88.74 24.32 90.51
1500 video frames 87.99 23.85 89.25
w/o nonrigid deformation 81.54 21.10 86.72
w/o skeleton deformation 2.32 16.07 75.82
w/o fast fine-tuning 87.14 22.60 88.37
w/o mesh-guided sampling 88.47 23.96 90.34
with human NeRF in [21] 84.47 24.04 90.60
with human NeRF in [20] 85.33 24.10 90.81
ours+silhouette 88.60 24.36 90.59
ours(4 views, 300 frames) 88.96 24.52 90.79

TABLE 3
Ablation studies on S4 of DeepCap dataset [13].

the meshes, we render the normal-colored meshes as [23].
The synthetic data has the ground-truth 3D model, so the
reconstruction error (MAVE in mm) of recovered 3D models
can be computed as [41]. We also report the intersection
over union (IoU in %) between the ground truth and ren-
dered masks. The quantitative results are listed in Table 2,
and two comparison examples with heat map accuracy are
shown in Figure 8. The skirt silhouettes change dramatically
under complex motions of swinging skirt, which makes the
template tracking fail and leads to low recovery accuracy of
skirt parts using the two compared methods. LiveCap [12]
performs better than DeepCap [13] with the dense photo-
metric constraint. However, their template with fixed color
cannot match the varying appearance on different images,
which causes instable tracking in the video. In contrast,
our method can achieve more detailed deformations and
higher reconstruction accuracy than DeepCap [13] and Live-
Cap [12] by utilizing the dense geometry and appearance
constraints represented in the dynamic NeRF.

4.5 Ablation studies
We conduct ablation studies on S4 of DeepCap dataset [13]
and report the quantitative results in Table 3.
The number of input camera views. We investigate the
performances of our method under different number of
camera views. We report the errors with 1, 2, 4, and 6 input
views. Figure 9 shows two examples of novel-view synthesis
using different numbers of camera views. We can see our
method performs better in both the performance capture
and novel-view synthesis with the increasing number of
camera views. The human performance can be captured
more completely with more input views, resulting in higher
quality of novel-view synthesis.
Impact of the video length. We test the performance of
our networks on videos with different numbers of frames.
Figure 10 shows the comparison example. Both quantitative
and qualitative comparisons show that training on the video
helps the joint learning of the canonical NeRF and human
deformations. But, we can see that the accuracy of the
network may decrease when fitting on very long videos.
Different from modeling static scenes with NeRF [59], our
NeRF model is trained by using multi-view videos as the in-
put which covers large viewpoint changes, and the moving
humans have complex deformations, posing tremendous
challenges on fitting very long videos.

Ground Truth 1 view 2 views 4 views 6 views

Fig. 9. Comparison with different numbers of camera views. The artifacts
are marked in cycle on the novel-view synthesis.

Comparison results with different numbers of video frames. 
It may be difficult for the network to accurately estimate the non-rigid 
deformation and NeRF simultaneously for very long videos.

Ground Truth 50 frame 150 frames 300 frames 600 frames 1500 frames

Fig. 10. Comparison with different numbers of video frames. The recov-
ery accuracy may decrease when fitting on very long videos.

Human deformation model. We compare our method with
another two cases, i.e., without non-rigid surface defor-
mation and without skeleton-driven deformation, by re-
moving the corresponding module in our framework. The
comparison examples are shown in Figure 11. The results
show that removing either of the two modules will lead
to a dramatic decrease in the accuracy. Skeletal deformation
alone fails to capture local nonlinear deformations, while the
optimization only using non-rigid deformation is prone to
local minima without skeletal motion prior. This experiment
demonstrates that the human motion prior which com-
bines embedded graph deformation and skeleton-driven
deformation is essential to model the NeRF successfully for
dynamic humans in loose clothes.

(a) (c)(b) (d)

Comparison results with different human deformation models. (a) Ground truth image. (b) Our method.
(c) Our method without non-rigid deformation. (d) Our method without skeleton-driven deformation.
By combing non-rigid deformation and skeleton-driven deformation, our method accurately recovers the human geometry.

Fig. 11. Comparison with different human deformation models. (a) The
ground truth image. (b) Our method. (c) Without non-rigid surface defor-
mation. (d) Without skeleton-driven deformation.

Mesh-guided point sampling. The volume rendering
method adopted in [16] use all the sampled points along
the ray (similar to the original method in NeRF [14]).
With the guidance of the deformed template mesh, our
method efficiently considers the points near the deformed
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(a) (b) (c) (d) (e) (f)

Fig. 12. Comparison of two volume rendering methods. (a,d) The ground
truth image in a novel view. (b,e) The novel-view synthesis result using
our mesh-guided point sampling. (c,f) The novel-view synthesis result
using the original point sampling [16]. Our method can effectively elim-
inate the serious artifacts (marked in cycle) by excluding the spurious
points on the ray during the rendering.

mesh (within a distance threshold). We compare the two
rendering methods both quantitatively and qualitatively.
Two comparison examples are shown in Figure 12. We can
see that there are clear artifacts in the synthesized images
using the rendering method of [16]. Some sampled points
may obtain spurious occupancy when transformed to the
surface of the canonical template, and affect the rendering
of the pixel color during point integration along the ray.
In contrast, our method excludes these spurious points
according to the distance to the deformed mesh, which is
consistent with the fact that only points near the surface
have positive effects in the rendering. We set the distance
threshold ε = 0.04m empirically in the experiments. As
shown in both the comparison examples and sequential re-
sults of the supplementary video, our method can generate
photo-realistic novel-view synthesis.
Fast fine-tuning. We demonstrate the effectiveness of our
fast fine-tuning by comparing the predictions of the pre-
trained networks (before fine-tuning) with results after fine-
tuning. We can see in Table 3 that the prediction accuracy of
the networks increases after fine-tuning. As shown in Fig-
ure 13 (e), the rendered textures before fine-tuning are blurry
and lack of details. In contrast, the synthesized images
after fine-tuning become more photo-realistic with more
texture details (Figure 13 (c)). The fine-tuning on the four-
view videos with 300 frames takes less than 1 hour, while
training on the videos from scratch costs about 24 hours.
This experiment demonstrates that the fast fine-tuning can
improve the accuracy of both human performance capture
and novel-view synthesis.

(a) (b) (c) (d) (e)

Fig. 13. Comparison between with and without fast fine-tuning. (a) The
ground truth image. (b,d) The recovered geometry (overlayed on the
image) with and without fast fine-tuning, respectively. (c,e) The novel-
view synthesis result with and without fast fine-tuning, respectively.

Effectiveness of dynamic NeRF on performance capture.
The silhouette constraint is adopted in the human perfor-

mance capture methods [12], [13]. To testify effectiveness
of dynamic NeRF on performance capture, we add the
silhouette constraint in our framework and compare with
our method. The quantitative results show that the accuracy
even decreases with the silhouette constraint because the
ambiguity in 2D silhouettes under complex human defor-
mations may leads to erroneous alignment between the
deformed template and observed points. In contrast, the
dynamic NeRF forms dense constraints in both appearance
and geometry to track the non-rigidly deforming surface,
which gives rise to higher accuracy and stronger robustness
in human performance capture. As also demonstrated in the
comparison experiment of our method to [12], [13] (Sec. 4.3),
our method can generate smoothly deforming geometry and
appearance without using any temporal filter.

(a) (c)(b) (d)

Fig. 14. Comparison to the human NeRF models in [20], [21]. (a) The
ground truth image in a novel view. (b,c) The human NeRF model
in NeuralActor [21] and HumanNeRF [20], respectively. (d) Our NeRF
model. In each method, we show the novel-view synthesis and the re-
constructed geometry (overlayed on the image). The local deformations
of the moving dress (marked with circles) are not recovered accurately
using the NeRF models in [20], [21], while our method reliably captures
the clothing motion with the embedded graph prior.
Comparison to recent human NeRF models. To show the
advantages of our dynamic NeRF, we compare it with the
recent human NeRF models [20], [21]. Both NeuralActor [21]
and HumanNeRF [20] model nonrigid human deformation
with a residual displacement on top of the linear blend skin-
ning so that they can represent the nonlinear local deforma-
tion that fails to be captured by the standard skinning adopt-
ed in [15], [16]. NeuralActor [21] learns the displacement
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with a MLP from point positions and the body pose vector,
while HumanNeRF [20] estimates it from the distances and
directions of sample points relative to the skeleton joints
and the point features. Since the codes of the two compared
methods are not released, we implement their NeRF models
and replace our NeRF model with them in our framework.
The quantitative errors using the NeRF model of [20], [21]
are listed in Table 3, and qualitative comparisons are shown
in Fig. 14. Please refer to the supplementary video for the
complete comparison of the sequence.

The human NeRF methods [20], [21] are mainly pro-
posed for novel-view synthesis, while our method focuses
on tracking the deforming template with dynamic human
NeRF. From the comparison results, we can see the quality
of synthesis images using the NeRF models of [20], [21] is
comparable to us, but some local parts of the human are not
reconstructed accurately in both the novel-view synthesis
and geometry (e.g., the swing dress marked with circles
in Fig. 14). Also, their recovered geometry is bumpy and
noisy and has no explicit correspondences between different
frames. The two compared methods do not use any motion
prior to constrain the prediction of the displacement. Under
complex and arbitrary deformations of loose clothes, the
residual displacement fails to capture the clothing motion
effectively in the under-constrained problem. In contrast,
regularized by the explicit motion prior of the embed-
ded graph, our method reliably captures the deformation
of dressed humans, resulting in more accurate geometry
tracking. In addition, our method obtains the space-time
coherent correspondences across the videos by tracking the
deforming template as [12], [13].
Limitations of NerfCap. Our method may fail to track
the deforming geometry accurately under extreme cloth
deformations (e.g., squatting with a skirt) that cannot be
modeled by the embedded graph deformation. Some failure
cases are shown in Fig. 15. The physics-based simulation
method may be able to recover these extreme deformations
of clothing, which we think is a promising future work.
In addition, the accuracy may decrease when fitting on
very long videos as shown in Table 3 and Fig. 10. The
arbitrarily varying deformations of both the human body
and clothing in long videos pose challenges on the learning
of the canonical NeRF since using a single NeRF is hard
to represent the tremendous variation space. This problem
may be alleviated by learning temporally-varying NeRFs.

(a) (c)(b) (d) (e) (f)

Fig. 15. Failure examples of our method. (a,d) The ground truth image
in a novel view. (b,e) The novel-view synthesis. (c,f) The recovered
geometry (overlayed on the image). Our method may fail to recover
extreme cloth deformations (surrounded by the circle).

4.6 Test on ZJU-MoCap data [15] and our data
To testify the effectiveness of our method on the data
captured by general users, we first apply our method on

ZJU-MoCap data [15]. ZJU-MoCap dataset provide 21-view
synchronized videos, the ground-truth mask and SMPL
model for each frame, and the parameters of all cameras.
We randomly select a four-view video of 300 frames, and
reconstruct a personalized template for the person. We train
our network on the four-view video, and show the results of
performance capture and novel-view synthesis in Figure 16
(first row). In addition, we capture our own data with a
multi-camera system, and generate all the prerequisite data
above using the methods described in the Sec. 3.1. The re-
sults of our method on our own data are shown in Figure 16
(second row). The results demonstrate the robustness and
accuracy of our method on general data in terms of both
human performance capture and novel-view synthesis.

Fig. 16. Results of our method on ZJU-MoCap data [15] (top) and our
data (bottom). For each example, we show the ground truth image in
a novel view, the recovered geometry (overlayed on the image), and
the novel-view synthesis. Note that the recovered geometry precisely
overlays to the image and the novel-view synthesis is photo-realistic.

(a) (b) (c)

Fig. 17. Monocular human performance capture on the in-the-wild
video [13] using our method. (a) The input image. (b) The recovered
geometry (overlayed on the image). (c) The novel-view synthesis result.

4.7 Application: outdoor and monocular human perfor-
mance capture

From a monocular video of a performer in outdoor scenes,
capturing the human motion is very challenging due to
complex backgrounds, serious occlusion and ambiguity
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problem. Our method still can generate impressive results
tested on a monocular and outdoor video. Figure 17 shows
the results of our method on the in-the-wild video [13]
captured by a single camera. Please refer to the supplemen-
tary video for results of the complete sequence. We can see
that the recovered geometry robustly overlays to the input
image and the novel-view synthesis is photo-realistic. This
application can be adapted and used in many circumstances
of virtual reality and augmented reality, e.g., telepresence
and sports broadcasting. The realistic and immerse expe-
rience can be tremendously enhanced by recovering high-
quality human geometry and appearance. For example, with
a single camera, we can achieve a light-weight and real-
istic telepresence by showing 3D detailed humans during
the remote communication. In the figure skating, we can
observe the graceful dancing of the performer from free
viewpoints. We believe high-quality human performance
capture is valuable and promising with wide applications
in virtual reality and augmented reality.

5 CONCLUSION

In this paper, we proposed a novel approach for human
performance capture with dynamic neural radiance fields
(NeRF). Our method jointly optimizes the human deforma-
tion and a canonical NeRF of the template mesh. We com-
bine the non-rigid surface deformation with the skeleton-
driven deformation to model moving humans in general
clothing. Based on a deformation field produced from the
human deformation, the canonical NeRF is mapped into
an observation frame which is rendered into images. By
comparing the rendered images with the observed images,
the dynamic NeRF effectively captures the human geom-
etry and appearance and simultaneously provides dense
constraints to track the non-rigidly deforming surface. The
experimental results on diverse datasets demonstrate the
effectiveness of the proposed method.

ACKNOWLEDGMENT

This work was supported by the Natural Science Founda-
tion of China under Grant Nos.62172364, U1713208, and
Program for Changjiang Scholars, and the Fundamental
Research Funds for the Central Universities (NJ2022028).

REFERENCES

[1] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, and
S. Thrun, “Performance capture from sparse multi-view video,”
ACM TOG, vol. 27, no. 3, pp. 1–10, 2008.

[2] Y. Liu, C. Stoll, J. Gall, H.-P. Seidel, and C. Theobalt, “Markerless
motion capture of interacting characters using multi-view image
segmentation,” in CVPR, 2011.

[3] D. Vlasic, P. Peers, I. Baran, P. Debevec, J. P. S. Rusinkiewicz, and
W. Matusik, “Dynamic shape capture using multi-view photomet-
ric stereo,” ACM TOG, vol. 28, no. 5, pp. 1–11, 2009.

[4] D. Vlasic, I. Baran, W. Matusik, and J. Popović, “Articulated mesh
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