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Mobile3DRecon: Real-time Monocular 3D Reconstruction on a
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Fig. 1: Examplar case “Indoor office” reconstructed in real-time on MI8 using our Mobile3DRecon system. Note on the left
column that surface mesh is incrementally reconstructed online as we navigate through the environment. With the reconstructed
3D environment, realistic AR interactions with the real scene can be achieved, including virtual object placement and collision, as
shown on the right column.

Abstract—We present a real-time monocular 3D reconstruction system on a mobile phone, called Mobile3DRecon. Using an embed-
ded monocular camera, our system provides an online mesh generation capability on back end together with real-time 6DoF pose
tracking on front end for users to achieve realistic AR effects and interactions on mobile phones. Unlike most existing state-of-the-art
systems which produce only point cloud based 3D models online or surface mesh offline, we propose a novel online incremental mesh
generation approach to achieve fast online dense surface mesh reconstruction to satisfy the demand of real-time AR applications. For
each keyframe of 6DoF tracking, we perform a robust monocular depth estimation, with a multi-view semi-global matching method fol-
lowed by a depth refinement post-processing. The proposed mesh generation module incrementally fuses each estimated keyframe
depth map to an online dense surface mesh, which is useful for achieving realistic AR effects such as occlusions and collisions.
We verify our real-time reconstruction results on two mid-range mobile platforms. The experiments with quantitative and qualitative
evaluation demonstrate the effectiveness of the proposed monocular 3D reconstruction system, which can handle the occlusions and
collisions between virtual objects and real scenes to achieve realistic AR effects.

Index Terms—real-time reconstruction, monocular depth estimation, incremental mesh generation

1 INTRODUCTION

Augmented reality (AR) is playing an important role in presenting vir-
tual 3D information in the real world. A realistic fusion of a virtual
3D object with a real scene relies on the consistency in 3D space be-
tween virtuality and reality, including consistent localization, visibil-
ity, shadow and interaction like physical occlusion between the vir-
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tual object and the real scene. To achieve consistent localization in
space, a SLAM system can be performed for real-time alignment of
virtual object to the real environment. More and more visual-inertial
6DoF odometry systems like VINS-Mobile [19] has been studied to
run on mobile phones, which greatly extends the applications of AR
in mobile industry. However, most of these works focused on sparse
mapping without special consideration on how to reconstruct dense ge-
ometrical structures of the scene. A dense surface scene representation
is the key to a full 3D perception of our environment, and an impor-
tant prerequisite for more realistic AR effects including consistency of
occlusion, shadow mapping and collision between virtual objects and
real environment. More recent works such as KinectFusion [24] and
BundleFusion [1] tried to perform 6DoF odometry with dense map-
ping. However, these works rely on videos augmented with precise
depths captured by a RGB-D camera as input, which is currently im-
possible for most mid-range mobile phones. Besides, due to the huge
computation of dense mapping process, most of these systems work
on desktop PC or high-end mobile devices. Some works [23, 26] also
tried to reconstruct dense surface on mobile phones with monocular
camera, but are limited in reconstruction scale due to complexity of
both computation and memory. Moreover, these systems cannot gen-

erate surface mesh online, which certainly degrates their applications
in real-time realistic AR.

To make seamless AR available to more middle-end mobile plat-
forms, this paper introduces a new system for real-time dense surface
reconstruction on mobile phones, which we name as Mobile3DRecon.
Our Mobile3DRecon system can perform real-time surface mesh re-
construction on mid-range mobile phones with monocular camera we
usually have in our pockets, without any extra hardware or depth sen-
sor support. We focus on the 3D reconstruction requirement of realis-
tic AR effects by proposing a keyframe-based real-time surface mesh
generation approach, which is essential for AR applications on mobile
phones. Our main contributions can be summarized as:

• We propose a multi-view keyframe depth estimation method,
which can robustly estimate dense depths even in textureless re-
gions with a certain pose error. We introduce a multi-view semi-
global matching (SGM) with a confidence-based filtering to re-
liably estimate depths and remove unreliable depths caused by
pose errors or textureless regions. Noisy depths are further opti-
mized by a deep neural refinement network.

• We propose an efficient incremental mesh generation approach
which fuses the estimated keyframe depth maps to reconstruct
the surface mesh of the scene online with local mesh triangles
updated incrementally. This incremental meshing approach not
only provides online dense 3D surface for seamless AR effects
on front end, but also ensures real-time performance of mesh gen-
eration as back-end CPU module on mid-range mobile platforms,
which is difficult for previous online 3D reconstruction systems.

• We present a real-time dense surface mesh reconstruction
pipeline with a monocular camera. On mid-range mobile plat-
form, our monocular keyframe depth estimation and incremental
mesh updating are performed at no more than 125 ms/keyframe
on back end, which is fast enough to keep up with the front-end
6DoF tracking at more than 25 frames-per-second (FPS).

This paper is organized as follows: Section 2 briefly presents related
work. Section 3 gives an overview of the proposed Mobile3DRecon
system. The monocular depth estimation method and the incremental
mesh generation approach are described in Sections 4 and 5 respec-
tively. Finally, we evaluate the proposed solution in Section 6.

2 RELATED WORK

The development of consumer RGB-D cameras such as Microsfot
Kinect and Intel RealSense gives rise to a large number of real-time
dense reconstruction systems. With an RGB-D camera, a real-time
dense reconstruction system simultaneously localizes the camera us-
ing iterative closest point (ICP), and fuses all the tracked camera
depths into a global dense map represented by TSDF voxels or sur-
fels. An impressive work is KinectFusion [24], which tracks an in-
put Kinect to the ray-casted global model using ICP, and fuses depths
into the global map using TSDF. KinectFusion is not able to work for
large scale scenes, due to the computation and memory limitations of
TSDF voxels. More recent dense mapping works such as BundleFu-
sion [1] used voxel hashing [25] to break through the limitations of
TSDF fusion. InfiniTAM [15] proposed a highly efficient implemen-
tation of voxel hashing on mobile devices. A more light-weight spa-
tially hashed SDF strategy on CPU for mobile platform was proposed
in CHISEL [17]. ElasticFusion [37] uses surfel representation for
dense frame-to-model tracking and explicitly handles loop closures us-
ing non-rigid warping. Surfel map representation is more suitable for
online refinement of both pose and underlying 3D dense map, which
is diffcult to handle by TSDF voxel fusion. However, TSDF is more
suitable for online 3D model visualization and ray intersection in AR
applications, which is hard for surfels. An online TSDF refinement is
performed in [1] by voxel deintegration.

Although impressive dense reconstruction quality can be achieved
by an RGB-D camera, few mobile phones have been equipped with
it today. Besides, most consumer RGB-D cameras are not able to

work well in outdoor environments. These limitations encouraged re-
searchers to explore real-time dense reconstruction with monocular
RGB cameras which are smaller, cheaper, and widely equipped on a
mobile phone. Without input depths, a real-time dense reconstruction
system should estimate depths of the input RGB frames, and fuse the
estimated depths into a global 3D model by TSDF or surfels. Mono-
Fusion [30] presented a real-time dense reconstruction with a single
web camera and MobileFusion [26] proposed a real-time 3D model
scanning tool on mobile devices with monocular camera. Both works
perform volume-based TSDF fusion without voxel hashing, and there-
fore can only reconstruct in a limited 3D space. For large-scale scenes,
Tanskanen et al. [36] proposed a live reconstruction system on mobile
phones, which can perform inertial metric scale estimation while pro-
ducing dense surfels of the scanned scenes online. Kolev et al. [18]
enhanced the pipeline of [36] by introducing a confidence-based depth
map fusion method. Garro et al. [3] proposed a fast metric reconstruc-
tion algorithm on mobile devices, which solves metric scale estma-
tion problem with a novel RANSAC-based alignment approach in in-
ertial measurement unit (IMU) acceleration space. Schöps et al. [32]
estimates sparse depths via motion stereo with a monocular fisheye
camera on the GPU of Google’s Project Tango Tablets, and integrates
the filtered depths by the Tango’s volumetric fusion pipeline for large-
scale outdoor environments. CHISEL [17] proposed a system for real-
time dense 3D reconstruction on a Google’s Project Tango. Yang et
al. [42] infers online depths by two-frame motion stereo with temporal
cost aggregation and semi-global optimization, and fuses depths into
an occupany map with uncertainty-aware TSDF, to achieve a 10Hz on-
line dense reconstruction system with the help of Nvidia Jetson TX1
GPU on aerial robots. Very few works achieve real-time outdoor scene
reconstruction on mid-range mobile phones with monocular camera.

There are also some offline dense reconstruction works on mobile
devices. 3DCapture [23] presented a dense textured model reconstruc-
tion system, which starts with an online RGB and IMU data capturing
stage followed by an offline post-processing reconstruction. The main
reconstruction steps including pose tracking, depth estimation, TSDF
depth fusion, mesh extraction and texture mapping, are all done as the
post-processing stage on mobile devices. Poiesi et al. [28] described
another cloud-based dense scene reconstruction system that performs
Structure-from-Motion (SfM) and local bundle adjustment on monoc-
ular videos from smartphones to reconstruct a consistent point cloud
map for each client, and run periodic full bundle adjustments to align
the maps of various clients on a cloud server. Some other works pre-
sented real-time dense scene reconstruction with GPU acceleration
on desktop PC. For example, Merrell et al. [22] proposed a real-time
3D reconstruction pipeline on PC, which utilizes visibility-based and
confidence-based fusion for merging multiple depth maps to online
large-scale 3D model. Pollefeys et al. [29] presented a complete sys-
tem for real-time video-based 3D reconstruction, which captures large-
scale urban scenes with multiple video cameras mounted on a driving
vehicle.

As depth estimation is a key stage of our proposed reconstruction
pipeline, our work is related to a great amount of works on binocu-
lar and multi-view stereo, which have been thoroughly investigated
in [27, 31, 33, 35]. REMODE [27] carries out a probabilistic depth
measurement model for archieving real-time depth estimation on a
laptop computer, with the help of CUDA parallelism. For achieving
higher quality depth inference from multi-view images, more recent
works such as [5, 10–12, 34, 40, 41, 43] employ deep neural networks
(DNN) to address depth estimation or refinement problems. However,
the generalization performance of most DNN-based methods will be
affected by camera pose errors or texturelessness in practical applica-
tions. Besides, most of these depth estimation works are not applicable
to mobile phones as they do not meet the underlying efficiency require-
ments by mobile platforms. Online depth from motion on mobile de-
vices has been almost exclusively studied in the literature of dense 3D
reconstruction, such as [18, 26, 32, 36, 42]. Due to the limited comput-
ing power provided by mobile platforms, sparse depth maps are online
estimated in these methods, with historical frames selected as refer-
ences for stereo. A multi-resolution scheme is used to speed up dense
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Fig. 1: Examplar case “Indoor office” reconstructed in real-time on MI8 using our Mobile3DRecon system. Note on the left
column that surface mesh is incrementally reconstructed online as we navigate through the environment. With the reconstructed
3D environment, realistic AR interactions with the real scene can be achieved, including virtual object placement and collision, as
shown on the right column.

Abstract—We present a real-time monocular 3D reconstruction system on a mobile phone, called Mobile3DRecon. Using an embed-
ded monocular camera, our system provides an online mesh generation capability on back end together with real-time 6DoF pose
tracking on front end for users to achieve realistic AR effects and interactions on mobile phones. Unlike most existing state-of-the-art
systems which produce only point cloud based 3D models online or surface mesh offline, we propose a novel online incremental mesh
generation approach to achieve fast online dense surface mesh reconstruction to satisfy the demand of real-time AR applications. For
each keyframe of 6DoF tracking, we perform a robust monocular depth estimation, with a multi-view semi-global matching method fol-
lowed by a depth refinement post-processing. The proposed mesh generation module incrementally fuses each estimated keyframe
depth map to an online dense surface mesh, which is useful for achieving realistic AR effects such as occlusions and collisions.
We verify our real-time reconstruction results on two mid-range mobile platforms. The experiments with quantitative and qualitative
evaluation demonstrate the effectiveness of the proposed monocular 3D reconstruction system, which can handle the occlusions and
collisions between virtual objects and real scenes to achieve realistic AR effects.

Index Terms—real-time reconstruction, monocular depth estimation, incremental mesh generation

1 INTRODUCTION

Augmented reality (AR) is playing an important role in presenting vir-
tual 3D information in the real world. A realistic fusion of a virtual
3D object with a real scene relies on the consistency in 3D space be-
tween virtuality and reality, including consistent localization, visibil-
ity, shadow and interaction like physical occlusion between the vir-
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tual object and the real scene. To achieve consistent localization in
space, a SLAM system can be performed for real-time alignment of
virtual object to the real environment. More and more visual-inertial
6DoF odometry systems like VINS-Mobile [19] has been studied to
run on mobile phones, which greatly extends the applications of AR
in mobile industry. However, most of these works focused on sparse
mapping without special consideration on how to reconstruct dense ge-
ometrical structures of the scene. A dense surface scene representation
is the key to a full 3D perception of our environment, and an impor-
tant prerequisite for more realistic AR effects including consistency of
occlusion, shadow mapping and collision between virtual objects and
real environment. More recent works such as KinectFusion [24] and
BundleFusion [1] tried to perform 6DoF odometry with dense map-
ping. However, these works rely on videos augmented with precise
depths captured by a RGB-D camera as input, which is currently im-
possible for most mid-range mobile phones. Besides, due to the huge
computation of dense mapping process, most of these systems work
on desktop PC or high-end mobile devices. Some works [23, 26] also
tried to reconstruct dense surface on mobile phones with monocular
camera, but are limited in reconstruction scale due to complexity of
both computation and memory. Moreover, these systems cannot gen-

erate surface mesh online, which certainly degrates their applications
in real-time realistic AR.

To make seamless AR available to more middle-end mobile plat-
forms, this paper introduces a new system for real-time dense surface
reconstruction on mobile phones, which we name as Mobile3DRecon.
Our Mobile3DRecon system can perform real-time surface mesh re-
construction on mid-range mobile phones with monocular camera we
usually have in our pockets, without any extra hardware or depth sen-
sor support. We focus on the 3D reconstruction requirement of realis-
tic AR effects by proposing a keyframe-based real-time surface mesh
generation approach, which is essential for AR applications on mobile
phones. Our main contributions can be summarized as:

• We propose a multi-view keyframe depth estimation method,
which can robustly estimate dense depths even in textureless re-
gions with a certain pose error. We introduce a multi-view semi-
global matching (SGM) with a confidence-based filtering to re-
liably estimate depths and remove unreliable depths caused by
pose errors or textureless regions. Noisy depths are further opti-
mized by a deep neural refinement network.

• We propose an efficient incremental mesh generation approach
which fuses the estimated keyframe depth maps to reconstruct
the surface mesh of the scene online with local mesh triangles
updated incrementally. This incremental meshing approach not
only provides online dense 3D surface for seamless AR effects
on front end, but also ensures real-time performance of mesh gen-
eration as back-end CPU module on mid-range mobile platforms,
which is difficult for previous online 3D reconstruction systems.

• We present a real-time dense surface mesh reconstruction
pipeline with a monocular camera. On mid-range mobile plat-
form, our monocular keyframe depth estimation and incremental
mesh updating are performed at no more than 125 ms/keyframe
on back end, which is fast enough to keep up with the front-end
6DoF tracking at more than 25 frames-per-second (FPS).

This paper is organized as follows: Section 2 briefly presents related
work. Section 3 gives an overview of the proposed Mobile3DRecon
system. The monocular depth estimation method and the incremental
mesh generation approach are described in Sections 4 and 5 respec-
tively. Finally, we evaluate the proposed solution in Section 6.

2 RELATED WORK

The development of consumer RGB-D cameras such as Microsfot
Kinect and Intel RealSense gives rise to a large number of real-time
dense reconstruction systems. With an RGB-D camera, a real-time
dense reconstruction system simultaneously localizes the camera us-
ing iterative closest point (ICP), and fuses all the tracked camera
depths into a global dense map represented by TSDF voxels or sur-
fels. An impressive work is KinectFusion [24], which tracks an in-
put Kinect to the ray-casted global model using ICP, and fuses depths
into the global map using TSDF. KinectFusion is not able to work for
large scale scenes, due to the computation and memory limitations of
TSDF voxels. More recent dense mapping works such as BundleFu-
sion [1] used voxel hashing [25] to break through the limitations of
TSDF fusion. InfiniTAM [15] proposed a highly efficient implemen-
tation of voxel hashing on mobile devices. A more light-weight spa-
tially hashed SDF strategy on CPU for mobile platform was proposed
in CHISEL [17]. ElasticFusion [37] uses surfel representation for
dense frame-to-model tracking and explicitly handles loop closures us-
ing non-rigid warping. Surfel map representation is more suitable for
online refinement of both pose and underlying 3D dense map, which
is diffcult to handle by TSDF voxel fusion. However, TSDF is more
suitable for online 3D model visualization and ray intersection in AR
applications, which is hard for surfels. An online TSDF refinement is
performed in [1] by voxel deintegration.

Although impressive dense reconstruction quality can be achieved
by an RGB-D camera, few mobile phones have been equipped with
it today. Besides, most consumer RGB-D cameras are not able to

work well in outdoor environments. These limitations encouraged re-
searchers to explore real-time dense reconstruction with monocular
RGB cameras which are smaller, cheaper, and widely equipped on a
mobile phone. Without input depths, a real-time dense reconstruction
system should estimate depths of the input RGB frames, and fuse the
estimated depths into a global 3D model by TSDF or surfels. Mono-
Fusion [30] presented a real-time dense reconstruction with a single
web camera and MobileFusion [26] proposed a real-time 3D model
scanning tool on mobile devices with monocular camera. Both works
perform volume-based TSDF fusion without voxel hashing, and there-
fore can only reconstruct in a limited 3D space. For large-scale scenes,
Tanskanen et al. [36] proposed a live reconstruction system on mobile
phones, which can perform inertial metric scale estimation while pro-
ducing dense surfels of the scanned scenes online. Kolev et al. [18]
enhanced the pipeline of [36] by introducing a confidence-based depth
map fusion method. Garro et al. [3] proposed a fast metric reconstruc-
tion algorithm on mobile devices, which solves metric scale estma-
tion problem with a novel RANSAC-based alignment approach in in-
ertial measurement unit (IMU) acceleration space. Schöps et al. [32]
estimates sparse depths via motion stereo with a monocular fisheye
camera on the GPU of Google’s Project Tango Tablets, and integrates
the filtered depths by the Tango’s volumetric fusion pipeline for large-
scale outdoor environments. CHISEL [17] proposed a system for real-
time dense 3D reconstruction on a Google’s Project Tango. Yang et
al. [42] infers online depths by two-frame motion stereo with temporal
cost aggregation and semi-global optimization, and fuses depths into
an occupany map with uncertainty-aware TSDF, to achieve a 10Hz on-
line dense reconstruction system with the help of Nvidia Jetson TX1
GPU on aerial robots. Very few works achieve real-time outdoor scene
reconstruction on mid-range mobile phones with monocular camera.

There are also some offline dense reconstruction works on mobile
devices. 3DCapture [23] presented a dense textured model reconstruc-
tion system, which starts with an online RGB and IMU data capturing
stage followed by an offline post-processing reconstruction. The main
reconstruction steps including pose tracking, depth estimation, TSDF
depth fusion, mesh extraction and texture mapping, are all done as the
post-processing stage on mobile devices. Poiesi et al. [28] described
another cloud-based dense scene reconstruction system that performs
Structure-from-Motion (SfM) and local bundle adjustment on monoc-
ular videos from smartphones to reconstruct a consistent point cloud
map for each client, and run periodic full bundle adjustments to align
the maps of various clients on a cloud server. Some other works pre-
sented real-time dense scene reconstruction with GPU acceleration
on desktop PC. For example, Merrell et al. [22] proposed a real-time
3D reconstruction pipeline on PC, which utilizes visibility-based and
confidence-based fusion for merging multiple depth maps to online
large-scale 3D model. Pollefeys et al. [29] presented a complete sys-
tem for real-time video-based 3D reconstruction, which captures large-
scale urban scenes with multiple video cameras mounted on a driving
vehicle.

As depth estimation is a key stage of our proposed reconstruction
pipeline, our work is related to a great amount of works on binocu-
lar and multi-view stereo, which have been thoroughly investigated
in [27, 31, 33, 35]. REMODE [27] carries out a probabilistic depth
measurement model for archieving real-time depth estimation on a
laptop computer, with the help of CUDA parallelism. For achieving
higher quality depth inference from multi-view images, more recent
works such as [5, 10–12, 34, 40, 41, 43] employ deep neural networks
(DNN) to address depth estimation or refinement problems. However,
the generalization performance of most DNN-based methods will be
affected by camera pose errors or texturelessness in practical applica-
tions. Besides, most of these depth estimation works are not applicable
to mobile phones as they do not meet the underlying efficiency require-
ments by mobile platforms. Online depth from motion on mobile de-
vices has been almost exclusively studied in the literature of dense 3D
reconstruction, such as [18, 26, 32, 36, 42]. Due to the limited comput-
ing power provided by mobile platforms, sparse depth maps are online
estimated in these methods, with historical frames selected as refer-
ences for stereo. A multi-resolution scheme is used to speed up dense
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Fig. 2: System framework.

stereo matching in [36], with GPU acceleration. Valentin et al. [39]
proposed a low latency dense depth map estimation method using a
single CPU on mid-range mobile phones. The proposed method incor-
porates a planar bilateral solver to filter planar depths while refining
depth boundaries, which is more suitable for occlusion rendering pur-
pose. But for our dense reconstruction purpose, accurate depths should
be estimated online with limited mobile platform resources, which is
indeed a difficult problem for most existing depth estimation works.

Another important stage of our pipeline is surface extraction. Some
real-time dense reconstruction works such as [18, 36, 37] only gener-
ate surfel cloud. Poisson surface reconstruction [16] should be done
as a post-process to extract surface model from surfels. However, AR
applications usually require real-time surface mesh generation for in-
teractive anchor placement and collision. Although works such as [26]
update TSDF volume in real-time, surface mesh extraction from TSDF
is done offline by Marching cubes [21]. [42] uses TSDF only to main-
tain a global occupancy map instead of 3D mesh. CHISEL [17] pro-
posed a simple incremental Marching cubes scheme, in which polyg-
onal meshes are generated only for part of the scene that need to be
rendered. In comparison, our work achieves a truly incremental real-
time surface mesh generation to ensure both incremental mesh updat-
ing and concise mesh topology, which satisfies the requirements of
graphics operations by realistic AR effects to a larger extent.

3 SYSTEM OVERVIEW

We now outline the steps of the proposed real-time scene reconstruc-
tion pipeline as in Fig. 2.

As a user navigates into his environment by a mobile phone with
a monocular camera, our pipeline tracks 6DoF poses of the mobile
phone using a keyframe-based visual-inertial SLAM system, which
tracks the 6DoF poses on the front end, while maintaining a keyframe
pool on the back end with a global optimization module to refine poses
of all the keyframes as feedback to the front end tracking. We use
SenseAR SLAM [SenseTime] 1 in our pipeline for pose tracking. Note
that any other keyframe-based VIO or SLAM system such as ARCore
[Google] can be used at this stage.

1http://openar.sensetime.com

After the 6DoF tracking is initialized normally on the front end, for
a latest incoming keyframe from the keyframe pool with its globally
optimized pose, its dense depth map is online estimated by multi-view
SGM, with a part of previous keyframes selected as reference frames.
A convolutional neural network follows the multi-view SGM to refine
depth noise. The refined key-frame depth map is then fused to generate
dense surface mesh of the surrounding environment. Our pipeline per-
forms an incremental online mesh generation, which is more suitable
for the requirement of real-time 3D reconstruction by AR application
on mobile phone platform. Both the depth estimation and the incre-
mental meshing are done as back-end modules. As a dense mesh is
gradually reconstructed at the back end, High level AR applications
can utilize this real-time dense mesh and the 6DoF SLAM poses to
achieve realistic AR effects for the user on the front end, including
AR occlusions and collisions, as shown in Fig. 1. In the following
sections, the main steps of our pipeline will be described in detail.

4 MONOCULAR DEPTH ESTIMATION

With the global optimized keyframe poses from SenseAR SLAM plat-
form, we estimate a depth map for each incoming keyframe online.
Some recent works [5, 10, 43] tried to solve multi-view stereo prob-
lem with DNN, but they turn out to have generalization problem in
practical applications with pose errors, and textureless regions. As can
be seen in Fig. 5(a), especially for online SLAM tracking, there are
usually inevitable inaccurate poses with epipolar errors more than 2
pixels, which will certainly affect the final multi-view depth estima-
tion results. Instead, our system solves multi-view depth estimation
by a generalized multi-view SGM algorithm. Different from the gen-
eral two-view SGM [7,8], our proposed SGM approach is more robust
because depth noise can be suppressed by means of multi-view costs.
Besides, no stereo rectification needs to be done ahead as we compute
costs at depth space directly instead of disparity space. Moreover, con-
sidering the inevitable depth errors causes by pose errors, textureless
region or occlusions, a DNN-based depth refinement scheme is used to
filter and refine the initial depth noise. We will show that our scheme
of a multi-view SGM followed by a DNN-based refinement performs
better than the end-to-end multi-view stereo network.

The whole depth estimation process runs on a single back-end

CPU thread to avoid occupancy of front-end resources used by SLAM
tracking or GPU graphics. Since depth estimation is done for each
keyframe, we only need to keep up with the frequency of keyframes
(almost 5 keyframes-per-second) in order to achieve a real-time per-
formance of depth estimation on mid-range mobile platforms such as
OPPO R17 Pro. We will describe our monocular depth estimation in
key details.

4.1 Reference Keyframes Selection

For each incoming keyframe, we seek a set of neighboring keyframes
as reference frames that are good for multi-view stereo. First, the ref-
erence keyframes should provide sufficient parallax for stable depth
estimation. This is because in a very short baseline camera setting, a
small pixel matching error in image domain can cause a large fluctu-
ation in depth space. In a second aspect, to achieve complete scene
reconstruction, current selected keyframe should have as large over-
lap as possible with the reference ones. In other words, we want to
make sure there is enough overlap between the current keyframe and
the selected reference ones.

To meet the requirements above, we select those neighboring
keyframes far away from the current keyframe, while avoiding too
large baseline which may cause low overlap. For simplicity, we use
t to denote a keyframe at time t. Therefore, for each keyframe t, we
expoit a baseline score between t and another keyframe t ′ as:

wb(t, t
′) = exp

�

−(b(t, t ′)−bm)
2
/δ 2

�

, (1)

where b(t, t ′) is the baseline between t and t ′. bm is the expectation
and δ is standard deviation. We set bm = 0.6m and δ = 0.2 in our
experiments. Meanwhile, high overlap should be kept between t and
t ′ to cover as larger common perspective of view as possible for bet-
ter matching. We compute the angle of optical axis between the two
frames. Generally, a larger angle indicates more different perspectives.
To encourage a higher overlap, we define a viewing score between t
and t ′ as:

wv(t, t
′) = max(αm/α(t, t ′),1), (2)

where α(t, t ′) is the angle between the optical viewing directions be-
tween t and t ′. The function scores the angles below αm, which is set
to 10 degrees in our experiments.

The scoring function is simply the product of these two terms:

S(t, t ′) = wb(t, t
′)∗wv(t, t

′). (3)

For each new keyframe, we search in the historical keyframe list
for reference frames. The historical keyframes are sorted by the scores
computed by function (3), in which the top keyframes are chosen as
the reference frames for stereo. Too many reference frames are help-
ful for ensuring accuracy of depth estimation, but will certainly slow
down the stereo matching computation, especially on mobile phones.
Therefore, we only choose the top two as a trade-off between accuracy
and computation efficiency, as shown in the “Indoor stairs” case of Fig.
5(a-b). We compute a final score for each new keyframe t as the sum
of the scores between t as its reference keyframes as follows:

S(t) = ∑
t ′∈N(t)

S(t, t ′), (4)

where N(t) denotes the reference keyframes of t. The computed final
score will be used as a weight for the following multi-view stereo cost
computation.

4.2 Multi-View Stereo Matching

For each new keyframe, we propose to estimate its depth map using
an SGM based multi-view stereo approach. We uniformly sample the
inverse depth space to L levels. Suppose the depth measurement is
bounded to a range from dmin to dmax. The l-th sampled depth can be
computed as follows:

dl =
(L−1)dmindmax

(L−1− l)dmin + l (dmax −dmin)
, (5)

where l ∈ {0,1,2...,L− 1}, and dl is the sampled depth at the l-th
level. Given a pixel x with depth dl on keyframe t, its projection pixel
xt→t ′(dl) on frame t ′ by dl can be calculated by:

xt→t ′(dl)∼ dlKt ′Rt ′R
T
t K−1

t x̂+Kt ′(Tt ′ −Rt ′R
T
t Tt), (6)

where Kt ′ , Kt are the camera intrinsic matrices of keyframe t and t ′.
Rt ′ , Rt are rotation matrices, and Tt , Tt ′ are translation matrices re-
spectively. Note that x̂ is the homogeneous coordinate of x.

We resort to a variant of Census Transform (CT) [6] as the feature
descriptor to compute patch similarity. Compared to other image simi-
larity measurements such as Normalized Cross Correlation, CT has the
characteristic of boundary preservation. Besides, mobile applications
considerably benefit from the binary representation of CT. Therefore,
our matching cost is determined as follows:

C(x, l) = ∑
t ′∈N(t)

wt ′CT (x,xt→t ′(dl))

wt ′ = S(t ′)/ ∑
τ∈N(t)

S(τ)
, (7)

where N is the number of selecting keyframes. wt ′ is the cost weight
of reference frame t ′, and S(t ′) is the final score of t ′. CT (x,xt→t ′(dl))
is the Census cost of the two patches centered at x and xt→t ′(dl) re-
spectively. We use a lookup-table to calculate the hamming distance
between two Census bit string. We traverse every pixel corresponding
to each slice with label l and compute its matching cost according to
Eq. 7. After that, we get a cost volume with size W ×H ×L, where
W and H are width and height of the frame. Then the cost volume
is aggregated, with a Winner-Take-All strategy taken subsequently to
obtain the initial depth map.

Compared to the conventional binocular setting [8], we select mul-
tiple keyframes as reference to accumulate costs for suppression of
depth noise caused by camera pose errors or textureless regions. Al-
though pose errors can be suppressed by multi-view matching to some
extent, there are still generally ambiguous matches in repetitive pat-
terns or texture-less regions, which result in noisy depth map. Inspired
by the method proposed in [7, 8], we add an additional regularization
to support smoothness by penalizing depth labeling changes of pixel
neighborhood. Specifically, for image pixel x with label l, the cost
aggregation is done by recursive computation of costs in neighboring
directions as:

Ĉr(x, l) =C(x, l)+min











Ĉr(x− r, l),
Ĉr(x− r, l −1)+P1,
Ĉr(x− r, l +1)+P1,
min

i
Ĉr(x− r, i)+P2











−min
k

Ĉr(x− r,k),
,

(8)
where Ĉr(x, l) is the aggregated cost of x with label l in neighboring di-
rection r, and r ∈ Nr, which is the neighboring direction set (we use 8
neighborhood). P1 and P2 are the penalty values. Since intensity differ-
ence usually indicates depth discontinuity, we set P2 = –a∗|∇It(x)|+b.
Here ∇It(x) is the intensity gradient of x in image It at keyframe t,
which we find out useful for preserving depth boundaries. The value of
Ĉr increases along the path, which may lead to extremely large values
or even overflow. Therefore, the last term min

k
Ĉr(x−r,k) is subtracted

to avoid permanent increase of the aggregated cost without changing
the minimum cost depth level. The aggregated costs of x at depth la-
bel l are recursively computed for all the neighboring directions and
summed up. The final cost volume is formed by accumulating each
pixel in the image as follows:

Ĉ (x, l) = ∑
r∈Nr

Ĉr (x, l). (9)

The final depth label l̂(x) is given by a Winner-Take-All strategy as:

l̂(x) = min
l

Ĉ(x, l). (10)
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Fig. 2: System framework.

stereo matching in [36], with GPU acceleration. Valentin et al. [39]
proposed a low latency dense depth map estimation method using a
single CPU on mid-range mobile phones. The proposed method incor-
porates a planar bilateral solver to filter planar depths while refining
depth boundaries, which is more suitable for occlusion rendering pur-
pose. But for our dense reconstruction purpose, accurate depths should
be estimated online with limited mobile platform resources, which is
indeed a difficult problem for most existing depth estimation works.

Another important stage of our pipeline is surface extraction. Some
real-time dense reconstruction works such as [18, 36, 37] only gener-
ate surfel cloud. Poisson surface reconstruction [16] should be done
as a post-process to extract surface model from surfels. However, AR
applications usually require real-time surface mesh generation for in-
teractive anchor placement and collision. Although works such as [26]
update TSDF volume in real-time, surface mesh extraction from TSDF
is done offline by Marching cubes [21]. [42] uses TSDF only to main-
tain a global occupancy map instead of 3D mesh. CHISEL [17] pro-
posed a simple incremental Marching cubes scheme, in which polyg-
onal meshes are generated only for part of the scene that need to be
rendered. In comparison, our work achieves a truly incremental real-
time surface mesh generation to ensure both incremental mesh updat-
ing and concise mesh topology, which satisfies the requirements of
graphics operations by realistic AR effects to a larger extent.

3 SYSTEM OVERVIEW

We now outline the steps of the proposed real-time scene reconstruc-
tion pipeline as in Fig. 2.

As a user navigates into his environment by a mobile phone with
a monocular camera, our pipeline tracks 6DoF poses of the mobile
phone using a keyframe-based visual-inertial SLAM system, which
tracks the 6DoF poses on the front end, while maintaining a keyframe
pool on the back end with a global optimization module to refine poses
of all the keyframes as feedback to the front end tracking. We use
SenseAR SLAM [SenseTime] 1 in our pipeline for pose tracking. Note
that any other keyframe-based VIO or SLAM system such as ARCore
[Google] can be used at this stage.

1http://openar.sensetime.com

After the 6DoF tracking is initialized normally on the front end, for
a latest incoming keyframe from the keyframe pool with its globally
optimized pose, its dense depth map is online estimated by multi-view
SGM, with a part of previous keyframes selected as reference frames.
A convolutional neural network follows the multi-view SGM to refine
depth noise. The refined key-frame depth map is then fused to generate
dense surface mesh of the surrounding environment. Our pipeline per-
forms an incremental online mesh generation, which is more suitable
for the requirement of real-time 3D reconstruction by AR application
on mobile phone platform. Both the depth estimation and the incre-
mental meshing are done as back-end modules. As a dense mesh is
gradually reconstructed at the back end, High level AR applications
can utilize this real-time dense mesh and the 6DoF SLAM poses to
achieve realistic AR effects for the user on the front end, including
AR occlusions and collisions, as shown in Fig. 1. In the following
sections, the main steps of our pipeline will be described in detail.

4 MONOCULAR DEPTH ESTIMATION

With the global optimized keyframe poses from SenseAR SLAM plat-
form, we estimate a depth map for each incoming keyframe online.
Some recent works [5, 10, 43] tried to solve multi-view stereo prob-
lem with DNN, but they turn out to have generalization problem in
practical applications with pose errors, and textureless regions. As can
be seen in Fig. 5(a), especially for online SLAM tracking, there are
usually inevitable inaccurate poses with epipolar errors more than 2
pixels, which will certainly affect the final multi-view depth estima-
tion results. Instead, our system solves multi-view depth estimation
by a generalized multi-view SGM algorithm. Different from the gen-
eral two-view SGM [7,8], our proposed SGM approach is more robust
because depth noise can be suppressed by means of multi-view costs.
Besides, no stereo rectification needs to be done ahead as we compute
costs at depth space directly instead of disparity space. Moreover, con-
sidering the inevitable depth errors causes by pose errors, textureless
region or occlusions, a DNN-based depth refinement scheme is used to
filter and refine the initial depth noise. We will show that our scheme
of a multi-view SGM followed by a DNN-based refinement performs
better than the end-to-end multi-view stereo network.

The whole depth estimation process runs on a single back-end

CPU thread to avoid occupancy of front-end resources used by SLAM
tracking or GPU graphics. Since depth estimation is done for each
keyframe, we only need to keep up with the frequency of keyframes
(almost 5 keyframes-per-second) in order to achieve a real-time per-
formance of depth estimation on mid-range mobile platforms such as
OPPO R17 Pro. We will describe our monocular depth estimation in
key details.

4.1 Reference Keyframes Selection

For each incoming keyframe, we seek a set of neighboring keyframes
as reference frames that are good for multi-view stereo. First, the ref-
erence keyframes should provide sufficient parallax for stable depth
estimation. This is because in a very short baseline camera setting, a
small pixel matching error in image domain can cause a large fluctu-
ation in depth space. In a second aspect, to achieve complete scene
reconstruction, current selected keyframe should have as large over-
lap as possible with the reference ones. In other words, we want to
make sure there is enough overlap between the current keyframe and
the selected reference ones.

To meet the requirements above, we select those neighboring
keyframes far away from the current keyframe, while avoiding too
large baseline which may cause low overlap. For simplicity, we use
t to denote a keyframe at time t. Therefore, for each keyframe t, we
expoit a baseline score between t and another keyframe t ′ as:

wb(t, t
′) = exp

�

−(b(t, t ′)−bm)
2
/δ 2

�

, (1)

where b(t, t ′) is the baseline between t and t ′. bm is the expectation
and δ is standard deviation. We set bm = 0.6m and δ = 0.2 in our
experiments. Meanwhile, high overlap should be kept between t and
t ′ to cover as larger common perspective of view as possible for bet-
ter matching. We compute the angle of optical axis between the two
frames. Generally, a larger angle indicates more different perspectives.
To encourage a higher overlap, we define a viewing score between t
and t ′ as:

wv(t, t
′) = max(αm/α(t, t ′),1), (2)

where α(t, t ′) is the angle between the optical viewing directions be-
tween t and t ′. The function scores the angles below αm, which is set
to 10 degrees in our experiments.

The scoring function is simply the product of these two terms:

S(t, t ′) = wb(t, t
′)∗wv(t, t

′). (3)

For each new keyframe, we search in the historical keyframe list
for reference frames. The historical keyframes are sorted by the scores
computed by function (3), in which the top keyframes are chosen as
the reference frames for stereo. Too many reference frames are help-
ful for ensuring accuracy of depth estimation, but will certainly slow
down the stereo matching computation, especially on mobile phones.
Therefore, we only choose the top two as a trade-off between accuracy
and computation efficiency, as shown in the “Indoor stairs” case of Fig.
5(a-b). We compute a final score for each new keyframe t as the sum
of the scores between t as its reference keyframes as follows:

S(t) = ∑
t ′∈N(t)

S(t, t ′), (4)

where N(t) denotes the reference keyframes of t. The computed final
score will be used as a weight for the following multi-view stereo cost
computation.

4.2 Multi-View Stereo Matching

For each new keyframe, we propose to estimate its depth map using
an SGM based multi-view stereo approach. We uniformly sample the
inverse depth space to L levels. Suppose the depth measurement is
bounded to a range from dmin to dmax. The l-th sampled depth can be
computed as follows:

dl =
(L−1)dmindmax

(L−1− l)dmin + l (dmax −dmin)
, (5)

where l ∈ {0,1,2...,L− 1}, and dl is the sampled depth at the l-th
level. Given a pixel x with depth dl on keyframe t, its projection pixel
xt→t ′(dl) on frame t ′ by dl can be calculated by:

xt→t ′(dl)∼ dlKt ′Rt ′R
T
t K−1

t x̂+Kt ′(Tt ′ −Rt ′R
T
t Tt), (6)

where Kt ′ , Kt are the camera intrinsic matrices of keyframe t and t ′.
Rt ′ , Rt are rotation matrices, and Tt , Tt ′ are translation matrices re-
spectively. Note that x̂ is the homogeneous coordinate of x.

We resort to a variant of Census Transform (CT) [6] as the feature
descriptor to compute patch similarity. Compared to other image simi-
larity measurements such as Normalized Cross Correlation, CT has the
characteristic of boundary preservation. Besides, mobile applications
considerably benefit from the binary representation of CT. Therefore,
our matching cost is determined as follows:

C(x, l) = ∑
t ′∈N(t)

wt ′CT (x,xt→t ′(dl))

wt ′ = S(t ′)/ ∑
τ∈N(t)

S(τ)
, (7)

where N is the number of selecting keyframes. wt ′ is the cost weight
of reference frame t ′, and S(t ′) is the final score of t ′. CT (x,xt→t ′(dl))
is the Census cost of the two patches centered at x and xt→t ′(dl) re-
spectively. We use a lookup-table to calculate the hamming distance
between two Census bit string. We traverse every pixel corresponding
to each slice with label l and compute its matching cost according to
Eq. 7. After that, we get a cost volume with size W ×H ×L, where
W and H are width and height of the frame. Then the cost volume
is aggregated, with a Winner-Take-All strategy taken subsequently to
obtain the initial depth map.

Compared to the conventional binocular setting [8], we select mul-
tiple keyframes as reference to accumulate costs for suppression of
depth noise caused by camera pose errors or textureless regions. Al-
though pose errors can be suppressed by multi-view matching to some
extent, there are still generally ambiguous matches in repetitive pat-
terns or texture-less regions, which result in noisy depth map. Inspired
by the method proposed in [7, 8], we add an additional regularization
to support smoothness by penalizing depth labeling changes of pixel
neighborhood. Specifically, for image pixel x with label l, the cost
aggregation is done by recursive computation of costs in neighboring
directions as:

Ĉr(x, l) =C(x, l)+min











Ĉr(x− r, l),
Ĉr(x− r, l −1)+P1,
Ĉr(x− r, l +1)+P1,
min

i
Ĉr(x− r, i)+P2











−min
k

Ĉr(x− r,k),
,

(8)
where Ĉr(x, l) is the aggregated cost of x with label l in neighboring di-
rection r, and r ∈ Nr, which is the neighboring direction set (we use 8
neighborhood). P1 and P2 are the penalty values. Since intensity differ-
ence usually indicates depth discontinuity, we set P2 = –a∗|∇It(x)|+b.
Here ∇It(x) is the intensity gradient of x in image It at keyframe t,
which we find out useful for preserving depth boundaries. The value of
Ĉr increases along the path, which may lead to extremely large values
or even overflow. Therefore, the last term min

k
Ĉr(x−r,k) is subtracted

to avoid permanent increase of the aggregated cost without changing
the minimum cost depth level. The aggregated costs of x at depth la-
bel l are recursively computed for all the neighboring directions and
summed up. The final cost volume is formed by accumulating each
pixel in the image as follows:

Ĉ (x, l) = ∑
r∈Nr

Ĉr (x, l). (9)

The final depth label l̂(x) is given by a Winner-Take-All strategy as:

l̂(x) = min
l

Ĉ(x, l). (10)
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In order to get a sub-level depth value, we use parabola fitting to ac-

quire a refined depth level l̂s(x) as:

l̂s(x) = l̂(x)+
Ĉ
(

x, l̂(x)−1
)

−Ĉ
(

x, l̂(x)+1
)

2Ĉ
(

x, l̂(x)−1
)

−4Ĉ
(

x, l̂(x)
)

+2Ĉ
(

x, l̂(x)+1
) .

(11)
We replace l in Eq. (5) with the refined depth level l̂s(x) to get a more
accurate sub-level depth measurement for x. With the sub-level depths,
we get an initial depth map Di

t for each keyframe t, as shown in Fig.
5(b).

On mobile platform, we use NEON instruction set to significantly
accelerate the cost volume computation and aggregation optimization.
Take OPPO R17 Pro with Qualcomm Snapdragon 710 chip as exam-
ple, computational speed by NEON acceleration is 2 times faster for
cost volume computation and 8 times faster for aggregation, which
ensures a real-time performance on mobile phone.

4.3 Depth Refinement

Although our multi-view stereo matching is robust to unstable SLAM
tracking to some extent, there are still noisy depths in the initialized
depth maps which come from the mistaken matching costs caused by
camera pose errors or textureless regions, as seen in Fig. 5(b). There-
fore, a depth refinement strategy is introduced as a post-processing
step to correct depth noise. The proposed refinement scheme consists
of a confidence-based depth filtering and a DNN-based depth refine-
ment, which will be described in more details.

4.3.1 Confidence Based Depth Filtering

Fig. 3: Confidence-base depth map filtering compared to Drory et al.
[2]. (a) A representative keyframe. (b) The depth map estimated by
multi-view SGM. (c) The confidence map measured by [2]. (d) The
depth map filtered by (c). (e) Our confidence map. (f) Our depth map
filtered by (e).

Although the depth maps obtained by our semi-global optimization
has good completeness, the depth noise in textureless regions is ob-
vious, which requires confidence measurement for further depth filter-
ing. Drory et al. [2] proposed an uncertainty measurement for SGM, in
which they assume the difference between the sum of the lower bound
aggregated costs and the minimum of the aggregated costs equals zero.
The uncertainty measurement for pixel x can be expressed as follows:

U(x) = min
l

∑
r∈Nr

Ĉr(x, l)− ∑
r∈Nr

min
l

(

Ĉr(x, l)−
Nr −1

Nr
C(x, l)

)

. (12)

However, this method ignores the neighborhood depth informations
when calculating the uncertainty measure U(x), resulting in some iso-
lated noise in the depth map. Considering the fact that neighborhood
pixel depths do not change greatly for the correct depth measurements,
we calculate a weight W (x) for the uncertainty measurement of x in its
5× 5 local window Ω(x), which measures the neigboring depth level
differences as:

ω(x) =
1

|Ω(x)| ∑
y∈Ω(x)

[∣

∣l̂s(x)− l̂s(y)
∣

∣> 2
]

, (13)

where |Ω(x)| is the number of pixels in local window Ω(x). We nor-
malize the weighted uncertainty measurement as the final confidence
M(x) of x as:

M(x) = 1−
ω(x)U(x)

max
u∈It

(ω(u)U(u))
. (14)

As can be seen in Fig.3, compared to [2], the proposed confidence-
based depth filtering method handles the depth noise more effectively,
especially along the depth map borders.

In our implementation, we remove all pixels with confidence lower

than 0.15 to get a filtered depth map D
f
t with fewer abnormal noisy

depths for each keyframe t, as shown in Fig. 5(c). With this
confidence-based filtering, most depth outliers caused by pose errors
or textureless regions can be suppressed.

4.3.2 DNN-based Depth Refinement

Fig. 4: Depth Refinement Network Flow.

After the confidence-based depth filtering, we employ a deep neural
network to refine the remaining depth noise. Our network can be re-
garded as a two-stage refinement structure, as illustrated in Fig. 4. The
first stage is an image-guided sub-network CNNG which combines the

filtered depth D
f
t with the corresponding gray image It of keyframe t

to reason a coarse refinement result Dc
t . Here, gray image plays a role

as guidance for depth refinement. It provides the prior knowledge of
object edge and semantic information for CNNG. With this guidance,
the sub-network CNNG is able to distinguish the actual depth noise to
be refined. The second stage is a residual U-Net CNNR which further
refines the previous coarse result Dc

t to get the final refined depth Dt .
The U-Net structure mainly contributes to making learning process
more stable and overcoming feature degradation problem.

To satisfy our refinement purpose, we follow [4, 9, 14] to exploit
three spatial loss functions to penalize depth noise while maintaining
object edges. The training loss is defined as:

Φ = Φedge +Φpd +λΦvgg. (15)

Φedge is an edge-maintainance loss, which contains three terms respec-
tively defined as:

Φedge = Φx +Φy +Φn

Φx =
1
|It |

∑
x∈It

ln
(∣

∣∇xDt(x)−∇xD
g
t (x)

∣

∣+1
)

Φy =
1
|It |

∑
x∈It

ln
(∣

∣∇yDt(x)−∇yD
g
t (x)

∣

∣+1
)

Φn =
1
|It |

∑
x∈It

(1−ηt(x)∗η
g
t (x))

, (16)

where |It | is the number of valid pixels in keyframe image It . D
g
t (x)

represents the ground-truth depth value of pixel x, and Dt(x) is the fi-
nal refined depth of x. ∇x and ∇y denote the Sobel derivatives along
the x-axis and y-axis respectively. The depth normal ηt(x) is approx-
imated by ηt(x) =

[

−∇xDt(x),∇yDt(x),1
]

, and η
g
t (x) is the ground-

truth normal estimated in the same way. Φx and Φy measure the depth
differences along edges. Φn measures the similarities between surface
normals.

Φpd is a photometric-depth loss, which minimizes depth noise by
forcing the gradient consistency between the gray image It and the
refined depth Dt as follows:

Φpd =
1

|It |
∑
x∈It

(∣

∣

∣∇2
xDt(x)

∣

∣

∣e−α|∇xIt (x)|+
∣

∣

∣∇2
yDt(x)

∣

∣

∣e−α|∇yIt (x)|
)

,

(17)

where α = 0.5 in our experiments. ∇2
x and ∇2

y are the second deriva-
tives along the x-axis and y-axis respectively. As demonstrated in
Eq. (17), Φpd encourages Dt to be consistent with corresponding gray
image It in pixel areas with smaller gradients. We use second deriva-
tives to make the refinement process more stable.

Φvgg is the high-level perceptual loss commonly used in generative
adversarial networks like [13, 14]. By minimizing the difference be-
tween high-level features, perceptual loss contributes to maintaining
global data distribution and avoiding artifacts.

We train the proposed depth refinement network using Demon
dataset proposed by University of Freiburg [38] together with our own
dataset. We first run our multi-view SGM and confidence-based fil-
tering on Demon dataset to generate a set of initially filtered depth
maps and reassemble them with the corresponding ground truth (GT)
as training pairs to pre-train the proposed network. The pre-trained
refinement model is then finetuned on our own captured sequences,
which contains 3,700 training pairs. These pairs consist of 13 indoor
and outdoor scenes, which are all captured by OPPO R17 Pro. Each
training pair contains an initially filtered depth map and a GT depth
map from the embedded ToF sensor. Finally, Adam policy is adopted
to optimize the depth refinement network.

Fig. 5(d) shows the depth maps refined by our DNN-based refine-
ment network, which contains less spatial depth noise. We will show
in the following section that our DNN-based depth refinement network
can also improve the final surface mesh reconstruction results. As fur-
ther seen in Fig. 10(d-f) and Table 1, our depth refinement network
following the multi-view SGM performs better than directly using end-
to-end learning-based depth estimation algorithms like [11,40] in gen-
eralization. We also compare the time cost of our scheme with other
end-to-end networks. On OPPO R17 Pro, our monocular depth estima-
tion takes 70.46 ms/frame, while MVDepthNet [40] takes 5.91 s/frame.
DPSNet [11] is unable to run on OPPO R17 Pro or MI8 because of its
complicated network structure. Therefore, applying DNN for depth
refinement is a more economical way in time efficiency for a real-time
mobile system with limited computing resources.

Fig. 5: Our monocular depth estimation results on two representative
keyframes from sequences “Indoor stairs” and “Sofa”: (a) The source
keyframe image and its two selected reference keyframe images. Two
representative pixels and their epipolar lines in reference frames of
“Indoor stairs” are drawn out to demonstrate certain camera pose er-
rors from 6DoF tracking on front end. (b) The depth estimation re-
sult of multi-view SGM and the corresponding point cloud by back-
projection. (c) The result after confidence-based depth filtering and its
corresponding point cloud. (d) The final depth estimation result after
DNN-based refinement with its corresponding point cloud.

5 INCREMENTAL MESH GENERATION

The estimated depths are then fused simultaneously to generate online
surface mesh. Real-time surface mesh generation is required by AR
applications for interactive graphics operations such as anchor place-
ments, occlusions and collisions on mobile phones. Although TSDF
is maintained and updated online in many real-time dense reconstruc-
tion systems such as [26, 42], mesh is however generated offline by
these works. Some of the systems like [26] render or interact with the
reconstructed model by directly raytracing TSDF on the GPU without
meshing, which requires TSDF data to be stored always on GPU. How-
ever, with limited computing resources on mid-range mobile phones,
dense reconstruction is usually required to run with only CPU on back-
end, so as not to occupy resources of front-end modules or GPU ren-
dering. In such cases, an explicit surface meshing should be done on
CPU for the realistic AR operations like occlusions and collisions. To
achieve an online incremental meshing on CPU, CHISEL [17] gener-
ates a polygon mesh for each chunk of the scene, and meshing is only
done for the chunks that will participate in rendering. This kind of in-
cremental meshing cannot guarantee consistency and non-redundancy
of mesh topology, and is diffcult to handle real-time updating TSDF.
In this section, we present a novel incremental mesh generation ap-
proach which can update surface mesh in real-time and is more suit-
able for AR applications. Our mesh generation performs a scalable
TSDF voxel fusion to avoid voxel hashing conflicts, while incremen-
tally updating the surface mesh according to the TSDF variation of the
newly fused voxels. With this incremental mesh updating, real-time
mesh expansion can be done on mobile phones using only a single
CPU core. In the following, we will describe the incremental meshing
approach in detail.

Fig. 6: (a) shows the structure of TSDF cubes, each of which consists
of 8 voxels, and each voxel is shared by 6 neighboring cubes. (b) show
the purpose of the new scalable hash function. A cube with integer
coordinates (x y z) located inside the volume can be indexed normally
the conventional hash function h(x,y,z). But for another cube (x′ y′ z′)
outside the volume, function h will lead to a key conflict. Instead,

using the newly proposed scalable hash function ĥ will avoid conflict
for both cubes.

5.1 Scalable Voxel Fusion

TSDF fusion has demonstrated its effectiveness in literature [1, 24].
Despite of the simplicity of the conventional TSDF, its poor scalabil-
ity and memory consumption prevented its further applications, such
as large scale reconstruction. Besides, the complex computation and
large memory requirement made it difficult to achieve real-time perfor-
mance on mobile phones, especially for outdoor environments. Voxel
hashing [25] has been proved to be more scalable for large scale scenes
because of its dynamical voxel allocation scheme and lower mem-
ory consumption, but it needs to deal with conflicts caused by hash
function. Inspired by the above approaches, we propose a new scal-
able hashing scheme that combines both the simplicity of conventional
TSDF voxel indexing and the scalability owned by voxel hashing. The
basic idea is to dynamically enlarge the bound of volume whenever a
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In order to get a sub-level depth value, we use parabola fitting to ac-

quire a refined depth level l̂s(x) as:

l̂s(x) = l̂(x)+
Ĉ
(

x, l̂(x)−1
)

−Ĉ
(

x, l̂(x)+1
)

2Ĉ
(

x, l̂(x)−1
)

−4Ĉ
(

x, l̂(x)
)

+2Ĉ
(

x, l̂(x)+1
) .

(11)
We replace l in Eq. (5) with the refined depth level l̂s(x) to get a more
accurate sub-level depth measurement for x. With the sub-level depths,
we get an initial depth map Di

t for each keyframe t, as shown in Fig.
5(b).

On mobile platform, we use NEON instruction set to significantly
accelerate the cost volume computation and aggregation optimization.
Take OPPO R17 Pro with Qualcomm Snapdragon 710 chip as exam-
ple, computational speed by NEON acceleration is 2 times faster for
cost volume computation and 8 times faster for aggregation, which
ensures a real-time performance on mobile phone.

4.3 Depth Refinement

Although our multi-view stereo matching is robust to unstable SLAM
tracking to some extent, there are still noisy depths in the initialized
depth maps which come from the mistaken matching costs caused by
camera pose errors or textureless regions, as seen in Fig. 5(b). There-
fore, a depth refinement strategy is introduced as a post-processing
step to correct depth noise. The proposed refinement scheme consists
of a confidence-based depth filtering and a DNN-based depth refine-
ment, which will be described in more details.

4.3.1 Confidence Based Depth Filtering

Fig. 3: Confidence-base depth map filtering compared to Drory et al.
[2]. (a) A representative keyframe. (b) The depth map estimated by
multi-view SGM. (c) The confidence map measured by [2]. (d) The
depth map filtered by (c). (e) Our confidence map. (f) Our depth map
filtered by (e).

Although the depth maps obtained by our semi-global optimization
has good completeness, the depth noise in textureless regions is ob-
vious, which requires confidence measurement for further depth filter-
ing. Drory et al. [2] proposed an uncertainty measurement for SGM, in
which they assume the difference between the sum of the lower bound
aggregated costs and the minimum of the aggregated costs equals zero.
The uncertainty measurement for pixel x can be expressed as follows:

U(x) = min
l

∑
r∈Nr

Ĉr(x, l)− ∑
r∈Nr

min
l

(

Ĉr(x, l)−
Nr −1

Nr
C(x, l)

)

. (12)

However, this method ignores the neighborhood depth informations
when calculating the uncertainty measure U(x), resulting in some iso-
lated noise in the depth map. Considering the fact that neighborhood
pixel depths do not change greatly for the correct depth measurements,
we calculate a weight W (x) for the uncertainty measurement of x in its
5× 5 local window Ω(x), which measures the neigboring depth level
differences as:

ω(x) =
1

|Ω(x)| ∑
y∈Ω(x)

[∣

∣l̂s(x)− l̂s(y)
∣

∣> 2
]

, (13)

where |Ω(x)| is the number of pixels in local window Ω(x). We nor-
malize the weighted uncertainty measurement as the final confidence
M(x) of x as:

M(x) = 1−
ω(x)U(x)

max
u∈It

(ω(u)U(u))
. (14)

As can be seen in Fig.3, compared to [2], the proposed confidence-
based depth filtering method handles the depth noise more effectively,
especially along the depth map borders.

In our implementation, we remove all pixels with confidence lower

than 0.15 to get a filtered depth map D
f
t with fewer abnormal noisy

depths for each keyframe t, as shown in Fig. 5(c). With this
confidence-based filtering, most depth outliers caused by pose errors
or textureless regions can be suppressed.

4.3.2 DNN-based Depth Refinement

Fig. 4: Depth Refinement Network Flow.

After the confidence-based depth filtering, we employ a deep neural
network to refine the remaining depth noise. Our network can be re-
garded as a two-stage refinement structure, as illustrated in Fig. 4. The
first stage is an image-guided sub-network CNNG which combines the

filtered depth D
f
t with the corresponding gray image It of keyframe t

to reason a coarse refinement result Dc
t . Here, gray image plays a role

as guidance for depth refinement. It provides the prior knowledge of
object edge and semantic information for CNNG. With this guidance,
the sub-network CNNG is able to distinguish the actual depth noise to
be refined. The second stage is a residual U-Net CNNR which further
refines the previous coarse result Dc

t to get the final refined depth Dt .
The U-Net structure mainly contributes to making learning process
more stable and overcoming feature degradation problem.

To satisfy our refinement purpose, we follow [4, 9, 14] to exploit
three spatial loss functions to penalize depth noise while maintaining
object edges. The training loss is defined as:

Φ = Φedge +Φpd +λΦvgg. (15)

Φedge is an edge-maintainance loss, which contains three terms respec-
tively defined as:

Φedge = Φx +Φy +Φn

Φx =
1
|It |

∑
x∈It

ln
(∣

∣∇xDt(x)−∇xD
g
t (x)

∣

∣+1
)

Φy =
1
|It |

∑
x∈It

ln
(∣

∣∇yDt(x)−∇yD
g
t (x)

∣

∣+1
)

Φn =
1
|It |

∑
x∈It

(1−ηt(x)∗η
g
t (x))

, (16)

where |It | is the number of valid pixels in keyframe image It . D
g
t (x)

represents the ground-truth depth value of pixel x, and Dt(x) is the fi-
nal refined depth of x. ∇x and ∇y denote the Sobel derivatives along
the x-axis and y-axis respectively. The depth normal ηt(x) is approx-
imated by ηt(x) =

[

−∇xDt(x),∇yDt(x),1
]

, and η
g
t (x) is the ground-

truth normal estimated in the same way. Φx and Φy measure the depth
differences along edges. Φn measures the similarities between surface
normals.

Φpd is a photometric-depth loss, which minimizes depth noise by
forcing the gradient consistency between the gray image It and the
refined depth Dt as follows:

Φpd =
1

|It |
∑
x∈It

(∣

∣

∣∇2
xDt(x)

∣

∣

∣e−α|∇xIt (x)|+
∣

∣

∣∇2
yDt(x)

∣

∣

∣e−α|∇yIt (x)|
)

,

(17)

where α = 0.5 in our experiments. ∇2
x and ∇2

y are the second deriva-
tives along the x-axis and y-axis respectively. As demonstrated in
Eq. (17), Φpd encourages Dt to be consistent with corresponding gray
image It in pixel areas with smaller gradients. We use second deriva-
tives to make the refinement process more stable.

Φvgg is the high-level perceptual loss commonly used in generative
adversarial networks like [13, 14]. By minimizing the difference be-
tween high-level features, perceptual loss contributes to maintaining
global data distribution and avoiding artifacts.

We train the proposed depth refinement network using Demon
dataset proposed by University of Freiburg [38] together with our own
dataset. We first run our multi-view SGM and confidence-based fil-
tering on Demon dataset to generate a set of initially filtered depth
maps and reassemble them with the corresponding ground truth (GT)
as training pairs to pre-train the proposed network. The pre-trained
refinement model is then finetuned on our own captured sequences,
which contains 3,700 training pairs. These pairs consist of 13 indoor
and outdoor scenes, which are all captured by OPPO R17 Pro. Each
training pair contains an initially filtered depth map and a GT depth
map from the embedded ToF sensor. Finally, Adam policy is adopted
to optimize the depth refinement network.

Fig. 5(d) shows the depth maps refined by our DNN-based refine-
ment network, which contains less spatial depth noise. We will show
in the following section that our DNN-based depth refinement network
can also improve the final surface mesh reconstruction results. As fur-
ther seen in Fig. 10(d-f) and Table 1, our depth refinement network
following the multi-view SGM performs better than directly using end-
to-end learning-based depth estimation algorithms like [11,40] in gen-
eralization. We also compare the time cost of our scheme with other
end-to-end networks. On OPPO R17 Pro, our monocular depth estima-
tion takes 70.46 ms/frame, while MVDepthNet [40] takes 5.91 s/frame.
DPSNet [11] is unable to run on OPPO R17 Pro or MI8 because of its
complicated network structure. Therefore, applying DNN for depth
refinement is a more economical way in time efficiency for a real-time
mobile system with limited computing resources.

Fig. 5: Our monocular depth estimation results on two representative
keyframes from sequences “Indoor stairs” and “Sofa”: (a) The source
keyframe image and its two selected reference keyframe images. Two
representative pixels and their epipolar lines in reference frames of
“Indoor stairs” are drawn out to demonstrate certain camera pose er-
rors from 6DoF tracking on front end. (b) The depth estimation re-
sult of multi-view SGM and the corresponding point cloud by back-
projection. (c) The result after confidence-based depth filtering and its
corresponding point cloud. (d) The final depth estimation result after
DNN-based refinement with its corresponding point cloud.

5 INCREMENTAL MESH GENERATION

The estimated depths are then fused simultaneously to generate online
surface mesh. Real-time surface mesh generation is required by AR
applications for interactive graphics operations such as anchor place-
ments, occlusions and collisions on mobile phones. Although TSDF
is maintained and updated online in many real-time dense reconstruc-
tion systems such as [26, 42], mesh is however generated offline by
these works. Some of the systems like [26] render or interact with the
reconstructed model by directly raytracing TSDF on the GPU without
meshing, which requires TSDF data to be stored always on GPU. How-
ever, with limited computing resources on mid-range mobile phones,
dense reconstruction is usually required to run with only CPU on back-
end, so as not to occupy resources of front-end modules or GPU ren-
dering. In such cases, an explicit surface meshing should be done on
CPU for the realistic AR operations like occlusions and collisions. To
achieve an online incremental meshing on CPU, CHISEL [17] gener-
ates a polygon mesh for each chunk of the scene, and meshing is only
done for the chunks that will participate in rendering. This kind of in-
cremental meshing cannot guarantee consistency and non-redundancy
of mesh topology, and is diffcult to handle real-time updating TSDF.
In this section, we present a novel incremental mesh generation ap-
proach which can update surface mesh in real-time and is more suit-
able for AR applications. Our mesh generation performs a scalable
TSDF voxel fusion to avoid voxel hashing conflicts, while incremen-
tally updating the surface mesh according to the TSDF variation of the
newly fused voxels. With this incremental mesh updating, real-time
mesh expansion can be done on mobile phones using only a single
CPU core. In the following, we will describe the incremental meshing
approach in detail.

Fig. 6: (a) shows the structure of TSDF cubes, each of which consists
of 8 voxels, and each voxel is shared by 6 neighboring cubes. (b) show
the purpose of the new scalable hash function. A cube with integer
coordinates (x y z) located inside the volume can be indexed normally
the conventional hash function h(x,y,z). But for another cube (x′ y′ z′)
outside the volume, function h will lead to a key conflict. Instead,

using the newly proposed scalable hash function ĥ will avoid conflict
for both cubes.

5.1 Scalable Voxel Fusion

TSDF fusion has demonstrated its effectiveness in literature [1, 24].
Despite of the simplicity of the conventional TSDF, its poor scalabil-
ity and memory consumption prevented its further applications, such
as large scale reconstruction. Besides, the complex computation and
large memory requirement made it difficult to achieve real-time perfor-
mance on mobile phones, especially for outdoor environments. Voxel
hashing [25] has been proved to be more scalable for large scale scenes
because of its dynamical voxel allocation scheme and lower mem-
ory consumption, but it needs to deal with conflicts caused by hash
function. Inspired by the above approaches, we propose a new scal-
able hashing scheme that combines both the simplicity of conventional
TSDF voxel indexing and the scalability owned by voxel hashing. The
basic idea is to dynamically enlarge the bound of volume whenever a
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Fig. 7: Illustration of dynamic objects removal on two cases: the first row shows an object removed out of view, and the second row is a
pedestrian who walks by, stands for a while and walks away. In both cases, our voxel fusion algorithm can gradually remove the unwanted
dynamic object in the reconstructed mesh when it finally goes away.

3D point falls outside the pre-defined volume range. According to this
scheme, we don’t need to handle voxel hashing conflicts.

5.1.1 Scalable Hash Function

Marching cubes [21] extracts surface from a cube, each of which con-
sists of 8 voxels from TSDF, as shown in Fig. 6(a). In our meshing pro-
cess, each cube and its associated voxels can be indexed by a unique
code generated with a novel scalable hash function.

Suppose we have a 3D volume with pre-defined size γ , each dimen-
sion of which has a range [−γ/2,+γ/2). G= γ/δ is the corresponding
volume size of each dimension in voxels, with δ an actual voxel size,
such as 0.06 meter. The located cube of a 3D point V = ( f x f y f z)
inside the volume can be indexed by a hash function as follows:

h(x,y,z) = g(x)+g(y)∗G+g(z)∗G2, (18)

where (x y z) is the lower integer coordinates of V divided by the voxel
size δ , i.e., (x y z) = (⌊ f x/δ⌋ ⌊ f y/δ⌋ ⌊ f z/δ⌋). g(i) = i+G/2, which
converts i ∈ [−G/2,+G/2) to range [0,G).

With Eq. (18), we obtain a unique identifier for a 3D point located
inside the pre-defined volume. However, a key conflict will happen
when one point falls outside the volume. Suppose we have defined a
volume with G = 5. A point Va inside the volume with coordinates
(g(x) g(y) g(z)) = (1,1,0) will have the same identifier 6 as another
point Vb with coordinates (6,0,0) outside the volume according to
Eq. (18), as depicted in Fig. 6(b). To also handle the case outside
volume range for better scalability, we propose a new hash function by
reformulating the hash function in Eq. (18) into the following form:

ĥ(x,y,z) = OC + ĝ(x)+ ĝ(y)∗G+ ĝ(z)∗G2,
ĝ(i) = i+GOG/2,

(19)

where OG is a local offset for larger voxel index range in each dimen-
sion, and OC is a global offset to ensure uniqueness of voxel indexing,
which are defined as:

OG =

{

⌊ 2î
G ⌋+1 î > 0

⌊
−(2î+1)

G ⌋+1 î ≤ 0
î = argmax

i∈{x,y,z}
|i|

OC = G3
OG−1

∑
k=1

k3

(20)

With the new hash function of Eq. (19), Vb will have new coordi-
nates (ĝ(x) ĝ(y) ĝ(z)) = (11,5,5) and a new identifier 286 different
from Va. We avoid voxel index conflict handling by enlarging the in-
dexing range from [0,G3) to [0,(GOG)

3) for the case outside the vol-
ume, with the help of the local and global offsets. Therefore, unique
identifiers are generated by the newly proposed hashing approach for

two arbitary different points without confict, which ensures a more
efficient way of voxel hashing than conventional hashing scheme. Be-
sides, the reconstruction wouldn’t be bounded to the predefined vol-
ume size G with the scalability provided by the proposed hash func-
tion. Using this scalable hashing scheme, we can expand the real-time
reconstruction freely in 3D space without limitation caused by volume
range.

Fig. 8: Illustration of incremental mesh updating on three incoming
keyframes. For each keyframe, the triangles colored with light yellow
are updated by the current depth map, and the green color indicates the
newly generated triangles.

5.1.2 Voxel Fusion with Dynamic Objects Removal

Following our scalable voxel hashing scheme, we integrate our esti-
mated depth measurements into the TSDF voxels where their corre-
sponding global 3D points occupy.

Suppose we have an estimated depth map Dt at time t. For each
depth measurement d ∈ Dt at pixel x = (u,v), we project it back to

get a global 3D space point by P = Mt
−1ρ(u,v,d), where ρ(u,v,d) =

(

u−cu

fu
d, v−cv

fv
d,d

)

is the back projection function, with ( fu, fv) the

Fig. 9: Our surface mesh generation results of our four experimental
sequences “Indoor stairs”, “Sofa”, “Desktop” and “Cabinet” captured
by OPPO R17 Pro. (a) shows some representative keyframes of each
sequence. (b) The generated global surface mesh of each sequence
without DNN-based depth refinement. (c) Our generated global sur-
face mesh with DNN-based depth refinement.

focal lengths in u and v directions, and (cu,cv) the optical center. Mt is
the transformation matrix from global 3D space to local camera space
at time t. The hash index of the cube occupied by P is determined
by Eq. (19). As illustrated in Fig. 6, the occupied cube has eight
associated voxels. Each voxel V would be a new one when travelled
for the first time or be updated as follows:

Tt(V) = Tt−1(V)+d(MtV)−Dt(π(MtV))
Wt(V) =Wt−1(V)+1

, (21)

where π(x,y,z) =
(

x
z fu + cu,

y
z fv + cv

)

is the projection function. For

clarity, we rewrite π(MtV) as x. d(MtV) represents the projection
depth of V at local camera space of keyframe t. D(x) is the depth
measurement at pixel x. Tt(V) and Wt(V) represent the TSDF value
and weight of V respectively at time t. For a newly generated voxel,
Tt(V) = d(MtV)−D(π(MtV)) and Wt(V) = 1.

With the TSDF voxel updating method in Eq. (21), we gradually
generate or update all the voxels associated with the cubes occupied
by the depth measurements from every incoming estimated depth map
in real-time. Specifically, we maintain a cube list to record all the
generated cubes. For each cube in the list, its associated TSDF voxel
hash indices are also recorded, so that two neighboring cubes can share
voxels with same hash indices. The isosurface is extracted from the
cube list by Marching cubes algorithm [21]. Note that if any associated
voxel of a cube is found to be projected outside the depth map border
or onto an invalid depth pixel, all the TSDF voxel updates associated
with this cube caused by the depth measurement need to be reverted.
This rolling-back strategy effectively reduces the probability of broken
triangles. Besides, a cube will be removed if the updated TSDF values
are lower than zero for all of its 8 voxels, because no triangle should
be extracted in that cube.

When users perform real-time reconstruction with some AR appli-
cations on mobile phones, there are usually dynamic objects such as
walking pedestrians or moved objects, as shown in Fig. 7. These
dynamic objects do not follow multi-view geometry prerequisites in
temporal times. However, a more complicated case occurs when a
pedestrian walks into the front of the camera, stands for a while, and
then walks away, as illustrated in the first row of Fig. 7. Multi-view
geometry is satisfied when the pedestrian stands still, so that the TSDF
voxels are updated to implicitly contain the human body, which will be
reflected in the reconstructed surface mesh. Works such as [20,39,42]
are customized for static scenes, whose voxel fusion scheme cannot
handle such complicated situation well. As far as we know, we are
the first work to deal with the influence of dynamic objects on mobile
phones with monocular camera.

In addition to the updating of the voxels associated with the current
estimated depth measurements, we also project each existing voxel V
to the current frame t for depth visibility checking. If d(MtV)<Dt(x),
which means the depth measurement is behind the model, a visibility
conflict occurs. It happens when an object enters into the camera view
and stand still at some previous frames, and then disappears in the
next frames. The voxels fused in the previous frames when the object
is almost static, will have conflicts with the next frames when it goes
away. Similar situations could also be caused by some broken triangle
pieces generated with an inaccurate camera pose. We solve this situa-
tion by further updating the TSDF value of voxel V in the same way
as Eq. (21). If d(MtV)≪ Dt(x), the TSDF value will drop quickly be-
low zero, and its associated cubes are invalid. This strategy will make
the cubes occupied by the dynamic human disappear quickly. With
this visibility checking strategy, users can continue to scan the area
occupied by the human body or the moved object after he goes away.
The reconstructed foreground will gradually be removed and the back-
ground structure will come out soon, as can be seen from the changes
of the reconstructed surface meshes shown in Fig.7.

Fig. 10: Comparison of our monocular depth estimation with other
state-of-the-art methods: (a) A representative keyframe in sequence
“Outdoor stairs” by OPPO R17 Pro. (b) Ground truth ToF depth
map by OPPO R17 Pro. (c) REMODE [27]. (d) DPSNet [11]. (e)
MVDepthNet [40]. (f) Our Mobile3DRecon.

5.2 Incremental Mesh Updating

Marching cubes [21] is an effective algorithm to extract iso-surface
from TSDF volume, which is widely used in dense reconstruction sys-
tems like [1, 24–26]. However, most of these systems perform surface
extraction as a post-process after real-time reconstruction has finished,
due to its performance issue caused by frequent interpolation opera-
tions. Raycasting technology is employed in [24] to render isosurface
for the current frame, but no mesh is actually extracted. Most AR ap-
plications require real-time mesh generation which supports incremen-
tal updating, especially on mobile phones. We propose an incremental
mesh updating strategy, which is particularly suitable for real-time per-
formance on mobile devices. Considering the surface extraction pro-
cess is done on back-end, we run our incremental mesh generation on
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Fig. 7: Illustration of dynamic objects removal on two cases: the first row shows an object removed out of view, and the second row is a
pedestrian who walks by, stands for a while and walks away. In both cases, our voxel fusion algorithm can gradually remove the unwanted
dynamic object in the reconstructed mesh when it finally goes away.

3D point falls outside the pre-defined volume range. According to this
scheme, we don’t need to handle voxel hashing conflicts.

5.1.1 Scalable Hash Function

Marching cubes [21] extracts surface from a cube, each of which con-
sists of 8 voxels from TSDF, as shown in Fig. 6(a). In our meshing pro-
cess, each cube and its associated voxels can be indexed by a unique
code generated with a novel scalable hash function.

Suppose we have a 3D volume with pre-defined size γ , each dimen-
sion of which has a range [−γ/2,+γ/2). G= γ/δ is the corresponding
volume size of each dimension in voxels, with δ an actual voxel size,
such as 0.06 meter. The located cube of a 3D point V = ( f x f y f z)
inside the volume can be indexed by a hash function as follows:

h(x,y,z) = g(x)+g(y)∗G+g(z)∗G2, (18)

where (x y z) is the lower integer coordinates of V divided by the voxel
size δ , i.e., (x y z) = (⌊ f x/δ⌋ ⌊ f y/δ⌋ ⌊ f z/δ⌋). g(i) = i+G/2, which
converts i ∈ [−G/2,+G/2) to range [0,G).

With Eq. (18), we obtain a unique identifier for a 3D point located
inside the pre-defined volume. However, a key conflict will happen
when one point falls outside the volume. Suppose we have defined a
volume with G = 5. A point Va inside the volume with coordinates
(g(x) g(y) g(z)) = (1,1,0) will have the same identifier 6 as another
point Vb with coordinates (6,0,0) outside the volume according to
Eq. (18), as depicted in Fig. 6(b). To also handle the case outside
volume range for better scalability, we propose a new hash function by
reformulating the hash function in Eq. (18) into the following form:

ĥ(x,y,z) = OC + ĝ(x)+ ĝ(y)∗G+ ĝ(z)∗G2,
ĝ(i) = i+GOG/2,

(19)

where OG is a local offset for larger voxel index range in each dimen-
sion, and OC is a global offset to ensure uniqueness of voxel indexing,
which are defined as:

OG =

{

⌊ 2î
G ⌋+1 î > 0

⌊
−(2î+1)

G ⌋+1 î ≤ 0
î = argmax

i∈{x,y,z}
|i|

OC = G3
OG−1

∑
k=1

k3

(20)

With the new hash function of Eq. (19), Vb will have new coordi-
nates (ĝ(x) ĝ(y) ĝ(z)) = (11,5,5) and a new identifier 286 different
from Va. We avoid voxel index conflict handling by enlarging the in-
dexing range from [0,G3) to [0,(GOG)

3) for the case outside the vol-
ume, with the help of the local and global offsets. Therefore, unique
identifiers are generated by the newly proposed hashing approach for

two arbitary different points without confict, which ensures a more
efficient way of voxel hashing than conventional hashing scheme. Be-
sides, the reconstruction wouldn’t be bounded to the predefined vol-
ume size G with the scalability provided by the proposed hash func-
tion. Using this scalable hashing scheme, we can expand the real-time
reconstruction freely in 3D space without limitation caused by volume
range.

Fig. 8: Illustration of incremental mesh updating on three incoming
keyframes. For each keyframe, the triangles colored with light yellow
are updated by the current depth map, and the green color indicates the
newly generated triangles.

5.1.2 Voxel Fusion with Dynamic Objects Removal

Following our scalable voxel hashing scheme, we integrate our esti-
mated depth measurements into the TSDF voxels where their corre-
sponding global 3D points occupy.

Suppose we have an estimated depth map Dt at time t. For each
depth measurement d ∈ Dt at pixel x = (u,v), we project it back to

get a global 3D space point by P = Mt
−1ρ(u,v,d), where ρ(u,v,d) =

(

u−cu

fu
d, v−cv

fv
d,d

)

is the back projection function, with ( fu, fv) the

Fig. 9: Our surface mesh generation results of our four experimental
sequences “Indoor stairs”, “Sofa”, “Desktop” and “Cabinet” captured
by OPPO R17 Pro. (a) shows some representative keyframes of each
sequence. (b) The generated global surface mesh of each sequence
without DNN-based depth refinement. (c) Our generated global sur-
face mesh with DNN-based depth refinement.

focal lengths in u and v directions, and (cu,cv) the optical center. Mt is
the transformation matrix from global 3D space to local camera space
at time t. The hash index of the cube occupied by P is determined
by Eq. (19). As illustrated in Fig. 6, the occupied cube has eight
associated voxels. Each voxel V would be a new one when travelled
for the first time or be updated as follows:

Tt(V) = Tt−1(V)+d(MtV)−Dt(π(MtV))
Wt(V) =Wt−1(V)+1

, (21)

where π(x,y,z) =
(

x
z fu + cu,

y
z fv + cv

)

is the projection function. For

clarity, we rewrite π(MtV) as x. d(MtV) represents the projection
depth of V at local camera space of keyframe t. D(x) is the depth
measurement at pixel x. Tt(V) and Wt(V) represent the TSDF value
and weight of V respectively at time t. For a newly generated voxel,
Tt(V) = d(MtV)−D(π(MtV)) and Wt(V) = 1.

With the TSDF voxel updating method in Eq. (21), we gradually
generate or update all the voxels associated with the cubes occupied
by the depth measurements from every incoming estimated depth map
in real-time. Specifically, we maintain a cube list to record all the
generated cubes. For each cube in the list, its associated TSDF voxel
hash indices are also recorded, so that two neighboring cubes can share
voxels with same hash indices. The isosurface is extracted from the
cube list by Marching cubes algorithm [21]. Note that if any associated
voxel of a cube is found to be projected outside the depth map border
or onto an invalid depth pixel, all the TSDF voxel updates associated
with this cube caused by the depth measurement need to be reverted.
This rolling-back strategy effectively reduces the probability of broken
triangles. Besides, a cube will be removed if the updated TSDF values
are lower than zero for all of its 8 voxels, because no triangle should
be extracted in that cube.

When users perform real-time reconstruction with some AR appli-
cations on mobile phones, there are usually dynamic objects such as
walking pedestrians or moved objects, as shown in Fig. 7. These
dynamic objects do not follow multi-view geometry prerequisites in
temporal times. However, a more complicated case occurs when a
pedestrian walks into the front of the camera, stands for a while, and
then walks away, as illustrated in the first row of Fig. 7. Multi-view
geometry is satisfied when the pedestrian stands still, so that the TSDF
voxels are updated to implicitly contain the human body, which will be
reflected in the reconstructed surface mesh. Works such as [20,39,42]
are customized for static scenes, whose voxel fusion scheme cannot
handle such complicated situation well. As far as we know, we are
the first work to deal with the influence of dynamic objects on mobile
phones with monocular camera.

In addition to the updating of the voxels associated with the current
estimated depth measurements, we also project each existing voxel V
to the current frame t for depth visibility checking. If d(MtV)<Dt(x),
which means the depth measurement is behind the model, a visibility
conflict occurs. It happens when an object enters into the camera view
and stand still at some previous frames, and then disappears in the
next frames. The voxels fused in the previous frames when the object
is almost static, will have conflicts with the next frames when it goes
away. Similar situations could also be caused by some broken triangle
pieces generated with an inaccurate camera pose. We solve this situa-
tion by further updating the TSDF value of voxel V in the same way
as Eq. (21). If d(MtV)≪ Dt(x), the TSDF value will drop quickly be-
low zero, and its associated cubes are invalid. This strategy will make
the cubes occupied by the dynamic human disappear quickly. With
this visibility checking strategy, users can continue to scan the area
occupied by the human body or the moved object after he goes away.
The reconstructed foreground will gradually be removed and the back-
ground structure will come out soon, as can be seen from the changes
of the reconstructed surface meshes shown in Fig.7.

Fig. 10: Comparison of our monocular depth estimation with other
state-of-the-art methods: (a) A representative keyframe in sequence
“Outdoor stairs” by OPPO R17 Pro. (b) Ground truth ToF depth
map by OPPO R17 Pro. (c) REMODE [27]. (d) DPSNet [11]. (e)
MVDepthNet [40]. (f) Our Mobile3DRecon.

5.2 Incremental Mesh Updating

Marching cubes [21] is an effective algorithm to extract iso-surface
from TSDF volume, which is widely used in dense reconstruction sys-
tems like [1, 24–26]. However, most of these systems perform surface
extraction as a post-process after real-time reconstruction has finished,
due to its performance issue caused by frequent interpolation opera-
tions. Raycasting technology is employed in [24] to render isosurface
for the current frame, but no mesh is actually extracted. Most AR ap-
plications require real-time mesh generation which supports incremen-
tal updating, especially on mobile phones. We propose an incremental
mesh updating strategy, which is particularly suitable for real-time per-
formance on mobile devices. Considering the surface extraction pro-
cess is done on back-end, we run our incremental mesh generation on
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Fig. 11: Comparison of the finally fused surface meshes by fusing the estimated depth maps of our Mobile3DRecon and those of [11, 40] on
sequence “Outdoor stairs” by OPPO R17 Pro. (a) Some representative keyframes. (b) Surface mesh generated by fusing ToF depth maps. (c)
Mesh by DPSNet [11]. (d) Mesh by MVDepthNet [11]. (e) Our generated surface mesh.

a single CPU thead of the mobile phone, so as not to occupy resources
of front-end modules or GPU rendering. The incremental updating
strategy is based on the observation that only part of the cubes need to
be updated for each keyframe. The iso-surface could be extracted only
for these cubes.

In order to know which cubes should partici-
pate in surface extraction, a status variable χ(V) ∈
{ADD,UPDAT E,NORMAL,DELETE} is assigned to each voxel
V. If V is a newly allocated voxel, χ(V) is set to ADD. If the TSDF
value Tt(V) is updated for V at time t, χ(V) is set to UPDAT E. If
Tt(V) ≤ 0 or Wt(V) ≤ 0, χ(V) is set to DELET E, which means that
V has to be deleted from the existing voxel list and moved to an empty
voxel list for new voxel reallocation. We define a cube as updated
if it has at least one associated voxel whose status is UPDAT E or
ADD. After finishing TSDF voxel fusion and depth visibility handling
mentioned in Section 5.1.2, we extract mesh triangles only from the
updated cubes. If an updated cube already has triangles extracted,
these triangles are removed and replaced with the newly extracted
ones. After triangle extraction finishes for all the updated cubes, the
status variables of the updated voxels are all set to NORMAL. If a
cube has at least one associated voxel whose status is DELET E, the
cube is considered as deleted, and its extracted triangles are removed.
Fig. 8 illustrates the incremental mesh updating process.

Fig. 9 shows the surface mesh reconstruction results of our four se-
quences: “Indoor stairs”, “Sofa”, “Desktop” and “Cabinet”. All these
sequences are captured and processed in real-time with OPPO R17
Pro, which demonstrates the robustness of our real-time reconstruc-
tion system for large-scale and textureless scenes. We also compare
the results with and without DNN-based depth refinement. As can
be seen in Figs. 9 (b) and (c), our DNN-based depth refinement not
only reduce depth noise, but can also eliminate noisy mesh triangles
to significantly improve the final surface mesh quality.

6 EXPERIMENTAL EVALUATION

In this section, we perform evaluation of our Mobile3DRecon pipeline,
which is implemented in C++ code and uses third-party libraries
OpenCV 2 for image I/O and Eigen 3 for numerical computation. We
report quantitative comparisons as well as qualitative comparisons of
our work with the state-of-the-art methods on our experimental bench-
mark by mid-range mobile phone, showing that our Mobile3DRecon
is among the top performers on the benchmark. We also report the
time consumption on each stage of our approach to show the real-time
performance of our pipeline on mid-range mobile phone. Finally, we
show how the method performs in AR applications on some mid-range
mobile platforms.

6.1 Quantitative and Qualitative Evaluations

We qualitatively and quantitatively compare our monocular depth es-
timation approach to other state-of-the-art algorithms on the gener-
ated depth maps and surface meshes of the five sequences captured
by OPPO R17 Pro. Since OPPO R17 Pro is equipped with a rear
ToF sensor, the ToF depth measurements can be used as GT for the
quantitative evaluation. In Fig. 10, we compare our estimated depth

2http://cloudcompare.org

map against REMODE [27], DPSNet [11] and MVDepthNet [40]. We
use the pretrained MVDepthNet model and DPSNet model to gener-
ate depth maps for comparisons. Both models are released on their
github websites 3 4, which were trained with Demon dataset [38].
Since DPSNet cannot be run on OPPO R17 Pro with limited com-
puting resources due to its heavy network structure, we run it on a PC
for comparison. As shown in Fig. 10, REMODE can ensure certain
depth accuracy only in well-textured regions. Our depth estimation
performs better in generalization than DPSNet and MVDepthNet, and
produce depth measurements with more accurate details. We further
give the comparison of the surface meshes fusing our depth maps and
the depth maps estimated by other state-of-the-art methods [11, 40] in
Fig. 11. Our system performs better than the other works in the finally
generated surface structure with less noisy triangles. We can also see
from the depth and mesh accuracy evaluation in Table 1 that our Mo-
bile3DRecon reconstruct the scenes with a centimeter-level accuracy
on depths and surface meshes, which are competitive in both Root
Mean Squared Error (RMSE) and Mean Absolute Error (MAE), even
on the “Desktop” and “Cabinet” sequences with textureless regions.

Table 2 gives the time statistics of our method in stages of monoc-
ular depth estimation and incremental meshing seperately on two mid-
range mobile platforms: OPPO R17 Pro with Qualcomm Snapdragon
710 (SDM710) computing chip and MI8 with Qualcomm Snapdragon
845 (SDM845), both with Android OS. All the time statistics are col-
lected on the two mobile platforms in runtime with 6DoF tracking on
front end and other modules such as global pose optimization, monoc-
ular keyframe depth estimation and incremental mesh generation on
back end. Generally, our Mobile3DRecon performs almost 2 times
faster on MI8 than on OPPO R17 Pro because of the more power-
ful SDM845 computing chip. Note that even with the slower perfor-
mance on OPPO R17 Pro, our Mobile3DRecon can still achieve real-
time, because our monocular depth estimation and incremental mesh
generation steps are done for each new keyframe and the reported
time consumption on OPPO R17 Pro is fast enought to keep up with
the keyframe frequency, which is almost 5 keyframes-per-second in
SenseAR SLAM framework.

6.2 AR Applications

With our Mobile3DRecon system integrated on Unity mobile platform,
we can achieve real-time realistic AR effects such as occlusions and
collisions on various scenes with different geometric structures on
OPPO R17 Pro and MI8, which are illustrated in Fig. 12. Note that
the example of the “Indoor stairs” shows the interesting effect of the
virtual balls rolling down the stairs to verify the physically true inter-
actions between virtual objects and real environment based on our ac-
curate 3D reconstruction. Please refer to the supplementary materials
for the complete demo videos. It is worth mentioning that a real-time
surface mesh is crucial for simple implementation of occlusion and
collision effects on most graphics engines like Unity, which is difficult
to fulfill by other 3D representations such as surfels or TSDF volume.

3https://github.com/HKUST-Aerial-Robotics/MVDepthNet
4https://github.com/sunghoonim/DPSNet

Table 1: We report RMSEs and MAEs of the depth and surface mesh results by our Mobile3DRecon and [11, 27, 40] on our five experimental
sequences captured by OPPO R17 Pro with ToF depth measurements as GT. For depth evaluation, only the pixels with valid depths in both GT
and the estimated depth map will participate in error calculation. For common depth evaluation, only the pixels with common valid depths in all
the methods and GT will participate in evaluation. Note that for REMODE, we only take into calculation those depths with errors smaller than
35 cm. For mesh evaluation, we use CloudCompare 2to compare the mesh results by fusing depths of each method to the GT mesh by fusing
ToF depths. For REMODE, we are unable to get a depth fusion result due to its severe depth errors.

Sequences RMSE/MAE [cm] REMODE [27] DPSNet [11] MVDepthNet [40] Mobile3DRecon

Indoor stairs
Depth 23.38/18.95 12.48/7.71 10.54/7.82 7.41/3.98
Common depth 24.11/19.15 9.78/6.30 9.25/7.43 7.11/4.19
Mesh / 6.34/8.67 6.04/8.98 4.51/4.40

Sofa
Depth 22.19/14.86 12.82/8.54 11.74/8.01 9.66/6.10
Common depth 24.72/19.78 9.87/6.55 9.27/6.64 9.19/5.59
Mesh / 5.92/7.20 5.90/8.10 5.31/5.74

Outdoor stairs
Depth 19.39/12.91 9.09/6.42 7.46/5.06 5.69/3.01
Common depth 24.57/19.57 7.88/6.03 6.81/5.10 6.05/3.44
Mesh / 6.22/8.10 5.23/5.10 4.17/3.86

Desktop
Depth 25.59/23.39 13.42/9.99 11.14/8.91 9.45/5.42
Common Depth 25.55/23.43 12.51/9.36 10.46/8.49 9.42/5.41
Mesh / 5.93/9.88 5.76/9.65 5.58/6.91

Cabinet
Depth 19.22/16.48 11.89/8.57 9.58/7.12 10.43/6.07
Common Depth 18.76/16.07 10.14/7.22 10.46/8.48 9.54/5.92
Mesh / 5.65/10.96 5.48/11.13 5.02/7.96

Table 2: We report detailed per-keyframe time comsumptions (in milliseconds) of our Mobile3DRecon in all the substeps. The time statistics
are given on two mobile platforms: OPPO R17 Pro with SDM710 and MI8 with SDM845.

Time [ms/keyframe]
Monocular depth estimation Incremental mesh

generation
Total

Cost volume
computation

Cost volume
aggregation

Confidence-based
filtering

DNN-based
refinement

Total

OPPO R17 Pro (SDM710) 16.75 28.55 2.26 22.9 70.46 31.13 101.59

MI8 (SDM845) 11.92 17.68 1.1 7.62 38.32 18.89 57.21

Fig. 12: AR applications of Mobile3DRecon on mobile platforms: The
first row shows the 3D reconstruction and an occlusion effect of an
indoor scene on OPPO R17 Pro. The second and third rows illustrate
AR occlusion and collision effects of another two scenes on MI8.

7 CONCLUSION

We have presented a novel real-time surface mesh reconstruction sys-
tem which can run on a mid-range mobile phones. Our system allows
users to reconstruct the dense surface mesh of the environments with
a mobile device with only an embedded monocular camera. Unlike
existing state-of-the-art methods which produce only surfels or TSDF
volume in real-time, our Mobile3DRecon is unique in that it performs

an online incremental mesh generation and is more suitable for achiev-
ing seamless AR effects such as occlusions and collisions between
virtual objects and real scenes. Due to the limitation of TSDF inte-
gration, our dense surface mesh reconstruction is currently unable to
keep the reconstructed mesh consistently updated with the changes of
the global keyframe poses after bundle adjustment. An online dein-
tegration and reintegration mechanism is preferred in future to make
the incremental mesh generation more consistent with global pose op-
timization and accumulative error compensation. Additionally, how
to reasonably handle the limitations of computation and memory re-
sources on mobile platforms when the reconstruction scale becomes
larger is a problem worth further studying in our future work.
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Fig. 11: Comparison of the finally fused surface meshes by fusing the estimated depth maps of our Mobile3DRecon and those of [11, 40] on
sequence “Outdoor stairs” by OPPO R17 Pro. (a) Some representative keyframes. (b) Surface mesh generated by fusing ToF depth maps. (c)
Mesh by DPSNet [11]. (d) Mesh by MVDepthNet [11]. (e) Our generated surface mesh.

a single CPU thead of the mobile phone, so as not to occupy resources
of front-end modules or GPU rendering. The incremental updating
strategy is based on the observation that only part of the cubes need to
be updated for each keyframe. The iso-surface could be extracted only
for these cubes.

In order to know which cubes should partici-
pate in surface extraction, a status variable χ(V) ∈
{ADD,UPDAT E,NORMAL,DELETE} is assigned to each voxel
V. If V is a newly allocated voxel, χ(V) is set to ADD. If the TSDF
value Tt(V) is updated for V at time t, χ(V) is set to UPDAT E. If
Tt(V) ≤ 0 or Wt(V) ≤ 0, χ(V) is set to DELET E, which means that
V has to be deleted from the existing voxel list and moved to an empty
voxel list for new voxel reallocation. We define a cube as updated
if it has at least one associated voxel whose status is UPDAT E or
ADD. After finishing TSDF voxel fusion and depth visibility handling
mentioned in Section 5.1.2, we extract mesh triangles only from the
updated cubes. If an updated cube already has triangles extracted,
these triangles are removed and replaced with the newly extracted
ones. After triangle extraction finishes for all the updated cubes, the
status variables of the updated voxels are all set to NORMAL. If a
cube has at least one associated voxel whose status is DELET E, the
cube is considered as deleted, and its extracted triangles are removed.
Fig. 8 illustrates the incremental mesh updating process.

Fig. 9 shows the surface mesh reconstruction results of our four se-
quences: “Indoor stairs”, “Sofa”, “Desktop” and “Cabinet”. All these
sequences are captured and processed in real-time with OPPO R17
Pro, which demonstrates the robustness of our real-time reconstruc-
tion system for large-scale and textureless scenes. We also compare
the results with and without DNN-based depth refinement. As can
be seen in Figs. 9 (b) and (c), our DNN-based depth refinement not
only reduce depth noise, but can also eliminate noisy mesh triangles
to significantly improve the final surface mesh quality.

6 EXPERIMENTAL EVALUATION

In this section, we perform evaluation of our Mobile3DRecon pipeline,
which is implemented in C++ code and uses third-party libraries
OpenCV 2 for image I/O and Eigen 3 for numerical computation. We
report quantitative comparisons as well as qualitative comparisons of
our work with the state-of-the-art methods on our experimental bench-
mark by mid-range mobile phone, showing that our Mobile3DRecon
is among the top performers on the benchmark. We also report the
time consumption on each stage of our approach to show the real-time
performance of our pipeline on mid-range mobile phone. Finally, we
show how the method performs in AR applications on some mid-range
mobile platforms.

6.1 Quantitative and Qualitative Evaluations

We qualitatively and quantitatively compare our monocular depth es-
timation approach to other state-of-the-art algorithms on the gener-
ated depth maps and surface meshes of the five sequences captured
by OPPO R17 Pro. Since OPPO R17 Pro is equipped with a rear
ToF sensor, the ToF depth measurements can be used as GT for the
quantitative evaluation. In Fig. 10, we compare our estimated depth

2http://cloudcompare.org

map against REMODE [27], DPSNet [11] and MVDepthNet [40]. We
use the pretrained MVDepthNet model and DPSNet model to gener-
ate depth maps for comparisons. Both models are released on their
github websites 3 4, which were trained with Demon dataset [38].
Since DPSNet cannot be run on OPPO R17 Pro with limited com-
puting resources due to its heavy network structure, we run it on a PC
for comparison. As shown in Fig. 10, REMODE can ensure certain
depth accuracy only in well-textured regions. Our depth estimation
performs better in generalization than DPSNet and MVDepthNet, and
produce depth measurements with more accurate details. We further
give the comparison of the surface meshes fusing our depth maps and
the depth maps estimated by other state-of-the-art methods [11, 40] in
Fig. 11. Our system performs better than the other works in the finally
generated surface structure with less noisy triangles. We can also see
from the depth and mesh accuracy evaluation in Table 1 that our Mo-
bile3DRecon reconstruct the scenes with a centimeter-level accuracy
on depths and surface meshes, which are competitive in both Root
Mean Squared Error (RMSE) and Mean Absolute Error (MAE), even
on the “Desktop” and “Cabinet” sequences with textureless regions.

Table 2 gives the time statistics of our method in stages of monoc-
ular depth estimation and incremental meshing seperately on two mid-
range mobile platforms: OPPO R17 Pro with Qualcomm Snapdragon
710 (SDM710) computing chip and MI8 with Qualcomm Snapdragon
845 (SDM845), both with Android OS. All the time statistics are col-
lected on the two mobile platforms in runtime with 6DoF tracking on
front end and other modules such as global pose optimization, monoc-
ular keyframe depth estimation and incremental mesh generation on
back end. Generally, our Mobile3DRecon performs almost 2 times
faster on MI8 than on OPPO R17 Pro because of the more power-
ful SDM845 computing chip. Note that even with the slower perfor-
mance on OPPO R17 Pro, our Mobile3DRecon can still achieve real-
time, because our monocular depth estimation and incremental mesh
generation steps are done for each new keyframe and the reported
time consumption on OPPO R17 Pro is fast enought to keep up with
the keyframe frequency, which is almost 5 keyframes-per-second in
SenseAR SLAM framework.

6.2 AR Applications

With our Mobile3DRecon system integrated on Unity mobile platform,
we can achieve real-time realistic AR effects such as occlusions and
collisions on various scenes with different geometric structures on
OPPO R17 Pro and MI8, which are illustrated in Fig. 12. Note that
the example of the “Indoor stairs” shows the interesting effect of the
virtual balls rolling down the stairs to verify the physically true inter-
actions between virtual objects and real environment based on our ac-
curate 3D reconstruction. Please refer to the supplementary materials
for the complete demo videos. It is worth mentioning that a real-time
surface mesh is crucial for simple implementation of occlusion and
collision effects on most graphics engines like Unity, which is difficult
to fulfill by other 3D representations such as surfels or TSDF volume.

3https://github.com/HKUST-Aerial-Robotics/MVDepthNet
4https://github.com/sunghoonim/DPSNet

Table 1: We report RMSEs and MAEs of the depth and surface mesh results by our Mobile3DRecon and [11, 27, 40] on our five experimental
sequences captured by OPPO R17 Pro with ToF depth measurements as GT. For depth evaluation, only the pixels with valid depths in both GT
and the estimated depth map will participate in error calculation. For common depth evaluation, only the pixels with common valid depths in all
the methods and GT will participate in evaluation. Note that for REMODE, we only take into calculation those depths with errors smaller than
35 cm. For mesh evaluation, we use CloudCompare 2to compare the mesh results by fusing depths of each method to the GT mesh by fusing
ToF depths. For REMODE, we are unable to get a depth fusion result due to its severe depth errors.

Sequences RMSE/MAE [cm] REMODE [27] DPSNet [11] MVDepthNet [40] Mobile3DRecon

Indoor stairs
Depth 23.38/18.95 12.48/7.71 10.54/7.82 7.41/3.98
Common depth 24.11/19.15 9.78/6.30 9.25/7.43 7.11/4.19
Mesh / 6.34/8.67 6.04/8.98 4.51/4.40

Sofa
Depth 22.19/14.86 12.82/8.54 11.74/8.01 9.66/6.10
Common depth 24.72/19.78 9.87/6.55 9.27/6.64 9.19/5.59
Mesh / 5.92/7.20 5.90/8.10 5.31/5.74

Outdoor stairs
Depth 19.39/12.91 9.09/6.42 7.46/5.06 5.69/3.01
Common depth 24.57/19.57 7.88/6.03 6.81/5.10 6.05/3.44
Mesh / 6.22/8.10 5.23/5.10 4.17/3.86

Desktop
Depth 25.59/23.39 13.42/9.99 11.14/8.91 9.45/5.42
Common Depth 25.55/23.43 12.51/9.36 10.46/8.49 9.42/5.41
Mesh / 5.93/9.88 5.76/9.65 5.58/6.91

Cabinet
Depth 19.22/16.48 11.89/8.57 9.58/7.12 10.43/6.07
Common Depth 18.76/16.07 10.14/7.22 10.46/8.48 9.54/5.92
Mesh / 5.65/10.96 5.48/11.13 5.02/7.96

Table 2: We report detailed per-keyframe time comsumptions (in milliseconds) of our Mobile3DRecon in all the substeps. The time statistics
are given on two mobile platforms: OPPO R17 Pro with SDM710 and MI8 with SDM845.

Time [ms/keyframe]
Monocular depth estimation Incremental mesh

generation
Total

Cost volume
computation

Cost volume
aggregation

Confidence-based
filtering

DNN-based
refinement

Total

OPPO R17 Pro (SDM710) 16.75 28.55 2.26 22.9 70.46 31.13 101.59

MI8 (SDM845) 11.92 17.68 1.1 7.62 38.32 18.89 57.21

Fig. 12: AR applications of Mobile3DRecon on mobile platforms: The
first row shows the 3D reconstruction and an occlusion effect of an
indoor scene on OPPO R17 Pro. The second and third rows illustrate
AR occlusion and collision effects of another two scenes on MI8.

7 CONCLUSION

We have presented a novel real-time surface mesh reconstruction sys-
tem which can run on a mid-range mobile phones. Our system allows
users to reconstruct the dense surface mesh of the environments with
a mobile device with only an embedded monocular camera. Unlike
existing state-of-the-art methods which produce only surfels or TSDF
volume in real-time, our Mobile3DRecon is unique in that it performs

an online incremental mesh generation and is more suitable for achiev-
ing seamless AR effects such as occlusions and collisions between
virtual objects and real scenes. Due to the limitation of TSDF inte-
gration, our dense surface mesh reconstruction is currently unable to
keep the reconstructed mesh consistently updated with the changes of
the global keyframe poses after bundle adjustment. An online dein-
tegration and reintegration mechanism is preferred in future to make
the incremental mesh generation more consistent with global pose op-
timization and accumulative error compensation. Additionally, how
to reasonably handle the limitations of computation and memory re-
sources on mobile platforms when the reconstruction scale becomes
larger is a problem worth further studying in our future work.
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