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MagLoc-AR: Magnetic-based Localization for Visual-free
Augmented Reality in Large-scale Indoor Environments

Haomin Liu∗, Hua Xue∗, Linsheng Zhao, Danpeng Chen, Zhen Peng, and Guofeng Zhang†, Member, IEEE

Fig. 1: The illustration of different types of localization methods. Visual-based methods are sufficiently accurate for AR, but they
pose privacy risks, and suffer from robustness issues and high power consumption. Wireless-based methods are visual-free, but
not accurate enough for AR. The proposed MagLoc-AR is visual-free for privacy protection, meets the accuracy requirement of AR
navigation, and has advantages over visual-based methods in terms of robustness and power efficiency.

Abstract—Accurate localization of a display device is essential for AR in large-scale environments. Visual-based localization is
the most commonly used solution, but poses privacy risks, suffers from robustness issues and consumes high power. Wireless
signal-based localization is a potential visual-free solution, but its accuracy is not enough for AR. In this paper, we present MagLoc-AR,
a novel visual-free localization solution that achieves sufficient accuracy for some AR applications (e.g. AR navigation) in large-scale
indoor environments. We exploit the location-dependent magnetic field interference that is ubiquitous indoors as a localization signal.
Our method requires only a consumer-grade 9-axis IMU, with the gyroscope and acceleration measurements used to recover the
motion trajectory, and the magnetic measurements used to register the trajectory to the global map. To meet the accuracy requirement
of AR, we propose a mapping method to reconstruct a globally consistent magnetic field of the environment, and a localization method
fusing the biased magnetic measurements with the network-predicted motion to improve localization accuracy. In addition, we provide
the first dataset for both visual-based and geomagnetic-based localization in large-scale indoor environments. Evaluations on the
dataset demonstrate that our proposed method is sufficiently accurate for AR navigation and has advantages over the visual-based
methods in terms of power consumption and robustness. Project page: https://github.com/zju3dv/MagLoc-AR/
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1 INTRODUCTION

Augmented Reality (AR) allows users to interact with virtual content
and information across vast physical spaces, creating immersive and
engaging experiences. Nowadays, the application of AR has been ex-
tended to large-scale environments, creating a broader range of user
experiences. For example, AR navigation improves the navigation expe-
rience compared to traditional floorplan-based navigation by providing
virtual content to guide and inform users more intuitively. The key is to
accurately localize the display device in the environment, particularly
in the indoor environment where GPS is unavailable.

The most commonly used solution is visual-based localization. For
example, there are currently commercialized services such as Google
ARCore Geospatial, Apple ARKit Location Anchors, and Microsoft
Azure Spatial Anchors. In the offline phase, a visual map of the envi-
ronment is reconstructed using structure-from-motion (SfM) [37]. In
the online phase, the user captures images of their surroundings, which
are then matched against the visual map to recover the 6DoF (6 Degree
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of Freedom) pose of the device in the environment [36]. The 6DoF
pose is tracked over time using visual SLAM [5], and periodically
re-located to correct for accumulating errors. For large-scale environ-
ments, performing visual localization on resource-constrained mobile
devices is impractical. Users have to upload images to a cloud server,
revealing potentially confidential user information [19, 43]. Further-
more, the camera-related image processing and visual SLAM consume
significant power on the mobile device, making it unsuitable for long-
term AR experiences. Additionally, current visual-based methods still
face robustness challenges such as repetitive structure, poor texture,
occlusions, large viewpoint changes, low light, etc [24]. Wireless
signal-based localization is a potential visual-free solution. Traditional
methods require deployment of signal transmitters in the environment,
such as WiFi Access Point (AP), or Bluetooth Beacon. The additional
equipment, as well as the cost of deployment and maintenance, im-
pedes the large-scale application of these methods. On the other hand,
the location-dependent variation of the ambient magnetic field result-
ing from magnetic materials in building structures can also serve as
a useful wireless signal for indoor localization, eliminating the need
for signal transmitters. However, the accuracy of all existing wireless
signal-based methods can only support a rough 3DoF localization on
the floorplan, which is insufficient for AR.

In this paper, we present MagLoc-AR, a visual-free 5DoF localiza-
tion solution for AR in large single-level indoor environments, where
the user is moving at a constant height. As illustrated in Fig. 1, our
method requires only a consumer-grade 9-axis IMU, which has advan-
tages over existing visual-based methods in terms of privacy protection,
power consumption, and robustness under challenging situations for
visual-based methods. To meet the accuracy requirement of AR, we
propose a mapping method to reconstruct a globally consistent mag-
netic field of the environment, and a localization method fusing the
biased magnetic measurements with the network-predicted motion,
which significantly improves localization accuracy over existing wire-
less signal-based methods. The main contributions are:

• We present a novel visual-free localization solution that achieves
sufficient accuracy for AR navigation in large single-level indoor
environments as far as we know.

• We propose a rectification method and a relative observation
model to handle the non-negligible magnetic bias of the consumer-
grade IMU for mapping and localization respectively.

• We propose a fusion framework leveraging a deep network to
predict human motion during AR experience for accurate local-
ization.

• We provide the first dataset for both visual-based and
geomagnetic-based localization in large-scale indoor environ-
ments, which is also used to evaluate and verify the effectiveness
of the proposed method.

We organize this paper as follows : Sec. 2 briefly reviews related
works. Sec. 3 gives an overview of the proposed MagLoc-AR. The
details of offline mapping and online localization are elaborated in
Sec. 4 and Sec. 5 respectively. Finally, we evaluate our proposed
method in Sec. 6 and conclude this work in Sec. 7.

2 RELATED WORK

In this section, we review existing visual-based and wireless signal-
based localization methods respectively.

2.1 Visual-based Localization
Visual SLAM is one of the most commonly used visual-based localiza-
tion techniques for AR. It estimates the 6DoF pose of moving camera
with respect to the local map which is simultaneously reconstructed.
Early works only used visual measurements [22, 30, 32, 45], which
suffered from robustness issues in poor texture or fast motion scenarios
that frequently happen in practice. Recent works combine the comple-
mentary inertial measurements from IMU to achieve great improvement
for these challenging cases [5, 26, 34]. However, if there are no reliable

visual measurements for a long time, the motion tracking based on
IMU alone will still suffer from serious drift problem [8].

Visual localization by matching a query image to a pre-built map
of the environment is an effective way to correct errors [4]. More
importantly, for many AR applications, localization is required to be
with respect to the pre-built map where the virtual contents are created.
Traditionally, it is done by extracting hand-crafted features [31, 35]
from query images, which are matched against features in the pre-
built map. Recent works resort to learning-based features [10, 13] to
improve the robustness against motion blurs, illumination changes and
viewpoint variations. However, inherent limitations of visual-based
methods still remain, such as day-night and across seasons changes,
repetitive structure, poor texture, occlusions, low light, etc. These
challenges are still far from being solved [24,36]. Another drawback
of the visual-based methods is the risk of privacy exposure. For large-
scale environments, it is impractical to perform visual localization on
resource-constrained mobile devices. Users have to upload images to
a cloud server, which may disclose confidential information related to
the captured environment. This is the case even when only extracted
features are uploaded, as they can be used to reconstruct the query
images [12, 33]. Recent works propose to lift 2D/3D feature points
to random lines in order to conceal the geometry of the query image
[19, 43]. However, they do not address the privacy issue when a series
of query images are sent with high frame rate, or when the sensitive
content is static [19].

2.2 Wireless signal-based Localization
Wireless signal-based techniques for indoor localization have been ex-
tensively explored in the past few decades. WiFi is one of the most
commonly used signals. Earlier works estimate locations from the
received signal strength indicator (RSSI) of WiFi APs. They either
directly match the RSSI to a pre-constructed database [2, 50], or model
the RSSI as a function of the distance [9]. Localization error of those
methods can be up to several meters and even worse when the dis-
tribution of WiFi APs is sparse. Recent studies [23, 48] have shown
the possibility of achieving sub-meter accuracy by estimating time-of-
flight (ToF) and angle-of-arrival (AoA) with detailed physical layer
information. However, they either work for only a few specific devices,
or require complex hardware customization. Bluetooth Low Energy
(BLE) is another technology that is widely considered for indoor local-
ization. Methods using RSSI are proposed [7, 11, 14], which also suffer
from large error. Although the research community is making progress
continuously, due to the dependency on environmental infrastructures,
WiFi and BLE-based technologies are far from large-scale commercial
deployment.

Indoor magnetic field shows stable distinctions at different locations
and has been proved to have the capability of localizing commercial
mobile devices [27]. Some existing methods [21, 38, 39] avoid orienta-
tion estimation by only using the sequence of magnetic field strength as
location features, which do not fully utilize the distinction of magnetic
field at different locations and thus result in low accuracy and weak gen-
eralization ability. Although the work [41] takes 3-axis magnetic field
values as different features, it uses a simple constant-velocity dynamic
model, which introduces large error. As for the mapping strategies
for magnetic-based methods, all the above works use pedestrian dead
reckoning (PDR) based method to register magnetic measurements,
which introduces large errors in mapping. The work [3] uses a robotic
platform with an elaborately calibrated magnetic sensor to reconstruct
the magnetic field, which has high accuracy but introduced high cost,
making it difficult to scale.

There are also methods using other wireless signals like ultra-sound
[28], visible light [49], ultra-wide band (UWB) [51], mmWave [42].
They all require specialized hardware and thus have difficulty to be
widely deployed.

3 METHOD OVERVIEW

In this section, we give an overview of the proposed MagLoc-AR and
explain how the components work together. First, we describe the nota-
tion used in this paper. The reference system for the vector coordinates
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Fig. 2: Magnetic measurements by the consumer-grade MEMS magne-
tometer: (a) from an mobile phone placed on the table for 10 minutes in
a static environment; (b) from a mobile phone and a pair of AR glasses
moving along the same trajectory.

is shown by the left superscript. B
AT represents the transformation from

coordinate A to B:
BX = B

AT ◦AX . (1)

G
IT t denotes the transformation from IMU coordinate to the global

map coordinate at timestamp t. It is also called the IMU pose, and
is comprised of a rotation matrix Rt and a translation vector pt . The
transformation can be rewritten as

GX = Rt
IX + pt . (2)

For IMU pose, we omit the prescripts for Rt and pt for simplicity.
The measurement from the 9-axis IMU at timestamp t is denoted as
(Iωt ,

Iat ,
Imt), where Iωt , Iat , and Imt represent gyroscope, acceler-

ation and magnetic measurement respectively, expressed in the IMU
local coordinate. For the consumer-grade MEMS IMU, these measure-
ments contain time-varying biases. The bias in Iωt and Iat has been
well investigated and modeled in the field of visual-inertial SLAM.
However, the bias in Imt has not been studied in the field of magnetic-
based localization. As shown in Fig. 2(a), during a period of 10 minutes
of standing in a static environment, we observe that the magnetometer
bias changes at a constant rate for the first 5 minutes, and remains al-
most unchanged for the next 5 minutes. This indicates that the random
walk model, commonly used for gyroscope and acceleration biases, is
no longer suitable for magnetometer for the entire period of time. In
addition, we also find that the magnitude of magnetometer bias varies
significantly among different devices, as shown in Fig. 2(b). In the
framework of MagLoc-AR, we propose innovative methods to address
these challenges.

The framework is illustrated in Fig. 3. It consists of two phases,
namely offline mapping and online localization. In the phase of offline
mapping, we reconstruct the magnetic field of the environment. To
do this, we walk around the site holding a panoramic camera Insta360
Pro 21 that can capture 360◦ images of the environment and record
the 9-axis IMU measurements as well. We first reconstruct the global
map using visual-inertial SfM and register each magnetic measurement
to it, as detailed in Sec. 4.1. Then we propose a method to rectify
the bias in the registered magnetic measurements, which is detailed in
Sec. 4.2. Finally, we reconstruct the magnetic field map by generalizing
the discrete magnetic measurements into a continuous and smooth
magnetic field, as detailed in Sec. 4.3. For the purpose of efficiency,
the magnetic field map is represented as a 2D grid, which prevents the
subsequent localization from estimating changes in height. As a result,
MagLoc-AR can only support 5DoF localization, assuming that the
user is moving within a single level at a constant height.

In the phase of online localization, MagLoc-AR fuses IMU measure-
ments Iω1...t , Ia1...t and Im1...t from the AR device to estimate the IMU
pose G

ITt. Using Iω1...t and Ia1...t , it can recover the motion trajectory,
and the trajectory can be registered to the global map by matching
Im1...t along the trajectory against the magnetic field map. Since the
magnetic field map contains significant ambiguities among different
locations, we propose to use a particle filter for state estimation. The
particle filter-based framework takes two steps at each iteration – the

1https://www.insta360.com/product/insta360-pro2
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Fig. 3: The framework of MagLoc-AR.

prediction step with a dynamic model and the update step with an
observation model. In the prediction step, we propose a network-based
dynamic model which takes a sliding window of Iωt−n...t and Iat−n...t
to predict the instant velocity Ivt , as detailed in Sec. 5.1. In the update
step, we propose a magnetic relative observation model to handle the
bias effect in the magnetic measurement, as detailed in Sec. 5.2.

4 OFFLINE MAPPING

The map is fundamental in any global localization system and its
quality directly impacts the performance of localization. In the case of
mapping for magnetic-based localization using consumer-grade devices,
practical problems are not well-studied and solved. In this section, we
identify those problems and provide our solutions to them as building
blocks in the offline mapping phase of MagLoc-AR.

4.1 Magnetic Measurement Registration
In order to register each magnetic measurement to the global map,
traditional methods use pedestrian dead reckoning (PDR) with pre-
measured landmark locations as constraints to estimate the IMU poses
[21], which is less accurate and difficult to scale.

To break these limitations, we propose to use SfM [37] to recover
the IMU poses. Specifically, 2D features are extracted for each image
and matched throughout the image sequence to constrain the camera
poses. We select the deep learning-based feature SuperPoint [10] for
its superior robustness over traditional handcrafted features.

Taking these feature correspondences, SfM recovers the camera pose
G
CTi for each image frame i by jointly recovering the 3D coordinate
GXj for each feature point j. The recovered camera poses and 3D
points need to satisfy the projection constraint, which means that each
3D point GXj, when projected into image i by camera pose G

CTi, must
coincide with its 2D observation xi j in the image. The process can be
formulated as

argmin
G
CTi,

GXj

∑
i, j

||π(G
CT−1

i ◦GXj)− xi j||2, (3)

where π(CX) is the projection function for a point expressed in the
camera coordinates to the image plane by the camera intrinsics, which
is pre-calibrated by Kalibr [18].

The image-only SfM cannot recover the true scale. Scaling all G
CTi

and GXj will result in the same re-reprojection error. It also suffers
from robustness issues in texture-less environments. We address these
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problems by incorporating gyroscope and acceleration measurements
to Eq. (3), resulting in the formulation of visual-inertial SfM:

argmin
Ii,

GXj

∑
i, j

||π(CIT ◦G
IT

−1
i ◦GXj)−xi j||2+∑

i
h(Ii,Ii+1,Zi,i+1), (4)

where Ii = {G
ITi,

Gvi,
Ibi} are the IMU motion parameter at image

frame i, comprised of the IMU pose G
ITi, the velocity Gvi, and the bias

Ibi of gyroscope and acceleration. C
IT is the fixed transformation from

IMU to camera coordinates, which is pre-calibrated by Kalibr [18].
Zi,i+1 is the set of IMU measurements between consecutive frames
(i, i+1), and h(·) is the cost function measuring the difference between
IMU states (Ii,Ii+1) and IMU measurements Zi,i+1, calculated by
IMU pre-integration [16]. Compared to Eq. (3), the additional cost
function h(·) in Eq. (4) eliminates the ambiguity of scale by leveraging
the acceleration measurements in the true scale, and constrains the
poses between consecutive frames even in the featureless environments.
With the IMU pose G

ITi recovered, the local magnetic measurement
Imi is converted to the global coordinate by Gmi = Ri

Imi with the
associated location pi.

4.2 Magnetic Measurement Rectification
Due to hardware imperfections, MEMS magnetometers have non-
negligible time-varying bias as described in Sec. 3. SfM typically
requires loops on the acquisition path to eliminate the drift, and the
time-varying bias will result in inconsistent magnetic measurements
at loop closure locations across time. Such inconsistency of measure-
ments can pose unexpected uncertainty in the reconstruction of the
magnetic field and finally cause large errors in online localization. To
address this issue, we propose a method called magnetic measurement
rectification.

At any time instance, the magnetic measurement in the IMU coordi-
nate can be formulated as

Imt =
Imtrue

t +bt , (5)

where Imtrue
t is the actual magnetic vector in the IMU coordinate and

bt is the time-varying bias. We omit the Gaussian white noise for
simplicity. Given IMU poses at two time steps t and t ′ in a short period
of time, where t > t ′, the relative change of magnetic measurements
under the global coordinate can be represented as

∆Gmt,t ′ = Rt
Imtrue

t −Rt ′
Imtrue

t ′ +Rtbt −Rt ′bt ′ . (6)

During a short time period, we assume that the bias follows the model
of Brownian motion with white noise [16]

ḃt = η ∼N (0,σ2
b ). (7)

Integrating over the time interval [t ′, t] obtains

bt = bt ′ +ηd . (8)

If rotations Rt and Rt ′ are approximately the same, we can substitute
Eq. (8) into Eq. (6) to get

∆ Gmt,t ′ ≈ Rt
Imtrue

t −Rt ′
Imtrue

t ′ +Rtηd , (9)

in which the original terms related to bt and bt ′ are replaced with a
Gaussian noise, thus the relative measurement is approximately in-
dependent of the time-varying bias. By using the bias-independent
relative measurements to reconstruct the magnetic field, we effectively
counter the effect of time-varying bias.

Inspired by the observations above, MagLoc-AR makes the regis-
tered magnetic measurements consistent by minimizing the error of
relative measurements in the global coordinate. First, we divide the
mapping space using 2D grids with the shape of 0.5m×0.5m. Then,
within each grid, we choose the registered magnetic measurement
which is closest to the center to represent the measurement of that grid.
After that, along the acquisition trajectory, we select grid magnetic

measurements with the difference of rotations between (Rt ,Rt ′) less
than 5 degrees to form relative measurements in the global coordi-
nate. Finally, we estimate the consistent magnetic measurements in
the global coordinate of different grids by minimizing error of all the
relative measurements as

argmin
Gmi

∑
i, j

||∆Gmi, j − (Gmi −Gm j)||2, (10)

where Gmi is the estimated magnetic vector at the i-th grid and ∆Gmi, j
is the relative measurement between the i-th grid and the j-th grid.

It is a standard linear least-square form which can be easily solved.
However, since we only use relative measurements, the problem is ill-
posed. To make the solution unique, we assign absolute measurements
to eliminate the freedom. Specifically, we convert the 2D grid to a graph
with nodes representing selected grid cells and two nodes are connected
by an edge if there is a relative measurement between them. We first
find all connected components of the graph. Then, we solve Eq. (10) for
each connected component separately. For each connected component,
we manually assign one absolute measurement to make the problem
well-posed. We denote obtained consistent magnetic measurements as
Gmrect

i , which will be used for magnetic field reconstruction.

4.3 Magnetic Field Reconstruction

Given the magnetic measurements (pi,
Gmrect

i ) along the acquisition
path, we reconstruct the entire magnetic field by Gaussian Process
Regression (GPR) [47] that is widely used for magnetic field model-
ing [1, 40, 41]. For the purpose of completeness, we briefly introduce
GPR here.

Assuming that the x/y/z-components of the 3D magnetic field are
independent and can be reconstructed separately, we define the mea-
surement set as D = {(xi,yi)|i = 1 . . .n}, where xi is the 2D location
of pi on the grid, and yi is the corresponding 1D component of Gmrect

i .
GPR assumes the magnetic field obeys the Gaussian process function
f (x) at each location x:

f (x)∼ GP(µ0,k(x,x′))
yi = f (xi)+ ε

, (11)

where µ0 is the mean value of yi in D and ε ∼ N (0,σ2
n ) with hyper-

parameter σn. k(x,x′) is the covariance between two locations (x,x′):

k(x,x′) = δ 2
f exp(−∥x− x′∥2

2l2 ), (12)

where δ f and l are hyper-parameters. The magnetic field reconstruction
is formulated as predicting the posterior distribution N (µ∗,σ2

∗ ) of
magnetic intensity at each grid cell x∗:

µ∗ = µ0 +kT
∗ (K+σ2

n I)−1ȳ

σ2
∗ = k(x∗,x∗)−kT

∗ (K+σ2
n I)−1k∗

, (13)

where k∗ is the n-dimensional vector with i-th element k(xi,x∗). K
is the n×n matrix with Ki j = k(xi,x j). ȳ is the n-dimensional vector
with ȳi = yi − µ0. The hyper-parameters σn, δ f and l are trained
by maximizing the marginal likelihood from D . Details are referred
to [47].

5 ONLINE LOCALIZATION

In this section, we give a detailed description of techniques used in
the online localization phase. The online localization works under
the traditional particle filter fusion framework with a network-based
dynamic model and a relative observation model.

The particle filter is a well-known and powerful iterative state esti-
mation framework which does not rely on the certainty of initial states.
The online Bayesian state estimation problem of MagLoc-AR under the
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Fig. 4: The structure of the network.

assumption of Markov dynamic model can be formulated in an iterative
manner as

p(G
IT t |St) ∝ p(Imt |G

IT t)p(G
IT t |G

IT t−1,
Iωt ,

Iat)p(G
IT t−1|St−1),

(14)
where St represents measurements (Iω1...t ,

Ia1...t ,
Im1...t) from the 9-

axis IMU up to the timestamp t. The particle filter framework uses
weighted samples to represent the posterior distribution and takes
two steps at each iteration. First, it predicts G

IT t by drawing sam-
ples from the distribution p(G

IT t |G
IT t−1,

Iωt ,
Iat) which is defined by

the dynamic model. Then it updates weights of those samples using
p(Imt |G

IT t) which is defined by the observation model. The sampled
expectation of the posterior distribution is finally used as the estimate
of the IMU pose.

5.1 Network-based Dynamic Model
The dynamic model describes the way state transits between continuous
timestamps. Traditional dynamic models for magnetic-based localiza-
tion systems either assume low degree-of-freedom [38,39,41] or require
motion sensors with high accuracy [17]. In the case of MagLoc-AR, the
dynamic model is required to be accurate under high degree-of-freedom
motions in AR applications. To meet the requirement, we resort to
network-based method. For MagLoc-AR, the dynamic model can be
formulated as

[
Rt pt

]
=
[
Rt−1 pt−1

][∆ IRt
Ivt∆t

0 1

]
, (15)

where ∆t is the time passed from timestamp t − 1 to t and ∆ IRt is
the corresponding rotation in the IMU local coordinate. We obtain
∆ IRt through a traditional extended Kalman filter (EKF) with IMU
measurements.

The estimation of Ivt is not trivial. Recently, many deep network-
based inertial navigation methods [6, 8, 20] have achieved good posi-
tioning accuracy and robustness. They directly regress velocity from
IMU data without the need for complex initialization processes. We
adopt the overlapping IMU window method proposed in [8] to regress
a high frequency velocity. As shown in Fig. 4, we input IMU data
from windows with some overlap into the ResNet18 network to obtain
motion hidden variables in time sequence. Since motion is regular
and continuous in general, we use the LSTM network to fuse the time
sequence motion hidden variables and finally use a fully connected
layer to regress the corresponding velocity. The data preprocessing and
training process is similar to the method [8]. We train network models
for different devices separately. For the mobile phone model, we use
data provided in [8]. For the AR glasses model, we collect data by
ourselves in different environments with typical motion patterns.

In the prediction step of the particle filter, we first draw samples
from the distributions of ∆ IRt and Ivt , then predict the state through
Eq. (15).

5.2 Magnetic Relative Observation Model
The observation model in our case describes the distribution of magnetic
measurements given the IMU poses. For each predicted state G

IT t ,
we first match the translation pt to the closest grid in the magnetic
field map to obtain the corresponding mean µpt and covariance Σpt

of the magnetic measurement Gmt in the global coordinate, then use
the rotation matrix Rt to further get the distribution of Imt . However,

due to the time-varying bias as we mentioned in Sec. 3, the magnetic
measurement is not always consistent with the distribution.

To conquer the problem introduced by bias, similar to Sec. 4.2,
we take the relative change between measurements as our observation.
Denote the states of one particle at two time steps t and t ′ (t > t ′) as G

IT t

and G
IT t ′ respectively, and the corresponding magnetic measurements

as Imt and Imt ′ . The relative observation of MagLoc-AR at the time
step t with respect to t ′ is defined as

∆Imt,t ′ =
Imt − Imt ′ . (16)

Combining Eq. (16), Eq. (5) and Eq. (8), we can see that when t
and t ′ are close, the slowly-changing bias approximately disappears in
the relative observation. We assume that magnetic measurements are
independent at different times and locations. The distribution of ∆Imt,t ′
is then a linear combination of two independent Gaussian distributions
as

∆Imt ∼N (R−1
t µpt −R−1

t ′ µpt′ , R−1
t Σpt Rt +R−1

t ′ Σpt′ Rt ′). (17)

In order to make the relative observation more distinct across dif-
ferent trajectories, MagLoc-AR maintains a sliding window for each
particle. This sliding window keeps memory of all most recent mag-
netic measurements and corresponding states for the particle in a
pre-defined time duration. Multiple relative observations between
different time steps within the window are combined to calculate
the probability of magnetic measurements. Specifically, suppose the
window includes states and measurements at sequential time steps
(t1, t2, t3, . . . , tn), MagLoc-AR combines relative observations between
tn and all the other previous time steps to update the weight of the
particle from tn−1 to tn as

wtn = wtn−1

n−1

∏
i=1

p(∆Imtn,ti), (18)

where wt indicates the weight at time step t.

6 RESULTS

In this section, we conduct performance evaluation of MagLoc-AR
through various experiments under several typical indoor environments.
As far as we know, there is no available dataset containing visual-inertial
data (images and IMU), magnetic measurements and Bluetooth signals
(RSSI) in large-scale indoor environments for the evaluation. Therefore,
we collect the first dataset of this kind, and use it to compare MagLoc-
AR with both visual-based and wireless-based baselines in terms of
accuracy, robustness and efficiency. We also conduct an ablation study
to verify the effectiveness of the proposed components.

6.1 Dataset
We select four typical indoor environments to analyze the localization
performance of different methods. The first two are visual-friendly, and
the last two are visual-challenging.

• Medium office (MO): An office room of 500m2, with sufficient
light and rich textures.

• Large office (LO): A very large office of 4000m2, with sufficient
light and rich textures.

• Spacious hall (SH): A very spacious hall inside the office build-
ing, with an area of 900m2 and a height of 15m. Walking in the
spacious hall, most contents in the field of view are more than 10
meters away unless looking at the ground.

• Parking lot (PL): A parking lot of 12000m2, with dim light and
repetitive scenes in different areas, which is very challenging for
visual-based methods.

We walked around these four environments holding a panoramic cam-
era Insta360 Pro 2 that can capture 360◦ images of the environment
and record the 9-axis IMU measurements as well. The reconstructed
maps of the environments as well as the representative 360◦ images are
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Fig. 5: Four indoor environments in the dataset.

shown in Fig. 5, and the full 360◦ videos are shown in the supplemen-
tary material. To analyze the performance of the BLE-based method,
we installed Bluetooth beacons on the ceiling beams in the first three
environments, but not in the last one because it was a public area where
it was inconvenient to deploy beacons. We placed one beacon every 2
meters for the medium-scale office (MO), and every 10 meters for the
large-scale office buildings (LO and SH).

We use AR glasses of Shadow Creator Action One Pro, and a mo-
bile phone Huawei Mate30Pro respectively to record three sequences
in each of the four environments, resulting in 24 sequences in total.
Details of the three sequences in each environment are described in
Table 1. Each sequence contains visual-inertial data, magnetic measure-
ments, and Bluetooth signals for comparison among the visual-based
and wireless signal-based methods. The visual data captured by the
AR glasses and the mobile phone are stereo images and monocular
images respectively. The video of the 24 sequences are shown in the
supplementary material.

To perform a quantitative analysis of different localization methods,
it is necessary to recover the ground truth pose for each sequence.
Following previous works [24, 29, 44] that built benchmarks for visual-
based localization in large-scale environments, we use SfM to recover
the groundtruth poses. Specifically, we perform the SfM described
in Sec. 4.1 on all the visual-inertial data from the panoramic camera,
the AR glasses, and the mobile phone in the same environment. The
recovered poses serve as groundtruth.

Table 1: Various types of motions in the dataset

Seq. Motion
MO1 Along a large loop, looking ahead, slow
MO2 Along a large loop, looking around, slow
MO3 Along a large loop, looking around, fast

LO1∼3 In 3 different areas, looking ahead, slow
SH1 Along a loop, looking at the center, slow
SH2 Along a loop, looking at the outer wall, slow
SH3 Along a line and return, looking at the distance, slow

PL1∼3 In 3 different areas, looking around, fast

6.2 Performance Comparison

In this section, we first analyze the performance of the proposed
MagLoc-AR with the visual-based and wireless signal-based baselines
quantitatively and qualitatively in terms of accuracy and robustness,
and then compare the computational efficiency.

6.2.1 Baselines

We select four representative localization methods as baselines. The
first two are visual-based methods, and the next two are wireless signal-
based methods.

• VisLoc: For each frame, SuperPoint features [10] are extracted,
and matched against the global visual map to obtain a set of 2D-
3D feature correspondences, from which the pose is recovered by
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Fig. 6: CDF of the errors of different localization methods for quantitative comparison among visual-based and wireless-based methods. The color
codes of different methods are shown in the top right corner. The four columns correspond to the four environments: Medium office, Large office,
Spacious hall and Parking lot. The first and third rows correspond to the AR glasses data, and the second and fourth rows correspond to the mobile
phone.

EPnP [25] in the framework of RANSAC [15].

• VisLoc+SLAM: We select the visual-inertial SLAM system ORB-
SLAM3 [5] for its well-known accuracy. VisLoc is called every
10 seconds to register the trajectory to the global map.

• BLELoc: We collect RSSIs of BLE beacons in the environment
within a time window of 2 seconds and use the weighted k nearest
neighbor (WKNN) [21] to estimate the locations with respect to
a pre-build BLE database. It can only estimate the position but
not the orientation. The orientation is obtained from the device’s
built-in API, which is usually estimated by [46].

• MagLoc-BL: We implement the method proposed in [41], which
first reconstructs the map by directly performing GPR on the
magnetic measurements registered in a traditional way, and then
performs localization using a particle filter with the constant-
velocity dynamic model and the absolute magnetic observations.

6.2.2 Quantitative Comparison
Evaluation criterion. Typically, there is a trade-off between the ac-
curacy and robustness of a localization method. Different classes of
methods may have different types of trade-offs between accuracy and
robustness. While the same class of methods can be evaluated using
individual metrics such as Root Mean Square Error (RMSE) and local-
ization success rate to evaluate accuracy and robustness respectively, a

more comprehensive evaluation criterion is needed to compare different
classes of methods. We propose to use the Cumulative Distribution
Function (CDF) as a comprehensive evaluation method to reflect both
accuracy and robustness. The point (x,y) on the CDF curve means
that the probability of having an error less than x is y. The faster y
rises in the region of small x, the higher the accuracy; the closer y is
to 1 in the region of large x, the better the robustness; y at the largest
x indicates the localization success rate. If the curve of method A
is higher than that of method B in the entire range of x, it indicates
that A has better both accuracy and robustness; if A and B intersect,
it indicates that one method has higher accuracy while the other one
has better robustness. The CDF curves are shown in Fig. 6. Below
we will use “environment-device" abbreviations to refer to a subfigure,
such as “MO-ARG" for Medium office with AR glasses, “LO-MP"
for Large office with Mobile phone. In addition, ORB-SLAM3 has
stricter initialization requirements than other SLAM methods, as it
mandates stable tracking for 15 seconds to be considered a successful
initialization [5]. Our aim is to provide a general analysis that is less
influenced by a specific algorithmic strategy. So we use data after 15
seconds from the beginning to calculate the CDF curve of errors.

Comparison with visual-based methods. In the visual-friendly en-
vironments MO and LO, the visual-based VisLoc and VisLoc+SLAM
achieve moderately better accuracy than MagLoc-AR, while their ro-
bustness is comparable to MagLoc-AR. By combining SLAM, Vis-
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Loc+SLAM effectively improves the robustness of VisLoc especially
in MO-ARG where VisLoc has the lowest success rate. MagLoc-AR
doesn’t have a clear advantage in these cases, except for MO-MP where
the robustness is slightly better than the visual-based methods. By con-
trast, in the visual-challenging environments SH and PL, MagLoc-AR
shows a clear advantage in terms of robustness. In SH, the environment
is too spacious that most contents in the field of view are far away,
which makes VisLoc+SLAM not only fail to improve VisLoc’s success
rate, but also cause a drastic decrease in both accuracy and robustness.
Although SH-MP does not show an obvious drop on the curve, there
is still significant drift in some frames. About 15% of frames have
errors larger than 5 meters by VisLoc+SLAM. Moreover in PL, the en-
vironment is dim, which poses a challenge for both VisLoc and SLAM.
Even worse, the structure is similar in different regions, resulting in
only 40% success rate of VisLoc. After combining SLAM, the success
rate slightly increases, but still remains much lower than that in the
visual-friendly environments, with about 64% and 46% success rates in
PL-ARG and PL-MP respectively. One of the main reasons causing the
low success rate is that ORB-SLAM3 did not initialize successfully in
this dimly lit environment even after the first 15 seconds that we cut off.
In contrast, MagLoc-AR maintains consistent accuracy and robustness,
and outperforms the visual-based methods significantly in robustness,
while being slightly inferior in accuracy. Only in SH-ARG, due to the
spaciousness of the environment, the magnetic field has less variation
at different locations, which leads to a slight decrease in accuracy than
other environments, but still has a clear advantage over the visual-based
methods.

Comparison with wireless-based methods. Unlike the visual-
based methods, the wireless signal-based methods do not show a clear
trade-off between accuracy and robustness. Their CDF curves barely
intersect, with the higher curve indicating better performance in both as-
pects. For translation, MagLoc-AR outperforms BLELoc and MagLoc-
BL significantly. For orientation, MagLoc-AR also surpasses BLELoc
in most cases due to its ability to eliminate location-dependent mag-
netic interference. The only exception is SH-MP, where the magnetic
interference is small in the spacious environment. In this case, BLELoc,
which uses magnetic measurement as the Earth’s magnetic field, has
better orientation. Compared to MagLoc-BL based on the same princi-
ple as ours, the proposed MagLoc-AR is significantly better because it
can handle the magnetic bias of the consumer-grade IMU and adopt a
dynamic model that aligns with human motion better.

6.2.3 Qualitative Comparison
We qualitatively compare the localization results of different meth-
ods through AR effects. We manually place virtual objects along the
groundtruth trajectory on the global map. Then we use the localization
results of different methods to render these virtual objects from corre-
sponding viewpoints, which are overlaid onto the background image.
If the localization results are accurate, the virtual objects will align
with the image. Otherwise, there will be jitter or drift. The results are
included in the supplementary materials. The qualitative experiment
results and the quantitative results are consistent. Compared to visual-
based methods, MagLoc-AR exhibits moderately lower accuracy but
significantly better robustness. Compared to wireless-based methods,
MagLoc-AR demonstrates significantly higher accuracy and robust-
ness, making it suitable for some AR applications (e.g. AR navigation).
However, we also observed that the visual-based methods, despite their
higher accuracy, still exhibit slight jitter in the AR effect generated
by VisLoc, and moderate drift in SLAM causing noticeable jumps of
virtual objects generated by VisLoc+SLAM, even in the visual-friendly
environments. In the visual-challenging environments, the problem of
jitter and drift becomes more severe. In contrast, MagLoc-AR does
not encounter these issues, demonstrating its robustness advantage over
visual-based methods.

6.2.4 Efficiency Comparison
We use Huawei Mate30Pro to compare the computational efficiency
among different methods. We first compare power consumption. The
results are listed in Table 2. VisLoc is not listed on the first row as an

Table 2: Power consumption in W

VisLoc+SLAM BLELoc MagLoc-BL MagLoc-ARCamera VisLoc SLAM Toltal
2.237 0.036 2.439 4.712 0.025 1.232 1.256

individual method. The reason is it is not practical to call VisLoc every
frame or compute VisLoc on a mobile device. In practice, VisLoc is
typically used in conjunction with SLAM by performing low-frequency
VisLoc on the cloud while tracking by SLAM on the mobile device.
In this regard, VisLoc only consumes the power of the mobile phone
for uploading images and receiving location results every 10 seconds.
We list the result of VisLoc as a component of VisLoc+SLAM and
find that it does not consume much power. Regarding SLAM, since
the purely software-implemented ORB-SLAM3 [5] does not represent
the optimal power efficiency of SLAM, we select AREngine which
has undergone sufficient power optimization as a representative of
practical applications. We also evaluate the power consumption of the
camera itself without running any other algorithms. We find that it
accounts for half of the power consumption of VisLoc+SLAM, which
is a fundamental problem of all vision-based methods.

We evaluate the power consumption of wireless signal-based meth-
ods in the Medium office with the map fully loaded into the memory
while running. For BLELoc, we perform localization using received
beacon signals within a time window of 2 seconds. For magnetic-based
methods, the particle filter is efficient to generate estimates in real-time.
In comparison, all wireless signal-based methods have much lower
power consumption, with BLELoc consuming almost no power. Al-
though the magnetic-based methods consume much more power than
BLELoc, they consume only one-fourth of the power consumption of
VisLoc+SLAM.

Latency is also an important aspect for AR. Long latency will re-
sult in poor AR experiences. Since directly measuring the motion-
to-photon latency is not an easy task, we compare the pose update
rate instead to reflect the latency. Usually the faster the update rate,
the smaller the latency is. The update rates are 30/0.5/500 Hz for
AREngine/BLELoc/MagLoc-AR respectively.

6.3 Ablation Study
We conduct an ablation study by replacing the proposed components
with traditional methods, resulting in five methods. The first two are for
the offline mapping, and the last three are for the online localization.

• Mapping w/o SfM: The proposed SfM introduced in Sec. 4.1
is replaced with a traditional method [21] to register magnetic
measurement to the global map. Waypoints along the acquisition
path are manually set and measured to provide positions of the
magnetic measurements. Pedestrian Dead Reckoning (PDR) [21]
is used for interpolation between consecutive waypoints. Orienta-
tions are obtained from the device’s built-in API. Due to the high
cost of this solution, we only experiment in the Medium office.

• Mapping w/o rectification: The magnetic measurement rectifi-
cation proposed in Sec. 4.2 is disabled.

• Localization with PDR: The network-based velocity estimation
proposed in Sec. 5.1 is replaced with a traditional method [39],
which uses PDR [3] to estimate the velocity.

• Localization with RoNIN: The network-based velocity estima-
tion proposed in Sec. 5.1 is replaced with RoNIN [20], which
also performs relative motion estimation using data-driven neural
networks.

• Localization w/o relative observation: The magnetic relative
observation proposed in Sec. 5.1 is replaced with the traditional
absolute observation [41].

The results of comparison are shown in Fig. 7. In summary, our
proposed MagLoc-AR comprehensively outperforms all the compared
methods. Specifically, in the phase of offline mapping, Mapping w/o
SfM relies on the device’s built-in API orientation, which suffers from
magnetic interference and leads to lower accuracy than the proposed
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Fig. 7: CDF of the errors of different localization methods for ablation study. The color codes of different methods are shown in the top right corner.
The four columns correspond to the four environments: Medium office, Large office, Spacious hall and Parking lot. The first and third rows correspond
to the AR glasses data, and the second and fourth rows correspond to the mobile phone.

SfM. Compared with Mapping w/o rectification, MagLoc-AR also
shows superior performance, demonstrating the effectiveness of han-
dling the time-varying bias in magnetic measurements. In the phase of
online localization, we find that the dynamic motion model based on
PDR aligns better with the motion of head-mounted AR glasses than the
motion of handheld mobile phone which is much more flexible. There-
fore, MagLoc-AR’s advantage over Localization with PDR is more
significant on data of mobile phone than AR glasses. Localization with
RoNIN has comparable performance to MagLoc-AR in most cases,
demonstrating the ability of our method to support other network-based
dynamic models. The only exception is PL-ARG where MagLoc-AR
outperforms Localization with RoNIN significantly. The reason is
RoNIN relies on the orientation obtained from the device’s built-in
API, which is erroneous in this case. Compared with Localization w/o
relative observation, MagLoc-AR’s advantage is the most remarkable
among all methods, once again demonstrating the necessity of handling
magnetic bias in consumer-grade IMU.

7 CONCLUSION

In this work, we present MagLoc-AR, a novel 5DoF visual-free local-
ization solution that achieves sufficient accuracy for AR navigation in
large single-level indoor environments. In the phase of offline mapping,
we use 360◦ images and 9-axis IMU measurements from a panoramic
camera to reconstruct the magnetic field of the environment. In the
stage of online localization, we only use the 9-axis IMU measurements
from AR devices to localize the device in the magnetic map. To meet

the requirement of AR, we propose several methods to handle the non-
negligible magnetic bias of the consumer-grade IMU in both phases of
mapping and localization, as well as a method to better predict human
motion during AR experience in the phase of localization. We also
provide the first dataset for comparison between the visual-based and
wireless-based methods. The evaluations demonstrate the visual-free
MagLoc-AR not only meets the accuracy requirement of AR, but also
has advantages over the visual-based methods in terms of robustness
and power efficiency.

One of the main limitations of MagLoc-AR is its sensitivity to
the variation of magnetic field. In the spacious environments where
magnetic field exhibits less variation across different locations, the
localization performance may degrade. Another limitation is that the
magnetic field map is currently represented as a 2D grid for efficiency
purposes, which prevents MagLoc-AR from localizing the height of
the mobile device. This may be an important consideration for certain
AR applications. We plan to overcome these limitations in future work.
Additionally, we currently only use the magnetometer for localization.
However, we plan to explore its potential for assisting in visual-based
mapping and improving the robustness of SfM in poor-textured and
repetitive environments.
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