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A Low-cost and Scalable Framework to Build
Large-Scale Localization Benchmark for

Augmented Reality
Haomin Liu, Linsheng Zhao, Zhen Peng, Weijian Xie, Mingxuan Jiang, Hongbin Zha, Hujun Bao, Guofeng Zhang

Fig. 1: The reconstructed HD map of a large-scale indoor office building, overlaid with generated groundtruth trajectories of
multiple AR devices including an Android phone (red), an iPhone (green) and an AR glasses (blue). The global top view
is shown in (a). We select five challenging scenarios as shown by the dashed areas boxes in (a) and the details in (b)∼(f),
respectively (b) an area of stairs, (c) a narrow corridor with poor texture, (d) a very spacious atrium with most features ten
meters away, (e) a wide corridor with fair texture, and (f) an exhibition hall with screens of dynamically changing content.

Abstract—Nowadays the application of AR is expanding from
small or medium environments to large-scale environments,
where the visual-based localization in the large-scale environ-
ments becomes a critical demand. Current visual-based local-
ization techniques face robustness challenges in complex large-
scale environments, requiring tremendous number of data with
groundtruth localization for algorithm benchmarking or model
training. The previous groundtruth solutions can only be used
outdoors, or require high equipment/labor costs, so they cannot
be scalable to large environments for both indoors and outdoors,
nor can they produce large amounts of data at a feasible cost.
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In this work, we propose LSFB, a novel low-cost and scalable
framework to build localization benchmark in large-scale indoor
and outdoor environments. The key is to reconstruct an accurate
HD map of the environment. For each visual-inertial sequence
captured in the environment, the groundtruth poses are obtained
by joint optimization taking both the HD map and visual-
inertial constraints. The experiments demonstrate the obtained
groundtruth poses have cm-level accuracy. We use the proposed
method to collect a localization dataset by mobile phones and
AR glasses in various environments with various motions, and
release the dataset as the first large-scale localization benchmark
for AR.

Index Terms—Augmented Reality (AR), Benchmark, SLAM,
Visual Localization, Indoor Localization.

I. INTRODUCTION

Localization is the core to augmented reality (AR). Seam-
less blending of the virtual content and the physical world
requires localizing the 6 degree of freedom (6 DoF) pose
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TABLE I: Comparison of existing groundtruth solutions

Benchmark Groundtruth solution Accuracy Cost Environment
scale

Indoor /
outdoor

Suitable
for AR

KITTI [1] GPS + IMU ∼ dm medium large no / yes no
Rawseeds [2] GPS + Visual tags ∼ m medium medium yes / yes no
VI-Eye [3] External LiDAR ∼ cm medium medium yes / yes no
NCLT [4] GPS + IMU + LiDAR ∼ dm medium large yes / yes no
Complex Urban [5] GPS + IMU + LiDAR ∼ dm medium large yes / yes no
NAVER LABS [6] LiDAR + SfM ∼ cm medium large yes / yes no
EgoCart [7] SfM ∼ cm medium large yes / yes no
PennCOSYVIO [8] Visual tags + Manual measuring ∼ dm medium medium yes / yes yes
ADVIO [9] IMU + Manual labelling ∼ dm – m medium large yes / yes yes
Aachen Day-Night & CMU Seasons [10] SfM + Manual annotation ∼ cm medium large yes / yes no
UMA-VI [11] SfM ∼ cm low large yes / yes no
EuRoC [12] MoCap ∼ mm high small yes / no yes
ZJU-SenseTime [13] MoCap ∼ mm high small yes / no yes
Hilti [14] for indoors MoCap ∼ mm high small yes / no yes
Hilti [14] for outdoors Manual measuring ∼ mm medium medium no / yes no
Proposed LSFB HD map + VI-constraints ∼ cm low large yes / yes yes

of display device in the environment. The most widely used
technique is visual-inertial SLAM (VI-SLAM), which uses
the complementary visual and IMU measurements to localize
the mobile device in unknown environments [15], [16]. The
current VI-SLAM has achieved great accuracy and robustness
in small and medium-scale environments [17], and has been
integrated into AR products such as Apple ARKit, Google
ARCore, and Microsoft Holenlens. The recent explosion of
the concept of Metaverse, which refers to a digital world that
is parallel to the physical world and accessible through AR/VR
devices, has given rise to the demand for ubiquitous and per-
sistent localization of AR devices in large-scale environments.
However, current VI-SLAM techniques still face robustness
challenges (localization failure or wrong localization) and the
drift problem (error accumulation over time) in complex large-
scale environments. Visual localization by matching current
image to a pre-built high-definition (HD) map of the envi-
ronment [18] is a promising way to correct errors. However,
current visual localization also suffers from robustness issues
in complex environments [6], [10]. Wireless signals such as
WiFi, Bluetooth, and magnetic field are generally robust,
but they can only achieve m-level accuracy [19] which is
insufficient for AR.

To push these localization techniques forward, it is im-
portant to have an appropriate benchmark with groundtruth
localization. First, benchmark is a fundamental tool to quanti-
tatively evaluate different algorithms, to fine-tune the param-
eters, and to handle corner cases. Second, recently more and
more deep learning-based approaches are proved to be superior
to the traditional approaches for both visual SLAM [20],
[21] and visual localization [22], [23], but require large
amounts of data covering various types of environments and
motions. Existing solutions for obtaining groundtruth either
require GPS that is not available indoors [1], or require high
equipment/labor costs [8], [12], so they cannot be scalable
to large environments for both indoors and outdoors, nor
can they produce large amounts of data at a feasible cost.
Third, most wireless signal-based localization methods require
collection of wireless signals associated with groundtruth
locations throughout the entire environment. The groundtruth
locations are traditionally labeled by human on the floor
plan for each collected signal [19], hindering its large-scale

promotion, and creating demand for an automatic way to
obtain groundtruth locations.

In this work, we propose LSFB, a novel Low-cost and
Scalable Framework to build localization Benchmark in large-
scale environments. As shown in Fig. 1, our framework is
based on building an accurate HD map of the environment.
For each visual-inertial sequence captured in the environment,
the groundtruth poses are obtained by joint optimization taking
both the HD map and visual-inertial constraints. Compared to
the existing groundtruth solutions, our method is the only one
with a combination of the following attributes:

• cm-level accuracy
• low cost
• scalable to large environment
• suitable for both indoor and outdoor
• suitable for AR

Detailed comparison is listed in Table I, and explained in
Sec. II-A.

A preliminary conference version of LSFB appeared in [24].
In this paper, we elaborate on the details of the method, and
make the following additional contributions:

• We quantitatively evaluate the accuracy of groundtruth in
a medium-scale indoor scene by laser rangefinder, and
in a large-scale outdoor scene by high-precision GPS,
whereas the prior paper only evaluated the accuracy in a
small room by VICON. The ATE for small/medium/large
scene is less than 2/4/10 cm respectively. Details are in
Sec. VI-A.

• We extend the dataset with various types of challenging
scenarios (spacious, textureless, dynamic, stairs, etc) and
motions (looking around, nearly rotation, running, etc),
and also extend with wireless signals (WiFi, Bluetooth,
and magnetic field) in the indoor environments. Details
are in Sec. VI-B and shown in the supplementary video.
This extension makes this dataset the only one to date
containing visual-inertial measurements and wireless sig-
nals in a variety of large-scale environments with various
motions.

• We evaluate three state-of-the-art SLAM systems by the
dataset to verify the validity of the dataset, listed in
Sec. VI-C. The results also show that the current SLAM
algorithms still face challenges of robustness in the com-
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plex large-scale environments, which in turn confirms the
necessity of building such a benchmark.

II. RELATED WORK

In this section, we first compare the existing groundtruth
solutions, then review the relevant localization techniques.

A. Groundtruth Solution

The existing groundtruth solutions are listed in Table I.
The very popular KITTI [1] uses a high precision GPS/IMU
to produce 6 DoF groundtruth poses in large-scale outdoor
environments. To extend to indoor area where GPS is not
available, Rawseeds [2], VI-Eye [3], NCLT [4], Complex
Urban [5], and NAVER LABS [6] propose to use visual tags
or LiDAR scan matching as additional pose constraints. In
Rawseeds [2], the visual tags are attached to the moving robot,
observed by an external network of pre-calibrated cameras and
laser scanners. Similarly in VI-Eye [3], external LiDARs are
required to be deployed in the environment. The deployment of
external cameras and/or LiDARs limits the scalability. Oppo-
site to this outside-in solution, NCLT [4], Complex Urban [5],
and NAVER LABS [6] use the inside-out measurement of
LiDAR scan matching, alleviating the scalability limitation.
NAVER LABS [6] further uses structure from motion (SfM)
with 6 industrial cameras and 4 smartphones mounted on the
mapping platform to refine poses, achieving cm-level accuracy.
EgoCart [7] also obtains groundtruth poses by SfM, but it
only uses two stereo cameras mounted on a shopping cart
(for example the Amazon Dash Cart1). All these methods
have to mount the localization sensors on a wheeled ground
vehicle/robot/cart to collect data. The motion style is quite
different from the handheld/wearable AR devices, and the
equipment and operation cost is not low.

By contrast, PennCOSYVIO [8] and ADVIO [9] use a
handheld VI-sensor as the localized device, thus they are
suitable for AR and the device cost is lower. But they
respectively require manually measured visual tags placed
in the environment [8], or manually labeled locations on
the floor plan [9], therefore, the operation cost is higher.
The requirement of deploying visual tags by PennCOSYVIO
also limits the environment scale. Aachen Day-Night and
CMU Seasons proposed in [10] are two commonly used
datasets for long-term visual localization. Groundtruth poses
are obtained by SfM [25]. Considering the challenges of day-
night and across seasons, manually labeled correspondences
are required, increasing operation costs. Also the unordered
images are not suitable for AR. UMA-VI [11] also obtain
groundtruth poses by SfM, but only for the start and end
segments for each trajectory, since all challenges occur in the
middle segments and the images cannot be registered by SfM.
It is not suitable for AR that requires groundtruth for each
frame, and offers limited help in improving robustness to the
challenging cases.

In terms of accuracy, the localization error of groundtruth
for most of the aforementioned solutions are dm∼m according
to the literature [9], which is insufficient for AR. The most

1https://www.amazon.com/b?ie=UTF8&node=21289116011

accurate solution to date requires a high-precision motion
capture (MoCap) system such as the VICON system, which
is used by EuRoC [12] and ZJU-SenseTime [13], providing
groundtruth of mm-level accuracy. However, they require
many expensive cameras deployed in the environment (∼30K
dollar for a 20 m2 room). For large-scale environments, the
cost will be prohibitively high. Hilti [14] proposes different
solutions for indoors and outdoors. For indoors, it also uses
MoCap as EuRoC and ZJU-SenseTime. For outdoors, data is
collected in a “stop and go” fashion, and a total station is
used to measure the prism during the periods of “stop”. The
manual measuring increases the operation cost and limits the
scalability, and missing groundtruth during “go” periods makes
it not suitable for AR.

Compared to the existing methods, LSFB proposed in
this work does not require manual labeling, or deploying
equipment or markers in the environments, thus is low-cost
and scalable to large environments both indoors and outdoors.
The localized device does not need to be mounted on the
platform, and can be moved freely to collect various motion
data suitable for AR. The only requirement is that the HD map
of the environment should be accurately reconstructed before
data collection, which is enabled by the recently matured 3D
reconstruction techniques [26]–[31]. With the help of HD map,
LSFB can achieve cm-level accuracy.

B. Localization
Simultaneous Localization and Mapping (SLAM) is one

of the most widely used localization techniques for AR.
PTAM [32] is the first visual SLAM (V-SLAM) system that
is able to track camera motion in real-time on mobile devices.
Bundle Adjustment (BA) [33], [34] that jointly optimizes
keyframe poses and 3D points is performed in a background
thread to ensure accuracy without damaging real-time per-
formance. This framework is used by most of the recent V-
SLAM systems [35]–[37]. Visual-Inertial SLAM (VI-SLAM)
combines complementary visual and inertial measurements
to achieve better accuracy and robustness, and becomes a
standard technique for current AR applications. The most suc-
cessful VI-SLAM systems include MSCKF [38], OKVIS [39],
VINS [15], ORB-SLAM3 [16], etc. Delmerico and Scara-
muzza give an elaborated evaluation of the state-of-the-art VI-
SLAM systems [17].

SLAM localizes camera poses in the local coordinate of the
first frame. For many AR applications, localization should be
performed in the global coordinate where the virtual contents
are attached to. The global localization can be obtained by
GPS outdoors [40], or by matching to a pre-built HD map
for both indoors and outdoors [18]. The global localization
can also be used to limit the accumulating error of local
SLAM. For example, camera can be relocated by global
localization such that the accumulated error is reset. There
are also works that propose to tightly couple the constraints
from global localization and from local SLAM in order to
limit the accumulating error and ensure the smoothness at the
same time [41], [42].

Visual localization is the key building block to obtain the
global localization in the pre-built HD map, or to detect

https://www.amazon.com/b?ie=UTF8&node=21289116011
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Fig. 2: The framework of the proposed method.

loops for SLAM [43]. Traditional methods [44]–[46] mainly
aim to improving the efficiency and accuracy of the 2D-3D
correspondence search. Recent approaches resort to learning-
based features (SuperPoint [47], D2-Net [48], FSRA [49],
DISAM [50] etc) to improve the robustness against view-
point changes, motion blurs, and illumination variations. Lo-
calization can also be estimated in an end-to-end manner
(PoseNet [51], MapNet [52], LPN [53], etc) due to the strong
capacity of deep neural networks. The main limitation is the
generalization problem. The poses would be terribly wrong
in viewpoints that are not covered by the training set. A
large amount of training data with groundtruth localization is
required to make these learning-based methods work. Besides,
visual-based methods still face great robustness challenges of
repetitive structure, poor texture, occlusions, large viewpoint
changes, low light, etc [6].

Wireless signal-based localization is more robust to the
challenges of visual-based methods, but usually requires the
deployment of signal transmitter in the environment, such
as WiFi Access Point (AP), Ultra Wideband (UWB), and
Bluetooth Beacon [54]–[56]. Spatial variation of the ambient
magnetic field caused by magnetic material in the struc-
tures of buildings can also be a useful signal for indoor
localization [57], [58], which eliminates the need for the
deployment of signal transmitter. However, building the signal
map of the environment usually requires manual labeling of the
collected wireless/magnetic measurements on the floor plan
[19]. In addition, these methods can only achieve m-level
accuracy according to a recently held competition for wireless
signal-based indoor localization [19], thus they are insufficient
for AR. Nevertheless, wireless signal-based methods can be
combined with visual-based methods owning to their comple-
mentary nature in terms of accuracy and robustness.

III. METHOD OVERVIEW

The framework of the proposed method is illustrated in
Fig. 2. In this section, we give an overview of the proposed
method, focusing on how the building blocks are integrated
to build the benchmark. The details will be elaborated later
in Sec. IV for HD map reconstruction and in Sec. V for
groundtruth generation.

First we introduce the coordinate system and notation used
in this paper. The vector coordinates have their reference
system as the left superscript. BTA denotes the transformation
from coordinate A to B by

BX = BTA ◦ AX =
[BRA

BtA
][AX

1

]
(1)

where R and t are rotation and translation components respec-
tively. f (W TC,X) is defined as the function that projects a 3D
point in world coordinate W X to the image by camera pose
W TC

f (W TC,
W X) = π

(
K
(W T−1

C ◦W X
))

(2)

where K is the pre-calibrated camera intrinsic matrix, and
π([x;y;z]) = [x/z;y/z].

We develop a backpack 3D scanner for HD map recon-
struction. The scanner is comprised of a Velodyne Ultra Puck
VLP-32C 3D LiDAR to capture the 3D point cloud, and
a customized Mynt VI-sensor with four cameras to capture
the 360° images of the environment, as shown in the top-
left picture of Fig. 2. The total weight is 12.5kg and the
dimensions are illustrated in the picture. Other similar off-
the-shelf 3D scanners (such as NavVis VLX2, BMS3D3, etc)
can also be used. To guarantee the quality of data acquisition,
we run a 3D LiDAR-SLAM that performs real-time dense
mapping during data acquisition (Sec. IV-B). The reconstruc-
tion result is displayed in the handheld screen, guiding the
operator to perform a complete and algorithm-friendly data
acquisition. The HD map is comprised of a set of 3D feature
points, associated with feature descriptors for the subsequent
visual localization. 2D features are extracted and matched
throughout the 360° images. The 3D points could be obtained
by triangulation from 2D feature points and known camera
poses [59]. However, we find that the pose from online
LiDAR-SLAM is not accurate enough. Directly using this pose
for triangulation would result in noisy HD map. We propose
an offline optimization taking both the visual and LiDAR
constraints to further refine the HD map (Sec. IV-C).

Once the HD map is reconstructed, it can be used to
generate grountruth localization for all the mobile devices
moving in the same environment. For each frame in the
localized sequence, visual localization is performed to find a
set of feature correspondences between the 2D feature points
in the localized images and the 3D feature points in the HD
map (Sec. V-A). We call the obtained 2D-3D correspondences
as HD map feature matches. The camera poses could be simply
obtained from these correspondences by PnP [60]. However,
visual localization has robustness difficulties in the complex

2https://www.navvis.com/vlx
3https://www.aniwaa.com/product/3d-scanners/viametris-bms3d/

https://www.navvis.com/vlx
https://www.aniwaa.com/product/3d-scanners/viametris-bms3d/
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large-scale environments [6], insufficient as groundtruth. In
addition, there would be jitters due to lack of temporal
constraint, thus it is not suitable for AR with strict requirement
on smoothness. We propose to use the visual-inertial measure-
ments in the localized sequence as temporal constraint to im-
prove robustness and smoothness. For this end, we extract and
match features throughout the localized image sequence. We
call them local map feature matches. Groundtruth generation
is formulated as an optimization problem taking the visual-
inertial constraints (Sec. V-B). The optimization is solved
by Bundle Adjustment (BA) [33]. Since BA is known to be
sensitive to the initial value, it is the most ideal to perform BA
after each frame is added. However, it would quickly become
computationally infeasible as the number of frames grows.
We propose an efficient optimization strategy to tackle this
challenge (Sec. V-C).

IV. HD MAP RECONSTRUCTION

This section elaborates the hardware and software solu-
tion for HD map reconstruction. The solution is similar to
NAVER LABS [6], where a camera-LiDAR mounted 3D
scanner is developed for high-quality data acquisition, and
the visual and LiDAR measurements are fused for accurate
3D reconstruction. Compared to NAVER LABS, we focus on
accurate reconstruction of 3D feature points which will be
used for subsequent groundtruth generation, whereas NAVER
LABS focuses on camera poses which are directly used as
groundtruth.

A. Backpack 3D Scanner

As shown in the top-left picture of Fig. 2, a 3D LiDAR is
placed on top of a fixed structural part containing an array of
4 cameras capturing the 360° images of the environment and
an IMU. The camera specification is listed in Table III. All
sensors are hardware synchronized and carefully calibrated.

For each of the 4 cameras i, we separately use Kalibr [61] to
calibrate the intrinsic parameters and the camera-IMU extrinsic
IT̂Ci , and use AutoWare [62] to calibrate the LiDAR-camera
extrinsic

CiT̂L. Other calibration tools such as [63], [64] can
also be used. To account for the error in each of the separated
calibration, we construct the pose graph to further optimize the
4 camera-IMU extrinsics ITCi and the LiDAR-IMU extrinsic
ITL jointly

argmin
ITCi ,

ITL

4

∑
i=1

∥log(ITCi ◦
IT̂−1

Ci
)∥2

ΣC
+

4

∑
i=1

∥log(IT−1
Ci

◦ ITL◦
CiT̂−1

L )∥2
ΣL

(3)
where function log(·) converts the rigid transformation to the
minimal 6D residual vector. The covariance matrix ΣC/ΣL
accounts for the error in the separated calibration, which is
set to be the diagonal matrix with all rotation components
0.01 rad2 for both ΣC and ΣL, all translation components 0.03
m2 for ΣC and diag(0.03,0.03,0.15) for ΣL. We set the z-
translation component of ΣL to a larger value, because the
vertical resolution of LiDAR measurement is much lower than
the horizontal resolution, leading to larger calibration error in
the z-translation.

Fig. 3: The reconstructed HD map using poses of LiDAR
SLAM to triangulate features (red box), and refined by visual-
LiDAR optimization (green box). After optimization, the noise
of point is alleviated and the 3D structure becomes clearer.
Four 3D points are selected to evaluate the accuracy of four
distances among the four points (blue dots and lines). The 3D
points are triangulated from manually labeled 2D points on
the images (purple crosses in the purple box).

B. LiDAR SLAM

We select Google Cartographer [28] for its robustness,
convenience and the ability to close large loops in real-time.
Other LiDAR SLAM such as [65], [66] can also be used as
alternatives. During online scanning, IMU measurements are
used to project LiDAR points to the latest LiDAR frame at
time i (called undistortion). The optimal LiDAR pose W TLi

that best aligns the undistorted point cloud to the global
map is recovered in real-time. The stream of 360° images,
the undistorted LiDAR point clouds and the LiDAR poses
are stored for offline visual-LiDAR optimization. The LiDAR
point cloud on each LiDAR frame is downsampled to 20% for
compression purpose.

C. Visual-LiDAR Optimization

Given the undistorted LiDAR point cloud for each frame, we
first use LOAM [67] to extract plane and edge features and ob-
tain a set of plane/edge correspondences between point clouds
by ICP [68]. Denote the plane and edge correspondence set
as Lp = {(np,mq,mn)} and Le = {(np,mq,ml)} respectively,
where np is the feature point in the source cloud n, mq the
matched point in the target cloud m with the normal vector mn
for plane feature and the direction vector ml for edge feature.
The LiDAR constraint Lp and Le are combined with the visual
constraint to refine the accuracy of HD map. The set of image
feature correspondences is denoted as V = {xi j}, where xi j
is the 2D image observation of the 3D feature j in frame i.
Combining LiDAR and visual constraints, we jointly optimize
the LiDAR poses W TLi and 3D feature points X j

argmin
W TLi ,X j

∑
(np,mq,mn)∈Lp

∥mnT · (W T−1
Lm

◦W TLn ◦ np−mq)∥2
Σp

+ ∑
(np,mq,ml)∈Le

∥ml× (
W T−1

Lm
◦ LmTLn ◦ np−mq)∥2

Σe

+ ∑
xi j∈V

∥ f (W TLi ◦
LTC,X j)−xi j∥2

Σv

(4)

where the three residuals are LiDAR point-to-plane, LiDAR
point-to-edge distance error and image feature reprojection
error. Σp, Σe and Σv are the covariance matrices for the three



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 2023 6

TABLE II: The accuracy comparison between LiDAR-SLAM
and visual-LiDAR optimization.

ab ac ad bc avg
dist. (m) laser rangefinder 11.07 15.72 16.96 7.62

LiDAR-SLAM 41.45 33.20 29.51 22.40 31.64err. (cm) vis.-LiDAR opt. 5.25 1.04 19.89 0.26 6.61

residuals, which are set to be the diagonal matrices with
diagonal elements 0.2 m2, 0.5 m2 and 2 pixel2 respectively.
W TLi is initialized by the result of LiDAR SLAM and X j
is initialized by triangulation [59]. Eq. 4 is solved iteratively
using the LM algorithm [69].

The plane/edge correspondences depend on LiDAR poses.
After LiDAR poses are refined, we update the plane/edge cor-
respondences and solve Eq. 4 again. This process is repeated
until convergence. The reconstructed HD map is visualized
in Fig. 3. It can be observed that directly using the poses
of LiDAR SLAM to triangulate features results in very noisy
visual map. By the proposed visual-LiDAR optimization, the
reprojection error corresponding to the third term in Eq. 4 is
reduced from 11.62 to 1.10 pixels. To quantitatively evaluate
the accuracy, we select four 3D points that are triangulated
from manually labeled 2D points on the images. We use a laser
rangefinder to measure four distances among the four points,
and compare them with the distances from the 3D points trian-
gulated by poses before and after the proposed optimization.
The results are listed in Table II. The average distance error
is reduced from 31.64 to 6.61 cm after optimization.

V. GROUNDTRUTH GENERATION

With an accurate HD map of the environment and a
localized visual-inertial sequence captured in it, we inte-
grate the global visual localization constraint from HD map
(Sec. V-A) and the local motion constraint from visual-inertial
measurements to formulate groundtruth generation as a joint
optimization problem (Sec. V-B), and propose a strategy to
solve the problem efficiently for large-scale dataset (Sec. V-C).

A. Visual Localization

We extract features for each localized image and match
against HD map to find the HD map feature matches. Com-
pared with our prior work [24], we replace the traditional
handcrafted SIFT [70] feature with the deep learning-based
feature SuperPoint [47] for its superior robustness. Each 2D
image feature is associated with a 3D point in the HD map
by an efficient method for Approximate Nearest Neighbor
(ANN) search. Specifically, all features in the HD map are
indexed using product quantization [71] in advance. For each
feature in the query image, the k nearest neighbours from the
HD map are retrieved, where k = 25 in our experiments. The
voting strategy proposed in [72] is used to remove outliers
whose votes are less than 6. Outliers are further removed by
RANSAC [73] with P3P algorithm [60]. For AR glasses with
stereo camera, inliers should satisfy the reprojection constraint
for both left and right images.

B. Visual-Inertial Constraints

The visual-inertial constraints used to generate groundtruth
are comprised of the HD map feature matches obtained by
visual localization (Sec. V-A), the local map features matches
in the localized sequence, and the IMU measurements between
consecutive frames.

To find the local map feature matches, we select both
KLT [74] and SIFT [70] feature for their complementary
property, i. e. better robustness of KLT, and better accuracy
of SIFT and its ability to close loops. We use the KLT
feature for consecutive frame tracking and estimate the camera
motion combined with IMU measurements, similar to the VIO
systems [15], [38]. Then, we use the local map-based method
to find matches for SIFT features, similar to ORB-SLAM [36].
Specifically, the local map of 3D points generated by SIFT
features are projected to the current frame, and the feature
matches are searched around the projection region. The similar
idea is also used to enhance feature matching against HD map
used in our prior work [24], which proposed to match HD map
features for each individual frame. In this work, we leverage
the motion estimates between adjacent frames to promote
feature matching. The HD map points that were successfully
matched to the previous frames but failed to be matched to
the current frame by visual localization (Sec. V-A) are given
a second chance, by projecting them to the current frame and
searching around the projection region. In this way, the number
of commonly matched HD points between consecutive frames
can be increased, by which the jumpiness of visual localization
can be alleviated. For the SuperPoint features that are extracted
but not matched to the HD map, we also add them to the local
map, and match them to the subsequent frames.

In addition to the local map-based feature matching, we
perform loop detection to match the local map features among
non-consecutive frames. In this way, even if it sometimes fails
to match to the HD map, it has a certain ability to eliminate the
accumulating error of VIO. We use VLAD [75] to categorize
feature descriptors into clusters according to the pre-trained
VLAD codebook, and retrieve the most similar image k for
each current image i. For each local map feature in image i,
we search in the corresponding cluster for the feature with the
closest descriptor in image k as the candidate feature match.
Candidates are filtered by RANSAC with P3P algorithm.

Combining the visual constraint from both HD map and
local map feature matches, and the inertial constraint from
IMU measurements, the problem of groundtruth generation
is formulated as the optimization that jointly optimizes the
camera motion parameters and the 3D points of local features:

argmin
Ci,X j

∑
i

(
∑

j
∥ f (W Ti,X∗

j)−x∗i j∥2
Σ∗ +∑

j
∥ f (W Ti,X j)−xi j∥2

Σ

)
+∑

i
h(Ci,Ci+1)

(5)
where Ci = (W Ti,vi,ba,bg) are camera motion parameters for
image i, comprised of the camera pose W Ti, the velocity vi
and the IMU bias ba and bg for acceleration and gyroscope
measurement respectively. {(X∗

j ,x∗i j)} and {(X j,xi j)} are re-
spectively the set of HD map and local map feature matches
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Fig. 4: The runtime comparison of BA

found in image i, with X∗
j the fixed 3D point in the HD map

and X j the 3D point of local feature to be optimized. x∗i j and xi j
are the corresponding 2D feature measurement in the image.
h(·) is the IMU cost function evaluating the difference between
relative camera motion and the pre-integration result calculated
from IMU pre-integration [76].

C. Efficient Joint Optimization

Eq. 5 is solved by BA [33]. BA is essentially a non-
linear optimizer, which is sensitive to the initial value. It is
the most ideal to perform BA after each frame is processed
to give the optimal estimate for the next frame. However,
it would quickly become computationally infeasible as the
number of frames grows. We leverage the keyframe strategy
that is widely used in current SLAM systems [32], [36], [37]
to reduce the computational complexity. Specifically, for each
incoming frame i, if it observes less than 35 previous local
features, it will be selected as a new keyframe, and triggers
the global BA performed on all keyframes. Otherwise we
record the transformation kTi from i to its nearest keyframe
k, which is the one shares the most common features with
i. The 3D point of local feature j is also transformed to
the nearest keyframe k of the frame from which the feature
is first extracted kX j =

W T−1
k ◦ W X j. After all frames are

processed, we recover the camera pose for each non-keyframe
i by W Ti =

W Tk ◦ kTi and the 3D point for each local feature
j by W X j =

W Tk ◦ kX j as the initial value for the final global
BA performed on all keyframes and non-keyframes.

Even with the keyframe strategy, the bottleneck still exists
since the complexity of BA grows quadratically with the
number of keyframes. For large-scale dataset, it will quickly

TABLE III: Specification of cameras

Backpack
3D scanner

AR device
An. phone iPhone AR glasses

#Cam. 4 1 1 2
Res. 1280×800 640×480 640×480 640×400
FoV 106◦×65◦ 67◦×53◦ 68◦×53◦ 126◦×80◦

Freq. 20 Hz 30 Hz 30 Hz 30 Hz
GS / RS* GS RS RS GS
* Global shutter / rolling shutter

become computationally infeasible to perform global BA for
each incoming keyframe. Most SLAM systems reduce the
computational complexity by local BA or the pose graph
approximation [15], [36], which is not accurate enough to
be used as groundtruth. We use the incremental BA solver
ICE-BA [77] to break this limit. ICE-BA is specialized for
the VI-SLAM problem in which the incoming visual-inertial
measurements arrive sequentially. It explicitly leverages this
fact and re-uses the intermediate results of previous opti-
mization to avoid redundant new computation, to achieve
the exact solution with significantly higher efficiency. Fig. 4
compares the scalability to a traditional BA solver Ceres [69]
whose runtime grows quadratically as expected, whereas ICE-
BA remains nearly constant thus being scalable to long-time
exploration in large-scale environment.

VI. RESULTS

In this section, we first conduct experiments to analyze the
accuracy of the proposed LSFB quantitatively (Sec. VI-A),
then give a detailed introduction to the collected groundtruth
dataset which will be released as a new localization benchmark
for AR (Sec. VI-B). Finally, we use the dataset to evaluate and
analyze three state-of-the-art SLAM systems (Sec. VI-C).

Throughout the experiments, we use the customized back-
pack 3D scanner to reconstruct the HD map of the environ-
ments, and use three off-the-shelf AR devices to collect the
visual-inertial data in the environment. The three AR devices
are: an Android phone Huawei Mate 30 Pro, an iPhone XS
Max and an AR glasses of Shadow Creator Action One Pro.
The camera specifications for the backpack 3D scanner and
the AR devices are listed in Table III.

A. Accuracy

We conduct three experiments to quantitatively evaluate the
accuracy of the proposed LSFB, in a small, medium and large
scale environment respectively.

For the first experiment, we use the high-precision MoCap
system VICON as proposed in [12], [13] to evaluate the
accuracy of LSFB in a small room (∼20 m2). For each of

Fig. 5: Trajectory comparison in a small room for (a) Android phone, (b) iPhone and (c) AR glasses. For each AR device, we
compare the trajectories obtained by VICON, visual localization and LSFB respectively.
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TABLE IV: RMS-ATE (cm) in the small room

An. Phone iPhone AR glasses
LSFB 1.46 1.14 0.54

SIFT
(scc. rate)

11.23
(97%)

6.81
(65%)

8.83
(98%)Visual

localization SuperPoint
(scc. rate)

8.23
(100%)

5.34
(99%)

0.81
(100%)

75% 1.45 1.20 0.64
50% 1.55 1.46 0.69
25% 2.34 2.02 0.83

LSFB with
portion of

visual
localization 0% 2.50 1.82 1.36

the three AR devices, we walked around the room three
times at the speed of ∼1 m/s. The camera poses estimated
by both LSFB and visual localization are compared to that
measured by VICON as groundtruth. The results of RMS-
ATE (Root Mean Squared Absolute Trajectory Error) [78]
are listed in Table IV. For visual localization, we compare
ATE together with the success rate using SIFT and SuperPoint
respectively. The success rate is defined as the percentage of
frames that have matched more than 30 HD map features. It
can be seen that both accuracy and success rate of SuperPoint
are higher than that of SIFT. However, there is still frequent
jitter in the trajectory of SuperPoint, as shown in Fig. 5. By
contrast, LSFB generates smoother trajectory with ATE below
2cm for all devices. In this simple experiment, most frames
can be matched to HD map by visual localization. This may
not be the case in practice for large-scale environments. To
investigate the effect of HD map on the accuracy of LSFB,
we further conduct another experiment to remove a portion
of HD map feature matches and evaluate the result using
remaining constraints. Specifically, we divide the HD map into
four quadrants equally according to the (x,y) coordinates of
3D points. Each time we remove HD map points belonging to
one more quadrant, remaining namely 75%, 50%, 25% and 0%
portion of the original HD map feature matches. The results
are listed in Table IV. It can be seen that as long as there
are more than half of the HD map constraints, the accuracy
remains similar, which is obviously better than that without
any HD map constraints.

The MoCap-based experiment can only be conducted in the
small room due to the cost of equipment and deployment. To
quantitatively evaluate the accuracy in larger environment, we
design another experiment in a medium-scale indoor office

TABLE V: RMS-ATE (cm) for AR glasses in three environ-
ments

Env. scale small medium large
LSFB 0.54 3.48 9.00

LSFB w/o loop 0.56 4.19 9.18

(∼500 m2). As shown in Fig. 6(a)(b), we mark 15 points
p1...10 and q1...5 at the intersections of the floor tiles, so that
each pair of points (pi, p j) and (qi,q j) is on the horizontal
line, and each (pi,qi) is on the vertical line. Denote the set of
horizontal pairs as H = {(pi, p j)}∪{(qi,q j)}, and the set of
vertical pairs as V = {(pi,qi)}. We use a laser rangefinder4

to measure the distance for these point pairs as shown in
Fig. 6(c). Note that other pairs such as (p1,q2) cannot be
measured due to occlusion in between. We calculate the
coordinate of the 15 marked points by solving the least squares
problem

argmin
p1...10,q1...5

1
σ2

m

(
∑

(p,q)∈H∪V
(|p−q|−m(p,q))2

)
+

1
σ2

d

 ∑
(pi,p j)∈H

(y(pi)− y(p j))
2 + ∑

(p,q)∈V
(x(p)− x(q))2


(6)

where m(p,q) is the distance measurement between point pair
(p,q). x(p) and y(p) are the x and y coordinate of point
p respectively. The first term accounts for the measurement
errors with variance σm, and the second/third term accounts
for the deviations of points from horizontal/vertical lines with
variance σd . We set σm and σd to 1 mm. The resulting error
of solving Eq. 6 is 2.76/0.27/9.45 mm for the three terms
respectively, indicating the accuracy of the marked points,
which is sufficient to evaluate the accuracy of the proposed
LSFB. We fix the AR glasses on a square box and place the
box on each of the marked points for a while, as shown in
Fig. 6(d), along the blue trajectory shown in Fig. 6(a). The
estimated localization for the 15 points are manually selected
by the z-coordinates as shown in Fig. 6(e). The ATE of the 15
points is shown in Fig. 6(f), and the RMS-ATE is 3.48 cm.

To evaluate the accuracy in even larger environment, we
use the high-precision GPS & GNSS equipment NovAtel

4We use the Deli 100m laser rangefinder with ±1 mm error.

Fig. 6: Accuracy evaluation in a medium-scale indoor office. (a) The AR glasses are moved along the trajectory passing through
15 selected points. (b) The points are selected at the intersections of the floor tiles and marked as crosses. (c) The distances
between point pairs are measured by a laser rangefinder. (d) The AR glasses are fixed on a square box and the box is placed
on each of the marked points for a while. (e) Eleven moments when the box was resting on the ground are manually selected
in the trajectory according to the z-coordinate. (f) The ATE of the 15 points on the trajectory recovered by the proposed LSFB.
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Fig. 7: Accuracy evaluation in a large-scale outdoor office
park. (a) NovAtel and AR glasses are mounted on a car.
(b) Trajectories obtained by NovAtel, visual localization and
LSFB respectively.

PwrPak7 5 which has mm-level accuracy. As illustrated in
Fig. 7, we mount the NovAtel and AR glasses on a car, and
drive a few laps in a large-scale outdoor office park (∼10000
m2). Since both the body and world reference systems are
different between NovAtel and LSFB, as well as the time
reference, we should perform hand-eye calibration and time
synchronization to align the two trajectories [79]. We denote
the pose obtained by NovAtel at each timestamp t as GTN(t),
and the pose obtained by LSFB as HTA(t), where G/N/H and A
are reference system of GPS/NovAtel/HD map and AR glasses
respectively. We align the two trajectories as

argmin
GTH ,N TA,t0

∑
t
∥log(GTH ◦HTA(t)◦NT−1

A ◦GT−1
N (t0 + t))∥2

ΣN

(7)
The covariance matrix ΣN is set to be the diagonal matrix with
rotation components 0.01 rad2 and translation components
0.003 m2. The aligned trajectories are shown in Fig. 7(b).
The RMS-ATE for LSFB and visual localization are 9.00 and
151.51 cm respectively. Compared to the first experiment in
small room, the advantages of LSFB over visual localization
is more prominent in large-scale environment, since most HD
map points are far away and do not provide enough constraints
for accurate visual localization. Incorporating temporal con-
straints significantly improves the accuracy and smoothness.

Note that the three data collection methods described above
are experiments we conduct to evaluate the accuracy of LSFB,
not the method we use to collect the dataset. The RMS-ATE
for the three environments are listed in Table V. We also
compare ATE without loop closure. We find that HD map is
the major reason for the high accuracy. With the constraint of
HD map, the accumulating error has been effectively bounded.

5https://novatel.com/products/receivers/enclosures/pwrpak7

In this case, loop closure has only a small improvement in
accuracy.

B. Dataset

We use the proposed LSFB to collect localization data in
various types of large-scale environments with various types of
motions. The environments and motions are listed in Table VI
and Table VII respectively, and details are shown in the
supplementary video.

In our prior work [24], we collected data in three indoor
and/or outdoor environments, listed in the first three rows
of Table VI. To enrich the diversity of environments, this work
further selects a large indoor office which contains a variety of
typical challenging scenarios (spacious, textureless, dynamic,
stairs, etc) to expand the dataset. As listed in Table VI, we first
collect localization sequences covering the entire office (4-th
row), then collect in each challenging scenario individually
to focus on the performance in the specific scenario (the last
five rows). We also extend various types of motions as listed
in Table VII. The first six sequences (O0∼O2 and M0∼M2)
are from the prior work [24], where the motion is mostly
slowly walking forward. In this work, we extend other motions
that are often present in AR applications such as looking
around and sideways walking, as well as the challenging
motions for visual SLAM such as nearly rotation, running,
and walking through the crowd. Each motion is performed
three times using Android phone, iPhone and AR glasses
respectively, obtained 75 sequences in total for the 25 motions.
The HD maps overlaid with the 75 groundtruth trajectories for
the nine environments, and the corresponding images for the
three AR devices are shown in Fig. 1 in the supplementary
document.

Another extension is we collect the wireless signals in
addition to the visual-inertial measurements for the indoor
sequences, specifically sequences captured in “medium indoor
office” and “large indoor office”. For indoor localization, the
visual-based methods and the wireless signal-based methods
are complementary in nature, where the former is more
accurate and the latter is more robust. However, the existing
datasets contain only one of them and cannot be used to fuse
the two information. To fill this gap, we deploy the WiFi APs,
and Bluetooth Beacons in the indoor environments, and collect
the WiFi and Bluetooth signals as well as the magnetic field
received on the mobile phone. The timestamps of wireless
signals are synchronized with visual-inertial measurements,
such that the localization for each signal can be extracted
from the groundtruth trajectory generated from visual-inertial

TABLE VI: Various types of environments in the dataset

Environment Size (m×m) Seq.1 Description
Office park (outdoor) 100×100 O0 Office park including large office buildings and a medium-scale plaza
Office park (indoor & outdoor) 100×100 O1, O2 Office park including houses with small rooms and passages and a spacious plaza
Medium indoor office 15×35 M0 – M2 Medium-scale indoor office
Large indoor office 135 ×30 L0 – L3 Large-scale indoor office with various challenging scenarios listed in following rows
Exhibition hall2 20×30 E0 – E2 Medium-scale exhibition hall with screens of dynamically changing content
Atrium2 15×60 A0 – A4 Spacious atrium space with 15m high ceiling
Corridor (wide)2 4×40 C0 – C2 Wide corridor with fair texture
Corridor (narrow)2 2×30 C3 Narrow corridor with poor texture
Stairs2 10×20 S0 – S2 Wide stairs with rich texture
1 The sequences in Table VII.
2 A part of “large indoor office”.

https://novatel.com/products/receivers/enclosures/pwrpak7
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TABLE VII: Various types of motions in the dataset

Seq.1 #Frames2 Length (m)2 Description
O0 10528 / 9641 / 4909 490 / 464 / 240 Walk around an office building and around the medium-scale plaza
O1 5116 / 3205 / 3831 225 / 1175 / 147 Walk around a house outside
O2 8363 / 8447 / 8119 382 / 341 / 330 Walk around a house, go in and out of some rooms, and walk around the spacious plaza outside
M0 4024 / 3760 / 3342 126 / 124 / 121 Walk along a large loop, looking ahead
M1 5230 / 4741 / 3628 143 / 138 / 125 Walk along a large loop, looking around with slow motion
M2 4749 / 4315 / 2752 141 / 129 / 89 Walk along a large loop, looking around with fast motion, and occasional occlusion or textureless
L0 12369 / 11829 / 7314 454 / 478 / 317 Walk along loops, looking ahead
L1 15179 / 13967 / 9357 558 / 579 / 419 Walk along loops, looking ahead
L2 16889 / 17210 / 14632 592 / 635 / 517 Walk along loops, looking around
L3 16517 / 17012 / 14483 604 / 638 / 540 Walk along loops, looking around
E0 2011 / 1841 / 1873 50 / 51 / 44 Walk along a line and return, looking ahead
E1 5137 / 4208 / 2847 140 / 127 / 86 Walk along a loop, looking around
E2 2412 / 2518 / 2052 13 / 14 / 8 Stand still, looking around
A0 1260 / 1245 / 1486 31 / 26 / 41 Walk along a loop, looking at the center
A1 3526 / 4044 / 3955 116 / 138 / 130 Walk along a loop, looking at the outer wall
A2 2076 / 2230 / 3601 60 / 67 / 105 Walk along a line and return, looking at the distance
A3 2053 / 4816 / 2640 62 / 166 / 86 Walk through the crowd, looking around
A4 1930 / 2417 / 2049 115 / 142 / 132 Run along a loop
C0 1942 / 2040 / 2197 64 / 63 / 62 Walk along a wide corridor and return, looking ahead
C1 2443 / 1960 / 2859 66 / 59 / 76 Walk along a wide corridor and return, looking around
C2 2278 / 1871 / 2154 60 / 63 / 63 Walk sideways along a wide corridor looking at the wall, then return looking at the other side
C3 2001 / 1827 / 2441 64 / 57 / 87 Walk along a narrow and textureless corridor and return, looking ahead
S0 1620 / 1912 / 1971 39 / 41 / 40 Walk along a line downstairs then upstairs, looking ahead
S1 2346 / 2976 / 2520 52 / 59 / 58 Walk along a loop downstairs then upstairs, looking around
S2 2533 / 2448 / 2186 54 / 53 / 53 Walk sideways along a loop downstairs then upstairs, looking at the other side of the stairs

1 The first letter of sequence name corresponds to the environment listed in Table VI.
2 The three numbers correspond to Android phone / iPhone / AR glasses respectively.

measurements. All these extensions make the dataset the
only one to date containing both visual-inertial measurements
and wireless signals in various large-scale environments with
various motions.

C. SLAM Evaluation

We use the proposed LSFB dataset to evaluate three state-
of-the-art SLAM systems, including two VI-SLAM systems
ORB-SLAM3 [16] and VINS-Fusion [15], and a learning-
based V-SLAM system Droid-SLAM [21]. The results are
listed in Table VIII for the dataset of mobile phones and Ta-
ble IX for the dataset of AR glasses.

For the VI-SLAM systems ORB-SLAM3 and VINS-Fusion,
we align the resulting trajectory to groundtruth using both
SE(3) and Sim(3) [78] in order to analyze the performance
under situations with and without requirement of true scale.
For the V-SLAM system Droid-SLAM, we use only Sim(3)
for mobile phones with monocular camera, and both SE(3) and
Sim(3) for AR glasses with stereo camera. After alignment,
accuracy is measured by computing RMS-ATE. Scale error
is also computed using the scale estimate s from Sim(3)
alignment, calculated as |1− s|. For each sequence, we select
the median of ATE after 3 executions. There are cases that all
executions fail to process the whole sequence, due to initial-
ization failure or other robustness issues of ORB-SLAM3, or
the exceeded requirement of GPU memory by Droid-SLAM
for long sequence. These cases are marked as × and grayed
out. We also gray out unreliable results whose ATE is larger
than 10% of the length of the longer side of environment (The
size of environment for each sequence is listed in Table VI).
We further gray out unreliable scale estimates if the scale
error is larger than 10%. The corresponding ATESE(3) is also
marked gray since the SE(3) alignment is unreliable in this
case. The remaining results are regarded as successful. We
count the number of successful results in the second last row

for ATESE(3) and ATESim(3) respectively, as an indicator of
robustness for the three competitors. To compare the accuracy,
we mark the minimal ATESE(3) and ATESim(3) as bold for each
sequence, and count the number of best results in the last row.
The method with the best robustness and the best accuracy is
also marked as bold in the last two rows respectively.

From the benchmark result listed in Table VIII and Table IX,
VINS-Fusion achieves the best robustness, and the two VI-
SLAM systems are more robust than the V-SLAM system
Droid-SLAM. For mobile phones, VINS-Fusion also achieves
the best accuracy in terms of both ATESE(3) and ATESim(3).
For each method, using AR glasses is more robust and more
accurate than using mobile phones, due to the stereo camera
with larger FoV and global shutter of AR glasses. In this
situation, ORB-SLAM3 achieves the best accuracy in terms
of ATESE(3) and Droid-SLAM achieves the best accuracy in
terms of ATESim(3).

To explain the reason behind the comparative results, we
analyze ORB-SLAM3 and found a robustness issue during
fast rotation for monocular camera with small FoV. In this
case, feature track easily gets lost if the corresponding 3D
point has not been successfully triangulated. That is the reason
why ORB-SLAM3 is inferior to VINS-Fusion for all of the
sequences with frequent motion of looking around. For stereo
camera with larger FoV, by which features can be easily
triangulated as soon as they first appear in the keyframes,
ORB-SLAM3 achieves the best accuracy for most of the
sequences in terms of ATESE(3). We also analyze Droid-SLAM
and found that the inferiority is mainly due to the rolling
shutter effect of mobile phones. It is more sensitive for the
dense direct methods than the sparse indirect counterparts. For
AR glasses with global shutter camera, Droid-SLAM achieves
the best accuracy for most of the sequences in terms of
ATESim(3). However in terms of ATESE(3), we find that Droid-
SLAM has large scale error in most cases, because the stereo
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TABLE VIII: SLAM evaluation on LSFB dataset of Android phone and iPhone (RMS-ATE in m, scale error in %).

Android phone iPhone
ORB-SLAM3 VINS-Fusion Droid-SLAM ORB-SLAM3 VINS-Fusion Droid-SLAM

ATESE(3) scale error ATESim(3) ATESE(3) scale error ATESim(3) ATESim(3) ATESE(3) scale error ATESim(3) ATESE(3) scale error ATESim(3) ATESim(3)
O0 3.379 5.887 2.703 3.816 2.199 3.729 19.320 471.819 98.462 32.174 20.278 34.775 7.306 8.305
O1 38.482 62.760 25.475 5.348 7.365 4.782 0.769 6.165 21.710 2.063 273.741 850.001 189.455 3.388
O2 4307.723 99.895 13.704 5249.965 99.768 19.775 23.727 7.525 21.472 3.850 4.915 16.485 1.458 12.094
M0 0.338 2.268 0.260 0.385 3.282 0.218 1.802 0.461 0.410 0.459 0.305 0.635 0.298 1.161
M1 0.447 3.841 0.281 0.243 0.645 0.234 5.195 0.426 3.781 0.246 0.379 1.584 0.345 2.209
M2 0.506 4.252 0.318 0.399 1.726 0.357 3.180 0.250 1.601 0.206 0.233 0.146 0.233 2.207
L0 2.789 7.149 0.323 1.727 4.139 0.381 23.759 1.919 3.820 1.168 1.804 4.177 0.726 ×
L1 × × × 2.666 5.590 1.128 × 1.810 2.351 1.549 2.178 3.796 1.552 ×
L2 2.769 6.377 1.336 1.609 2.688 1.219 × × × × 2.620 4.455 1.867 ×
L3 × × × 1.148 0.082 1.147 × 1.259 0.123 1.258 1.747 3.127 1.252 ×
E0 0.746 8.659 0.359 0.666 2.818 0.623 3.150 0.898 8.787 0.387 1.930 17.794 0.429 3.265
E1 0.936 4.690 0.824 0.526 4.344 0.329 7.448 0.870 7.108 0.474 0.838 6.250 0.563 5.544
E2 × × × 209.469 99.924 0.282 0.237 × × × 0.114 35.636 0.055 0.232
A0 0.082 0.157 0.081 0.267 5.248 0.089 0.152 0.087 1.426 0.070 0.289 7.080 0.113 0.073
A1 6.923 0.698 6.923 932.448 99.082 14.244 7.500 1.899 4.770 1.649 2.273 6.878 1.813 8.143
A2 128.776 93.907 5.656 0.832 8.111 0.252 0.029 1.774 1.051 1.771 544.375 98.915 9.230 0.316
A3 3.258 0.988 3.257 0.375 2.310 0.320 0.361 1.233 8.013 0.418 0.782 3.456 0.626 10.406
A4 2.633 18.185 0.476 0.872 3.080 0.718 6.141 5.221 15.750 4.472 4.203 6.288 4.002 2.201
C0 127.864 94.300 6.298 435.002 99.459 9.665 8.714 0.351 0.977 0.337 0.524 4.145 0.262 0.144
C1 0.509 3.490 0.365 0.407 3.642 0.137 1.550 0.756 4.350 0.620 0.491 2.784 0.416 0.097
C2 0.326 2.831 0.249 0.370 0.392 0.368 4.097 1.037 3.139 1.005 0.834 6.200 0.564 2.050
C3 227.019 97.277 7.109 267.608 98.702 8.832 7.238 × × × 0.536 1.868 0.506 6.889
S0 0.269 0.771 0.265 0.104 1.063 0.084 0.780 0.648 4.723 0.568 0.265 4.117 0.075 4.868
S1 0.275 2.177 0.226 0.126 0.695 0.115 0.787 0.287 1.194 0.271 0.460 5.336 0.197 4.904
S2 0.303 4.126 0.086 0.131 0.963 0.110 5.306 0.272 2.935 0.158 163.701 97.579 6.032 0.144

#scc. 15 17 20 21 10 18 21 18 22 13
#best 4 8 16 10 3 9 9 12 11 5

TABLE IX: SLAM evaluation on LSFB dataset of AR glasses (RMS-ATE in m, scale error in %).

ORB-SLAM3 VINS-Fusion Droid-SLAM
ATESE(3) scale error ATESim(3) ATESE(3) scale error ATESim(3) ATESE(3) scale error ATESim(3)

O0 × × × 3.276 6.960 2.239 2.493 5.157 1.690
O1 1.630 6.890 0.900 2.864 15.906 0.684 1.947 10.178 0.281
O2 × × × 2.836 13.011 1.223 × × ×
M0 0.108 0.080 0.107 0.259 1.200 0.231 0.823 7.835 0.050
M1 0.221 2.140 0.068 0.190 0.400 0.186 1.016 9.634 0.058
M2 0.474 2.930 0.349 0.401 2.700 0.265 1.164 9.538 0.071
L0 0.406 0.110 0.404 1.629 2.259 1.344 × × ×
L1 0.892 0.210 0.888 2.378 1.635 2.289 × × ×
L2 0.789 1.560 0.489 2.405 2.918 1.994 × × ×
L3 0.993 2.180 0.502 4.205 8.227 1.712 × × ×
E0 0.179 2.380 0.045 0.133 1.740 0.031 0.894 10.212 0.068
E1 0.122 1.250 0.059 0.153 0.136 0.153 0.534 6.011 0.033
E2 0.018 4.380 0.016 0.029 0.922 0.029 0.047 6.088 0.074
A0 0.072 0.940 0.044 0.146 2.107 0.070 0.818 11.875 0.038
A1 0.289 1.270 0.164 0.718 0.161 0.717 1.482 7.193 0.066
A2 × × × 3.393 20.077 2.854 2.887 14.941 2.576
A3 0.131 1.660 0.067 0.263 0.290 0.263 0.777 10.526 0.043
A4 0.399 0.150 0.398 0.851 4.517 0.110 2.220 11.247 0.162
C0 0.160 1.570 0.047 0.193 2.048 0.040 1.150 10.800 0.028
C1 0.073 0.590 0.047 0.298 3.039 0.066 1.101 10.387 0.038
C2 0.199 1.710 0.104 0.326 3.245 0.056 1.104 10.100 0.052
C3 0.200 1.360 0.100 0.137 0.615 0.114 0.643 4.670 0.054
S0 0.066 0.270 0.064 0.150 1.847 0.107 0.538 8.384 0.041
S1 0.298 4.070 0.043 0.147 1.759 0.081 0.740 9.628 0.038
S2 0.182 2.460 0.028 0.442 5.795 0.084 1.105 13.602 0.038

#scc. 22 22 22 25 10 20
#best 17 6 5 3 1 16

camera fails to provide sufficient parallax for far points in
large-scale environment. Actually the lack of parallax is also a
common robustness challenge for the VI-SLAM competitors
in large-scale environments. For example in E2, the person
is standing still while looking around. For mobile phones,
ORB-SLAM3 never succeeds in the initialization phase, and
VIN-Fusion fails to recover the true scale. By using stereo
camera, this problem is mitigated but not eradicated. For
example in O2 and A2 when the person is walking in the
spacious environment and looking at the distance ten meters

away, the stereo camera could not provide enough parallax and
scale error is large for VI-SLAM systems. Another common
robustness challenge is textureless. For example in C3, the
person is walking along a narrow and textureless corridor. In
this case, there are few features for mobile phones with small
FoV, which is a great challenge for SLAM. These robustness
issues confirm the necessity of building such a benchmark
and the merit of our collected dataset. To further verify the
necessity of the proposed dataset, we evaluate the three SLAM
systems using two previous datasets EuRoC [12] and ZJU-
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SenseTime [13]. The robustness issues are only found by
ORB-SLAM3 on the challenging half of the data in ZJU-
SenseTime. By contrast, more robustness issues for each of the
three SLAM systems can be found by the proposed dataset.
Details are referred to Sec. I-C in the supplementary document.

To further analyze the inferior SLAM results of mobile
phone, we evaluate another SLAM system VINS-Mono [80],
which is specified for mobile phone with monocular rolling
shutter camera. The comparison shows that the rolling shutter
effect is a major source of localization error for mobile
phones. Explicitly rectifying the rolling shutter can effectively
improves the accuracy. Details are referred to Sec. I-D in the
supplementary document.

VII. CONCLUSION

In this work, we present LSFB, a novel groundtruth collec-
tion method for localization in large-scale environment. To the
best of our knowledge, it is the first groundtruth framework
with low-cost and scalability to collect large amounts of data in
the large-scale environment. The experiments demonstrate the
obtained groundtruth poses have cm-level accuracy. We use the
proposed method to collect a multimodal localization dataset
containing both visual-inertial measurements and wireless
signals captured by mobile phones and AR glasses in various
environments with various motions, and release the dataset as
the first large-scale localization benchmark for AR. We also
use the benchmark to evaluate and analyze three state-of-the-
art SLAM systems to verify the validity of the dataset, and
confirm the necessity of building such a benchmark.

The current solution relies on the precision of visual lo-
calization. In case that the visual localization produces too
many false positives, such as when there are too many repet-
itive structures in the environment, or when a large part of
the environment has changed, the accuracy will be reduced.
Another limitation is the requirement of people to carry a
heavy backpack to collect HD map. The size of such HD
map is as far as up to several hundreds of thousands of
square meters. It is infeasible to collect data in the city-scale
environments. For the future work, we will further improve the
robustness, and set up the 3D scanner to a vehicle to achieve
city-scale HD map reconstruction, in order to collect the
city-scale localization data to further expand our benchmark.
We hope that it would genuinely promote the localization
techniques and the realization of AR applications in the city-
scale environments.
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