

1. Motivation

Our Problem:

- Input: multi-view posed images of static scenes
- > Output: factorize them into multi-view **consistent intrinsic components**: reflectance, shading, and residual layers;
- > Support online applications: recoloring, editable view synthesis, etc.

Existing neural rendering with inverse rendering method (e.g. PhySG) and InvRender): rely on accurate surface, may fail if bad geometry; can only perform editable view synthesis on **object-specific** scenes.

Our Solution:

Intrinsic Neural Radiance Fields which introduce intrinsic decomposition into NeRF

- Unsupervised intrinsic prior with distance-aware point sampling
- > Adaptive reflectance iterative clustering optimization
- Hierarchical clustering and indexing method with semantic
- constraints

IntrinsicNeRF: Learning Intrinsic Neural **Radiance Fields for Editable Novel View Synthesis** [Weicai Ye, Shuo Chen]^{Co-Authors}, Chong Bao, Hujun Bao, Marc Pollefeys, Zhaopeng Cui, Guofeng Zhang*

Reflectance Sparsity

Quantitative Results

Blender Object: for reflectance estimation, achieved the best results on our dataset and ranked 2nd on Invrender dataset; for view synthesis, achieved the best results on both dataset.

	Reflectance (Invrender dataset)				View Synthesis (Invrender dataset)			Reflectance (our dataset)					
Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	$MSE\downarrow$	LMSE \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	$MSE\downarrow$	I
IIW[4]	22.0284	0.9307	0.0847	0.0099	0.0120	-	-		20.5299	0.9079	0.1131	0.0102	
CGIntrinsic[34]	20.1583	0.9209	0.0996	0.0129	0.0141	-	-	-	18.3542	0.8999	0.1229	0.0156	2
USI3D [38]	20.7571	0.9267	0.0887	0.0079	0.0149	(1 <u>1</u> 1)	2	12	19.1489	0.9115	0.1070	0.0135	1
NeRFactor [76]	19.9167	0.9156	0.1354	0.0059	0.0210	23.0133	0.9277	0.0822	21.4440	0.9170	0.1055	0.0063	
PhySG[74]	23.3748	0.9231	0.1092	0.0034	0.0396	25.4225	0.9388	0.0804	-	-		-	
Invrender [77]	26.3078	0.9380	0.0572	0.0022	0.0226	29.3870	0.9522	0.0505	=	-	0403	-	
Baseline	16.3209	0.8637	0.1301	0.0254	0.1955	34.0036	0.9670	0.0252	14.8572	0.8397	0.1738	0.0451	- 3
Baseline + w/ prior.	21.7370	0.9278	0.1086	0.0055	0.0186	33.4909	0.9638	0.0304	20.9646	0.9140	0.1216	0.0095	1
Ours	24.2642	0.9371	0.0880	0.0021	0.0173	33.4967	0.9630	0.0306	22.5677	0.9267	0.0975	0.0066	

	Ab	lation	Stuc	lies of	Eacl	h Los	s Cor	nstrair
Antria	Method	w/o L _{chrom}	w/o $L_{reflect}$	w/o $L_{non-local}$	w/o L_{shade}	w/o $L_{cluster}$	w/o $L_{residual}$	w/o L _{intensity}

Metric	w/o L _{chrom}	WIG Dreflect	WIG Lnon-local	WIG D _{shade}	WIG D _{cluster}	WIG Dresidual	WIO Dintensity	***
PSNR ↑	22.0243	22.4955	23.3032	22.9874	21.3508	21.1288	18.7466	
$MSE\downarrow$	0.0067	0.0060	0.0044	0.0048	0.0075	0.0074	0.0172	
LMSE \downarrow	0.0392	0.0378	0.0323	0.0338	0.0362	0.0387	0.0339	
► C	Sompar Blender	Obje	≺esul ct.	ts foi	^r Viev	v Synt	hesis	O
		Metho	od PSN	NR↑ S	SIM \uparrow	LPIPS \downarrow		
		NeRF [46] 31.0)838 ().9525	0.0302		
		0,11	20 7	1020 (0404	0.0220		

Comparable Results for View Synthesis and Semantic Segmentation on Replica Scene.

Method	$\mathbf{PSNR}\uparrow$	$\mathbf{SSIM} \uparrow$	LPIPS \downarrow	mIoU↑
[79]	30.9770	0.8955	0.1066	0.9725
Ours	30.7044	0.8908	0.1140	0.9702

4. Experiments

Qualitative Results Reflectance Comparison on Replica Scene View Synthesis (our dataset) PSNR↑ SSIM↑ LPIPS Scene Recoloring 1849 **28.2604 0.9383 0.0339** 3 28.0633 0.9370 0.0369 4 27.9494 0.9357 0.0372

