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Figure 1: We present Vox-Fusion, a SLAM system that incrementally reconstructs scenes from RGB-D frames using neural
implicit networks. The current camera frame is in red and the camera trajectory is in green. Our method divides the scene into an
explicit voxel grid representation (depicted as black bounding boxes) which is gradually built on-the-fly. Inside each voxel, we
fuse depth and color observations into local feature embeddings through volume rendering.

ABSTRACT

In this work, we present a dense tracking and mapping system
named Vox-Fusion, which seamlessly fuses neural implicit rep-
resentations with traditional volumetric fusion methods. Our ap-
proach is inspired by the recently developed implicit mapping and
positioning system and further extends the idea so that it can be
freely applied to practical scenarios. Specifically, we leverage a
voxel-based neural implicit surface representation to encode and
optimize the scene inside each voxel. Furthermore, we adopt an
octree-based structure to divide the scene and support dynamic ex-
pansion, enabling our system to track and map arbitrary scenes
without knowing the environment like in previous works. Moreover,
we proposed a high-performance multi-process framework to speed
up the method, thus supporting some applications that require real-
time performance. The evaluation results show that our methods can
achieve better accuracy and completeness than previous methods.
We also show that our Vox-Fusion can be used in augmented reality
and virtual reality applications. Our source code is publicly available
at https://github.com/zju3dv/Vox-Fusion.

Index Terms: Dense SLAM—Implicit Networks—Voxelization—
Surface Rendering

1 INTRODUCTION

Dense simultaneous localization and mapping (SLAM) aims to track
the 6 degrees of freedom (DoF) poses of a moving RGB-D camera
whilst constructing a dense map of the surrounding environment

*Equal contribution
†Corresponding author

in real-time. It is an essential part of augmented reality (AR) and
virtual reality (VR). With high tracking accuracy and the ability to
recover complete surfaces, it can support real-time occlusion effects
and collision detection during virtual interaction.

Traditional SLAM methods using either feature matching [3,
16–18], nonlinear energy minimization [20], or a combination of
both [7, 39] to solve the camera poses. These poses are then coupled
with their corresponding input point clouds to update a global map
represented by geometric primitives such as cost volumes [20, 37],
surfels [29, 35, 38] or voxels [11, 19, 21]. Although these methods
have been well studied and have shown good reconstruction results,
they are incapable of rendering novel views as they cannot halluci-
nate the unseen parts of the scene. Storing and distributing the maps
can be challenging as well due to the requirement of large video
memory (VRAM). Moreover, modifying the map on-the-fly is also
difficult because of the large number of elements in the map and
weaker data associations compared to feature-based methods [7, 26].

Focusing on reducing memory usage and improving efficiency,
recent works such as CodeSLAM [2] and the follow-up works [5, 8]
have demonstrated that neural networks have the ability to encode
depth maps using fixed-length optimizable latent embeddings. These
latent codes can be updated with multi-view constraints. This
method provides a good trade-off between scene quality and mem-
ory usage. However, the pre-trained networks used in these systems
generalize poorly to different types of scenes, making them less
useful in practical scenarios. Also, a consistent global representation
is difficult to obtain due to the use of local latent codes.

To address these issues, recent works take advantage of the
success of NeRF [15] and train a neural implicit network on-the-
fly to represent 3D scenes continuously in dense SLAM applica-
tions [31, 40]. Specifically, iMap [31] directly uses a single multi-
layer perceptron (MLP) to approximate a global scene map and
jointly optimizes the map and the camera poses. However, the use of
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Figure 2: Overview of our SLAM system. Our system consists of three parts: 1) Volume Renderer, which encodes the scene in a MLP and
embedding vectors, and outputs the rendered color and SDF value for a given pixel; 2) Tracking Process, which takes as input RGB-D frames
and optimizes the camera poses via differentiable rendering and 3) Mapping Process, which reconstructs the geometry of the scene.

a single MLP makes it difficult to represent geometric details of the
scene as well as scale to larger environments without significantly
increasing the network capacity.

In this paper, we are interested in mapping unknown scenes with
neural implicit networks. Inspired by traditional volumetric SLAM
systems [34] and the successful application of neural implicit rep-
resentation in parallel tracking and mapping [31], we propose a
more efficient hybrid data structure that combines a sparse voxel
representation with neural implicit embeddings. More specifically,
we use a sparse octree with Morton coding for fast allocation and
retrieval of voxels, which have been proven to be real-time capable
for dense mapping [34]. We model the scene geometry within local
voxels as a continuous signed distance function (SDF) [4], which is
encoded by a neural implicit decoder and shared feature embeddings.
The shared embedding vectors allow us to use a more lightweight
decoder because they contain knowledge of local geometry and
appearance. The tracking and mapping process is achieved with
differentiable volumetric rendering. We show that our explicit voxel
representation is beneficial to AR applications and our mapping
method creates more detailed reconstructions compared to current
state-of-the-art (SOTA) systems, as we show in the experiments
section. To summarize, our contributions are:

1. We propose a novel fusion system for real-time implicit track-
ing and mapping. Our Vox-Fusion combines voxel embeddings
indexed by an explicit octree and a neural implicit network to
achieve scalable implicit scene reconstruction with sufficient
details.

2. We show that by directly rendering signed distance volumes,
our system provides better tracking accuracy and reconstruc-
tion quality compared to current SOTA systems with no per-
formance overhead.

3. We propose to use a fast and efficient keyframe selection strat-
egy based on ratio test and measuring information gain, which
is more suitable to maintain large-sized maps.

4. We perform extensive experiments on synthetic and real-world
scenes to demonstrate the proposed method is capable of pro-
ducing high-quality 3D reconstructions, which can directly
benefit many AR applications.

This paper is organized as follows: Sect. 2 gives a review of
related works. Sect. 3 presents an overview of our proposed Vox-
Fusion system. We explain our reconstruction pipeline in Sect. 4.
Finally, we evaluate the proposed system on various synthetic and
real-world tasks in Sect. 5. We then conclude our paper by intro-
ducing potential applications in Sect. 6 and discussing limitations
in Sect. 7.

2 RELATED WORK

2.1 Dense SLAM
Traditional SLAM Methods. DTAM [20] introduced the first
dense SLAM system that uses every pixel photometric consistency
to track a handheld camera. They employ multi-view stereo con-
straints to update a dense scene model, represented as a cost volume.
However, their method is only applicable to small workshop-like
spaces. Taking advantage of RGB-D cameras, KinectFusion [19]
proposes a novel reconstruction pipeline, which exploits the accurate
depth acquisition from commodity depth sensors and the parallel
processing power of modern graphics units (GPUs). They track
input depth maps with iterative closest point (ICP) and progressively
update a voxel grid with aligned depth maps. They also proposed
a novel frame-to-model tracking method that greatly reduces short-
term drifts with circular camera motion. Following this basic design,
many systems gain improvements by introducing different 3D struc-
tures [38], exploring space subdivision [21, 24] and performing
global map optimization [10,12,26]. Another interesting research di-
rection is to combine features and dense maps [7, 39], which greatly
increases the robustness of iterative methods. These systems provide
good results on scene reconstruction at the expense of having a large
memory footprint.

Learning-based Methods. Exploiting the power of learned ge-
ometric priors, DI-Fusion [9] proposes to encode points in a low
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Figure 3: Example of Morton coding on a two-level quad-tree.

dimensional latent space, which can be decoded to generate SDF val-
ues. However, the learned geometric prior is inaccurate in complex
areas, which leads to poor reconstruction quality. CodeSLAM [2]
proposes to use an encoder-decoder structure to embed depth maps
as low dimensional codes. These codes, combined with the pre-
trained neural decoder, can be used to jointly optimize a collec-
tion of key-frames and camera poses. However, similar to other
learning-based methods, their approach is not robust to scene vari-
ations. Another successful design is to learn feature matching and
scene reconstruction separately [33]. Recently there have been suc-
cessful experiments on representing scenes with a single implicit
networks [31]. They formulate the dense SLAM problem as a con-
tinuous learning paradigm. To bound optimization time, they use
heuristic sampling strategies and keyframe selection based on in-
formation gain. This method provides a good trade-off between
compactness and accuracy. Our method is directly inspired by their
design.

A recent concurrent work NICE-SLAM [40]proposes to tackle
the scalability problem by subdividing the world coordinate system
into uniform grids. Their system is similar to ours in that we both
use voxel features instead of encoding 3D coordinates. However,
our approach differs from theirs in the following aspects: (1) NICE-
SLAM pre-allocates a dense hierarchical voxel grid for an entire
scene, which is not suitable for a practical scenario where the scene
bound is unknown, while ours dynamically allocate sparse voxels on
the fly, as shown in Fig. 1, which not only improves usability but also
drastically reduces memory consumption; (2) NICE-SLAM uses
a pre-trained geometry decoder which could reduce generalization
ability while our parameters are all learned on-the-fly, thus our
reconstructed surface is not affected by prior information; (3) We
propose a keyframe strategy suitable for sparse voxels which is
simple and efficient, while NICE-SLAM adopts the strategy from
iMap which does not take advantage of the voxel representation.

2.2 Neural Implicit Networks

NeRF [15] proposes a method to render the scene as volumes that
have density, which is good for representing transparent objects.
Their method is only interested in rendering photo-realistic images,
a good surface reconstruction is not guaranteed. However, for most
AR tasks it is important to know where the surface lies. To solve
the surface reconstruction problem, many new methods assume that
color is only contributed by points near or on the surface. They pro-
pose to identify the surface via iterative root-finding [22], weighting
the rendered color with the associated SDF values [36], forcing the
network to learn more details near the surface within a pre-defined
truncation distance [1]. We adopt the rendering method from [1] but
instead of regressing absolute coordinates, we work on interpolated
voxel embeddings.

Figure 4: Example of our hierarchical octree structure. For simplicity
we only show a four-level octree here.

As a single network often has limited capacity and cannot be
scaled to larger scenes without dramatically increasing the number
of learnable parameters, NSVF [14] proposes to embed local infor-
mation in a separate voxel grid of features. They are able to generate
similar if not better results with fewer parameters. Plenoxels [25] in-
troduced spherical harmonic functions as voxel embeddings, which
completely removed the need for a neural network. The other benefit
of an explicit feature grid is the faster rendering speed, since the im-
plicit network can be much smaller compared to the original NeRF
network. This uniform grid design can be found in other neural
reconstruction methods. E.g. NGLOD [32] leverages a hierarchical
data structure by concatenating features from each level to achieve
scene representation with different levels of details.

Our hybrid scene representation is inspired by recent works that
use voxel-based neural implicit representations [13, 14]. More
specifically, we share a similar structure with Vox-Surf [13] which
encodes 3D scenes with neural networks and local embeddings.
However, Vox-Surf is an offline system that requires posed images,
while our system is a SLAM method that consumes consecutive
RGB-D frames for pose estimation and scene reconstruction simulta-
neously. Vox-surf also needs to allocate all voxels in advance, while
our system can manage voxels on-the-fly to allow dynamic growth
of the map. Moreover, we use a different rendering function that
reconstructs scenes more efficiently.

3 SYSTEM OVERVIEW

An overview of our system is shown in Fig. 2. The input to our
system is continuous RGB-D frames which consist of RGB images
Ii ∈ R3 and depth maps Di ∈ R. We use the pinhole model as
the default camera model and assume that the intrinsic matrix K ∈
R3×3 of the camera is known. Similar to other well-known SLAM
architectures, our systems also maintain two separate processes: a
tracking process to estimate the current camera pose as the frontend
and a mapping process to optimize the global map as the backend.

When the system starts, we initialize the global map by running a
few mapping iterations for the first frame. For subsequent frames,
the tracking process first estimate a 6-DoF pose Ti ∈ SE(3) w.r.t.
the fixed implicit scene network Fθ via our differentiable volume
rendering method. Then, each tracked frame is sent to the mapping
process for constructing the global map. The mapping process first
takes the estimated camera poses Ti from frontend and allocates new
voxels from the back-projected and appropriately transformed 3D
point cloud Pi ∈ R3 from the input depth map Di. Then it fuses the
new voxel-based scene into the global map and applies the joint
optimization. In order to reduce the complexity of optimization,
we only maintain a small number of keyframes, which are selected
by measuring the ratio of observed voxels. And the long-term map
consistency is maintained by constantly optimizing a fixed window
of keyframes. These individual components will be explained in
detail in the following subsections.



4 METHOD

4.1 Volume Renderer
Voxel-based sampling. We represent our scene as an implicit SDF
decoder Fθ with optimizable parameters θ , and a collection of N-
dimensional sparse voxel embeddings. The voxel embeddings are
attached to the vertices of each voxel and are shared by neighboring
voxels. The shared embeddings alleviate voxel border artifacts as
commonly seen in non-sharing structures [9].

However, sampling points inside the sparse voxel representation
is not straightforward. Naive sampling methods such as stratified
random sampling [15] waste computational power on sampling
spaces that are not covered by valid voxels. Therefore, we adopt the
method used in [14] to perform efficient point sampling. For each
sampled pixel, we first check if it has hit any voxel along the visual
ray by performing a fast ray-voxel intersection test. Pixels without
any hit are masked out since they do not contribute to rendering.
As the scene could be unbounded in complex scenes, we enforce a
limit Mh on how many voxels a single pixel is able to see. Unlike
prior works where the limit is heuristically specified [13, 14], we
dynamically change it according to the specified maximum sampling
distance Dmax.

Implicit surface rendering. Unlike NeRF [15] where an MLP
is used to predict occupancy for 3D points, we directly regress SDF
values which is a more useful geometric representation that can
support tasks such as ray tracing. The key to our approach is to use
voxel embeddings instead of 3D coordinates as opposed to previous
works. To render color and depth from the map, we adopt the volume
rendering method proposed in [1]. However, we modify it to apply
to feature embeddings instead of global coordinates. We sample N
points to render the color for each ray. More specifically, we use the
following rendering function to obtain the color C and depth D for
each ray:

(ci,si) = Fθ (TriLerp(ξ̂iTipi,e)), (1)

wi = σ(
si

tr
) ·σ(− si

tr
), (2)

C =
1

∑
N−1
j=0 w j

N−1

∑
i=0

w j · c j, (3)

D =
1

∑
N−1
j=0 wi

N−1

∑
j=0

w j ·d j, (4)

where Ti is the current camera pose, TriLerp(·, ·) is the trilinear
interpolation function, Fθ is the implicit network with trainable
parameters θ , and ξ ∈ se(3) is the frame pose update. c j is the
predicted color for each 3D point from the network, by trilinearly
interpolating voxel embeddings e. Likewise, si is the predicted SDF
value, and d j the j-th depth sample along the ray. σ(·) is the sigmoid
function and tr is a pre-defined truncation distance. The depth map
is similarly rendered from the map by weighting sampled distance
instead of colors.

Optimization. To supervise the network, we apply four different
loss functions: RGB loss, depth loss, free-space loss and SDF loss
on the sampled points P. The RGB and depth losses are simply
absolute differences between render and ground-truth images:

Lrgb =
1
|P|

|P|

∑
i=0
‖Ci−Cgt

i ‖,

Ldepth =
1
|P|

|P|

∑
i=0
‖Di−Dgt

i ‖,

(5)

where Di,Ci are the rendered depth and color of the i-th pixel in
a batch, respectively. Dgt

i ,Cgt
i are the corresponding ground truth

Figure 5: Network architecture.

values. The free-space loss works with a truncation distance tr
within which the surface is defined. The MLP is forced to learn a
truncation value tr for any points lie within the camera center and
the positive truncation region of the surface:

L f s =
1
|P| ∑

p∈P

1

S f s
p

∑
s∈S f s

p

(Ds− tr)2. (6)

Finally, we apply SDF loss to force the MLP to learn accurate surface
representations within the surface truncation area:

Lsd f =
1
|P| ∑

p∈P

1
Str

p
∑

s∈Str
p

(Ds−Dgt
s )2. (7)

Unlike methods such as [23] that force the network to learn a neg-
ative truncation value −tr for points behind the truncation region,
we simply mask out these points during rendering to avoid solving
surface intersection ambiguities [36] as proposed in [1]. This simple
formulation allows us to obtain accurate surface reconstructions with
a much faster processing speed.

4.2 Tracking
During tracking, we keep our voxel embeddings and the parame-
ters of the implicit network fixed, i.e., we only optimize a 6-DoF
pose T ∈ SE(3) for the current camera frame. Similar to previous
methods where pose estimates are iteratively updated by solving
an incremental update, in each update step, we measure the pose
update in the tangent space of SE(3), represented as the lie algebra
ξ ∈ se(3). We assume a zero motion model where the new frame
is sufficiently close to the last tracked frame, therefore we initialize
the pose of the new frame to be identical to that of the last tracked
frame. Although other motion models such as constant motion are
also applicable here. For each frame, we sample a sparse set of
Nt pixels from the input images for tracking. We follow the proce-
dure described in Sect. 4.1 to sample candidate points and perform
volume rendering, respectively. The frame pose is updated in each
iteration via back-propagation. Similar to [31], we keep a copy of
our SDF decoder and voxel embeddings for the tracking process.
This map copy is directly obtained from the mapping process and
updated each time a new frame has been fused into the map.

4.3 Mapping
Key-frame selection. In online continuous learning, keyframe se-
lection is the key to ensuring long-term map consistency and pre-
venting catastrophic forgetting [31]. Unlike previous works where
key-frames are only inserted based on heuristically chosen met-
rics [31] or at a fixed interval [40], our explicit voxel structure
allows us to determine when to insert key-frames by performing
an intersection test. Specifically, each successfully tracked frame
is tested against the existing map to find the number of voxels Nc
that would be allocated if we are to choose it as a new keyframe.



(a) Ground truth (b) Ours (voxel length=0.2) (c) NICE-SLAM (voxel length=0.16)

Figure 6: Surface reconstruction details comparison. Our system is able to recover thin structures, such as chair legs and flowers, from the raw
scans, albeit using a slightly larger voxel.

We insert a new keyframe if the ratio pk f = Nc/No is larger than a
threshold, where No is the number of currently observed voxels.

This simple strategy is adequate for exploratory movements as
new voxels are constantly being allocated. However, for loopy
camera motions, especially trajectories with long-term loops, there is
a risk that we may never allocate new keyframes as we keep looking
at an existing scene model. This will result in part of the model being
completely missing or not having enough multi-view constraints. To
solve this problem, we also enforce a maximum interval between
adjacent frames, i.e., we will create a new keyframe if have not done
so for the past N frames. This key-frame selection strategy is simple
yet effective at creating consistent scene maps.

Joint mapping and pose update. Our mapping subroutine ac-
cepts tracked RGB-D frames and fuses them into the existing scene
map by jointly optimizing the scene geometry and camera poses. It
is noted by [31] that online incremental learning is prone to network
forgetting. Therefore we use a similar method to jointly optimize
the scene network and feature embeddings. For each frame, we
randomly select Nk f keyframes. These keyframes, including the
recently tracked frame, can be seen as an optimization window
akin to the sliding window approach employed in traditional SLAM
systems [27].

Similar to our tracking process, for each frame in the actively
sampled optimization window, we randomly sample Nm rays. These
rays are transformed into the world coordinate system with estimated
frame poses. Then we sample points within our sparse voxels and
then render a set of pixels from the sample points and calculate
related loss functions, using the method described in Sect. 4.1.

4.4 Dynamic Voxel Management
Contrary to existing approaches where the full extent of the scene
is encoded [31], we are only interested in reconstructing surfaces
that have observations. Therefore, on-the-fly voxel allocation and
searching are of most importance to us. For this reason, we adopt an
octree structure to divide the whole scene into mutually exclusive
axis-aligned voxels where we consider the voxel as the basic scene
unit and the leaf node of the scene octree. An example octree is
shown in Fig. 4. We make our system usable in unexplored areas
by dynamically allocating new voxels when new observations are
made.

Specifically, we initially set the leaf nodes corresponding to the
unobserved scene area to empty, when a new frame is successfully

tracked, we back-project its depth map into 3D points, these points
are then transformed by the estimated camera pose. We then allocate
new voxels for any point that does not fall into an existing voxel.
Since this process needs to be applied for every point, which could
have tens of thousands based on the resolution of the input images,
we use an octree structure to store voxels and feature embeddings to
enable fast voxel allocation and retrieval.

Morton coding Inspired by traditional volumetric SLAM sys-
tems [34], we choose to encode voxel coordinates as Morton codes.
Morton codes are generated by interleaving the bits from each co-
ordinate into a unique number. A 2D example of Morton coding is
given in Fig. 3. Given the 3D coordinate (x,y,z) of a voxel, we can
quickly find its position in the octree by traversing through its Mor-
ton code. It is also possible to recover the encoded coordinates by
applying a decoding operation. The neighbors are also identifiable
by shifting the appropriate bits of the code, which is beneficial for
quickly finding shared embedding vectors.

5 EXPERIMENTS

5.1 Experimental Setup

Datasets: In our experiments we use 3 different datasets: (1) Replica
dataset [28] which contains 18 different scenes captured by a camera
rig. Based on Replica dataset, [31] further synthesizes the RGB-D se-
quences, which are used in our experiments. (2) ScanNet dataset [6]
which contains more than 1000 captured RGB-D sequences and
ground truth poses estimated from a SLAM system [7]. (3) Several
indoor and outdoor RGB-D sequences that were captured by iOS
devices equipped with range sensors such as iPhone 13 Pro and iPad
Pro. These datasets cover a wide range of applications and scenarios,
therefore are well suited to study our proposed system.

Evaluation Metrics: We use several different metrics to measure
the performance of our system as well as other competing methods.
For reconstruction quality, we measure accuracy and completion,
this is in line with previous works [31, 40]. Mesh accuracy (Acc.)
is defined as the un-directional Chamfer distance from the recon-
structed mesh to the ground-truth. Completion (Comp.) is similarly
defined as the distance the other way around. We also measure the
completion ratio, which is the percentage of the reconstructed points
whose distance to the ground truth mesh is smaller than 5cm. We
show the formulation of Chamfer distance in Equation 8, where
p ∈ P and q ∈ Q are two point sets sampled from the reconstructed



Table 1: Trajectory estimation results on the Replica dataset. Our method obtained better results on all sequences.

Methods Metric Room-0 Room-1 Room-2 Office-0 Office-1 Office-2 Office-3 Office-4 Avg.

iMap* [31]
RMSE[m]↓ 0.7005 0.0453 0.0220 0.0232 0.0174 0.0487 0.5840 0.0262 0.1834
mean[m]↓ 0.5891 0.0395 0.0195 0.01652 0.0155 0.0319 0.5488 0.0215 0.1603
median[m]↓ 0.4478 0.0335 0.0173 0.0135 0.0137 0.0235 0.4756 0.0186 0.1304

NICE-SLAM [40]
RMSE[m]↓ 0.0169 0.0204 0.01554 0.0099 0.0090 0.0139 0.0397 0.0308 0.0195
mean[m]↓ 0.0150 0.0180 0.0118 0.0086 0.0081 0.0120 0.0205 0.0209 0.0144
median[m]↓ 0.0138 0.0167 0.0098 0.0076 0.0074 0.0109 0.0128 0.0153 0.0118

Ours
RMSE[m]↓ 0.0040 0.0054 0.0054 0.0050 0.0046 0.0075 0.0050 0.0060 0.0054
mean[m]↓ 0.0036 0.0043 0.0041 0.0040 0.0043 0.0058 0.0045 0.0055 0.0045
median[m]↓ 0.0033 0.0038 0.0036 0.0035 0.0041 0.0048 0.0042 0.0053 0.0041

(a) iMap∗ (b) NICE-SLAM (c) Ours (d) Ground truth

Figure 7: Qualitative reconstruction results on the Replica dataset. From left to right, we show the results of scene reconstruction of different
methods (iMAP∗, NICE-SLAM, our method, and ground truth). It can be clearly seen that our reconstruction results are much better than
iMAP∗. To better show the difference in reconstruction between NICE-SLAM and our method, we use red boxes in the figures to indicate the
improvements over NICE-SLAM.

Table 2: Reconstruction Results of 8 Scenes in the Replica dataset. Compared with iMAP and NICE-SLAM, our approach yields better results
consistently.

Methods Metric Room-0 Room-1 Room-2 Office-0 Office-1 Office-2 Office-3 Office-4 Avg.

iMap [31]
Acc.[cm]↓ 3.58 3.69 4.68 5.87 3.71 4.81 4.27 4.83 4.43
Comp.[cm]↓ 5.06 4.87 5.51 6.11 5.26 5.65 5.45 6.59 5.56
Comp. Ratio[< 5cm %]↑ 83.91 83.45 75.53 77.71 79.64 77.22 77.34 77.63 79.06

NICE-SLAM [40]
Acc.[cm]↓ 3.53 3.60 3.03 5.56 3.35 4.71 3.84 3.35 3.87
Comp.[cm]↓ 3.40 3.62 3.27 4.55 4.03 3.94 3.99 4.15 3.87
Comp. Ratio[< 5cm %]↑ 86.05 80.75 87.23 79.34 82.13 80.35 80.55 82.88 82.41

Ours
Acc.[cm]↓ 2.41 1.62 3.11 1.74 1.69 2.23 2.84 3.31 2.37
Comp.[cm]↓ 2.60 2.23 1.93 1.39 1.80 2.71 2.69 2.88 2.28
Comp. Ratio[< 5cm %]↑ 92.87 93.48 94.34 97.21 93.76 90.98 90.73 89.48 92.86



Figure 8: Reconstruction of real-world RGB-D sequences captured with a handheld device. The images were taken by an iPhone 13 Pro. We
get depth images directly from the onboard lidar sensor. We show (top) reconstructions and (bottom) an example of the original input image.

and ground truth meshes:

dCham f er = |P|−1
∑

(p,q)∈ΛP,Q

‖p−q‖2,

Λ
∗
Q,P = {(p,argminq‖p−q‖)}.

(8)

To benchmark pose estimation, we adopt the commonly used
absolute trajectory error (ATE) using the scripts provided by [30].
ATE is calculated as the absolute translational difference between
the estimated and ground truth poses.

Implementation Details: We illustrate our network architecture
in Fig. 5. Our decoder is implemented as an MLP consisting of sev-
eral fully-connected layers (FC) and skip connections. The input to
our network is a 16-D feature embedding. The features are generally
processed by 2-4 FC layers that each has 256 hidden units. The SDF
head outputs a scalar SDF value s and a 128-D hidden vector. The
color head has two FC layers with 256 hidden units each. We apply
sigmoid to generate RGB values in the range [0,1]. The step size
ratio for sampling voxel points is generally set to 0.05-0.1. For all
scenes, we use a voxel size of 0.2m.

5.2 Reconstruct Synthetic Scenes
To test our system on reconstructing synthetic scenes, we use the
Replica dataset. The RGB-D sequences we use are released by [31]
and subsequently used in NICE-SLAM [40]. We compare our sys-
tem qualitatively with iMap and NICE-SLAM. The results of iMap
are directly obtained from their paper, while the results for NICE-
SLAM is generated from their official code release. We show the
qualitative evaluation results in Fig. 7. It can be seen that our method
produces better maps than iMap, and performs on par with NICE-
SLAM.

It is worth noting that both NICE-SLAM and iMap assume
densely populated surfaces, therefore they will create surfaces even
in places that is not observed. Surfaces created in this way will
be realistic when the gap is small, but deviates from the ground
truth by a large margin when there is a huge gap. Our use of an
explicit voxel map prevents this from happening, i.e., our system
only hallucinates surfaces inside the visible sparse voxels, therefore
we can still produce plausible hole fill-in effects, while leaving large
unobserved spaces empty. By doing so, we effectively combine the
best of both worlds. Although it might seem like a disadvantage at
first, we argue that for real-world tasks it is often more important to
know where has been observed and where has not.

Table 3: Trajectory estimation results on the ScanNet dataset
(RMSE).

Scene ID 0000 0106 0169 0181 0207

DI-Fusion [9] 0.6299 0.1850 0.7580 0.8788 1.0019
iMap* [31] 0.5595 0.1750 0.7051 0.3210 0.1191
NICE-SLAM [40] 0.0864 0.0809 0.1028 0.1293 0.0559
Ours 0.0839 0.0744 0.0653 0.1220 0.0557

Owing to the expressiveness of the signed distance representation,
Our method is also able to reconstruct more detailed surfaces. This
is shown in Fig. 6. In our results, the table legs and flowers are
clearly seen but missing in the results of NICE-SLAM, despite that
we use slightly larger voxels and only a single voxel grid level as
opposed to three levels in NICE-SLAM.

We also quantitatively compared our system on reconstruction
quality and trajectory estimation with iMap and NICE-SLAM.
Please note that the results of reconstruction quality for iMap are
directly obtained from its paper [31], while the trajectory estimation
experiment was performed with the iMap implementation of [40]
since the original authors do not open source their code (denoted
as iMap*). The results for NICE-SLAM are taken from the supple-
mentary material of the published paper. Please note that we use the
results computed without mesh culling for a fair comparison. The
results on reconstruction accuracy are listed in Table 2. The results
for trajectory estimation accuracy are listed in Table 1. It is clear
that we surpass both systems on all metrics. We also obtained much
better results on camera pose estimation with a large margin. These
results further confirm our observation that our system is able to
produce state-of-the-art results on synthetic datasets.

5.3 Reconstruct Real Scans

Unlike synthetic datasets, real scans are noisier and contain erro-
neous measurements. Reconstructing real scans is considered a
challenging task that has not yet been solved. We benchmarked
our system on selected sequences of ScanNet [6]. The selection of
sequences is in line with [40], and the results from DI-Fusion [9],
iMap* and NICE-SLAM are directly taken from [40]. The quan-
titative results are shown in Table 3. It can be seen that despite
the simplicity of our design, our method still achieves better results
than iMap and NICE-SLAM. We also provide geometric reconstruc-
tion with sufficient details, which provides better results in scene



(a) Ground Truth (b) Rendered Image (c) AR View1 (d) AR View2

Figure 9: The ground truth image (a) in the Replica office3 dataset and its rendered image (b) with our reconstructed scene. And we place
some pre-defined objects in office3, which is shown by (c) and (d) in different viewpoints. We show that we can achieve a good occlusion
relationship between real and virtual objects.

Table 4: Average time spent on each component.

Components Measured time

Tracking 12 ms
Mapping 55 ms

Voxel allocation 0.1 ms
Ray-voxel intersection test 0.9 ms
Point sampling 1 ms
Volume rendering 4 ms
Back-propagation 6 ms

accuracy and completion.
We also tested our system on reconstructing outdoor RGB-D

sequences captured with a handheld device. In our case, we take
these images with an iPhone 13 Pro and an iPad Pro (2020). Our
system is able to reconstruct the scene with reasonable accuracy
without prior knowledge of the scene. We demonstrate the results
in Fig. 8. Please note that iOS devices can only provide depth maps
with very low resolution, which limits the reconstruction quality. As
can be seen from the figure, our system can reconstruct the scene
in various scenarios, and we believe this is a big step towards truly
useful neural implicit SLAM systems.

5.4 Time and Memory Efficiency
We use a highly efficient multi-process implementation for the par-
allel tracking and mapping. Since we make a local copy of shared
resources (e.g. voxels, features, and the implicit decoder, etc.) for
the tracking process each time the map is updated, the probability of
resource contention between the two processes is low. The perfor-
mance hit of accessing the same resource can be further minimized
using better engineered lock-free structures, which are not covered
in our work.

To study the impact on running time for our sparse voxel-based
sampling and rendering method, we profile our system on the syn-
thetic Replica dataset. We measure the average time spent on impor-
tant components, including voxel allocation, ray-voxel intersection
test and volume rendering, etc. The experiment is performed on a
single NVidia RTX 3090 video card. The results are listed in Table 4.
Please note that tracking and mapping are profiled on a per-iteration
basis. As can be seen, our voxel manipulation functions have no
significant impact on the running time of the reconstruction pipeline.
Depending on the scene complexity, our method can take around
150-200 ms to track a new frame and 450-550 ms for the joint frame
and map optimization. In a typical setting, our system can run 5hz for
tracking, and 2hz for optimization. However, for more challenging
scenarios, the system might run slower.

As explained before, our sparse voxel structure allows us to only
allocate voxels occupied by objects and surfaces, which is often only
a fraction of the entire environment. We profile our system as well
as NICE-SLAM for memory consumption of implicit decoders and

Table 5: Memory consumption for implicit features.

Method Decoder Embedding

Ours 1.04MB 0.149MB
NICE-SLAM 0.22MB 238.88MB

voxel embeddings on the Replica office-0 scene. the results are listed
in Table 5. Please note that NICE-SLAM uses 4 layers of densely
populated voxel grids while we only use one. It can be clearly seen
that our method can achieve better reconstruction accuracy while
using significantly less memory.

6 APPLICATIONS

Our Vox-Fusion can not only estimate accurate camera poses in
cluttered scenes, but also obtain dense depth maps with fine geo-
metric details and render realistic images through our differentiable
rendering. Therefore, it can be applied to many AR and VR applica-
tions. For AR applications, our method allows us to place arbitrary
virtual objects into reconstructed scenes, and accurately represent
the occlusion relationship between real and virtual contents using
the rendered depth maps. We show examples of rendered images
and AR demo images in Fig. 9. As can be seen, our dense scene rep-
resentation allows us to handle occlusion between different objects
very well in the AR demo.

For VR applications, apart from providing accurate camera track-
ing result, the realistic rendering ability can be used in free-view
virtual scene traveling. Our voxel-based method also makes scene
editing much easier since we can remove part of the scene by simply
deleting its supporting voxels and the associated feature embeddings.
The explicit voxel representation can also be used to perform fast col-
lision detection. We can also control the level of details by splitting
and refining feature embeddings as introduced in [14].

7 CONCLUSION

We propose Vox-Fusion, a novel dense tracking and mapping system
built on voxel-based implicit surface representation. Our Vox-Fusion
system supports dynamic voxel creation, which is more suitable for
practical scenes. Moreover, we design a multi-process architecture
and corresponding strategies for better performance. Experiments
show that our method achieves higher accuracy while using smaller
memory and faster speed. Currently, our Vox-Fusion method cannot
robustly handle dynamic objects and drift in long-time tracking. We
consider these as potential future works.
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