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Abstract
We present a novel high-quality vectorized modeling pipeline for large-scale scenes. With a reconstructed dense point cloud
and its corresponding multi-view source images and camera parameters as input, our system can efficiently reconstruct a
geometrically complete and detail-preserved vectorized model. Unlike most existing planar shape assembling methods which
cannot handle large-scale vectorizedmodelingwell due to the limitation ofmemory and computation, we can achieve complete
high-quality vectorized modeling for complicated large-scale scenes in a time and memory efficient way. Our pipeline first
carries out a 3D semantic segmentation on the dense point cloud, by performing 2D semantic labeling on the source images
with a semantic segmentation network and fusing the 2D semantic labels into the point cloud. According to the fused dense
3D semantic labels, we then divide the scene into main structure including the grounds, walls and ceilings, and isolated objects
that do not belong to the main structure. After the scene division completes, vectorized modeling is performed successively on
the main structure and isolated objects to extract their polygonal models respectively instead of vectorizing the whole scene,
to improve both time and memory efficiencies. Additionally, the previously vectorized main polygonal structures are used
as priors to refine the segmentation and guide the vectorization of the objects to ensure the geometrical completeness and
topological consistency of the entire vectorized model. Especially, during the vectorization procedure, a well designed binary
space partition tree is designed to better slice the space so that high-quality polygonal mesh with more geometric details can
be reconstructed with both time and memory efficiencies. Experiments with quantitative and qualitative evaluations on large-
scale scenes demonstrate the accuracy and efficiency of the proposed vectorization pipeline. We also compare our method
with state-of-the-art planar shape reconstruction methods to show its effectiveness in reconstructing large-scale vectorized
models.
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1 Introduction

Vectorized modeling from 3D point clouds is increasing
attractive in recent years, because a vectorized model has
considerable advantages in reducing computation and mem-
ory overhead due to its light-weight Computer-Aided Design
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(CAD) style representation, which is preferred by a vari-
ety of applications such as rendering, simulation, navigation
and building information modeling (BIM). However, auto-
matically vectorizing a complicated large-scale scene with
its geometric details preserved in a time and memory effi-
cient way has long been a challenging problem in computer
vision.

The most popular way to reconstruct a 3D polygonal
vectorized model consists of two steps: a planar primitive
abstraction and a polygonal vectorizedmodel reconstruction.
A planar primitive is represented by a set of inlier 3D points
and a supporting plane which fits the inliers. All the pla-
nar primitives are abstracted from the input 3D point cloud,
and are then assembled into a compact polygonal vectorized
model, which is the core and the most difficult part of the
entire pipeline. A typical solution is to slice the 3D space
into an intermediate set of polyhedrons by binary space par-
tition (BSP) tree (Boulch et al., 2014; Chauve et al., 2010;
Fang et al., 2021; Murali and Funkhouser, 1997; Mura et
al., 2016), plane expansion (Nan andWonka, 2017; Oesau et
al., 2014), kinetic frameworks Bauchet and Lafarge (2020)
or soft-connectivity analysis Fang and Lafarge (2020). The
vectorized model is then extracted by a min-cut framework
or a mixed-integer programming approach. These methods
are robust but have difficulty in handling complicated struc-
tures well with over thousands of planar primitives due to
their extensive time and memory consumption. Some other
research works focus on the vectorization of large-scale
scenes, including general indoor scenes (Fang et al., 2021;
Han et al., 2021a; Ochmann et al., 2019) and urban envi-
ronments (Bauchet and Lafarge, 2019; Duan and Lafarge,
2016; Han et al., 2021b; Verdie et al., 2015; Zhu et al., 2020,
2018). They segment the scenes into certain semantic parts
and vectorize only a limited portion of the scenes including
ceilings, grounds, walls and buildings, with other semantic
parts ignored. With the help of 3D semantic segmentation,
these works can handle large-scale scenes but turn out to
be difficult in reconstructing a complete vectorized model
of the entire scene with the detailed structures and objects
extracted. Other typical approaches for object or scene vec-
torization like (Arikan et al., 2013; Chen and Chen, 2008;
Schindler et al., 2011) snap all the planar primitives accord-
ing to their spatial connections. However, these works are
more suitable for high-quality point cloud such as Lidar data,
since their performance depends heavily on the geometrical
correctness and completeness of the adjacency relationship
of the abstracted primitives.

We present a novel high-quality vectorized modeling sys-
tem which combines semantic segmentation to solve the
above problems. More specifically, we aim at converting an
oriented dense point cloud of a large-scale scene to a geomet-
rically complete, detail-preserved and topological consistent
polygonal surface mesh in a time and memory efficient way.

In other words, a vectorized modeling system should be able
to successfully vectorize a piece-wise planar scene contain-
ing over tens of thousands of planar primitives within several
hours on a computing platformwith memory limitation (usu-
ally no more than 128GB) for practical application purpose,
which is difficult to achieve by most SOTA works. Start-
ing from the point cloud and its multi-view source images
and corresponding camera parameters, we first perform 3D
semantic segmentation on the point cloud based on a 2D seg-
mentation network combined with 3D semantic fusion. With
the 3D semantic labels, we extract main structure including
the grounds, walls and ceilings from the dense point cloud,
with other parts not belonging to the main structure as iso-
lated objects. After the scene division completes, vectorized
modeling is performed successively on the main structure
and isolated objects to reconstruct a complete vectorized
model. During the vectorization, a well designed BSP tree
is proposed to better slice the 3D space, which enables our
approach to assemble more planar primitives in a time and
memory efficientway for preserving better geometric details.
Additionally, the previously vectorized polygonal geometry
of the main structure are used as priors to not only con-
strain the vectorization of the incoming isolated objects to
maintain the completeness and topological consistency of
the entire vectorized model, but also guide the refinement
of 3D semantic segmentation to further improve the vec-
torized modeling of the whole scene. Figure1 shows some
large-scale indoor and outdoor examples of our vectorization
approach, from which we can see that our method is capable
of assemblingmore planar primitives to a high-quality polyg-
onal vectorized model with more geometric details, better
geometrical completeness and higher accuracy, compared to
other SOTA methods like PolyFit Nan and Wonka (2017),
Kinetic Shape Reconstruction (KSR) Bauchet and Lafarge
(2020) and VecIM Han et al. (2021a).

Our main contributions can be summarized as:

• Wepropose an efficient high-quality vectorizedmodeling
pipeline for complicated large-scale scenes, by dividing
the whole scene into main structure and isolated objects
according to the 3D semantic segmentation of the scenes,
for a time and memory efficient vectorization purpose.

• A novel BSP strategy is proposed to generate a light-
weight convex polyhedra set, which enables our system
to assemble thousands of planar primitives to a detail-
preserved vectorized model in only a few minutes.

• We innovatively use the already vectorized main polygo-
nal structures as prior to guide the vectorization process
of the isolated parts and further refine the 3D seman-
tic segmentation. In this way, a high-quality vectorized
model with complete geometry, consistent topology and
correct semantic attributes can be reconstructed.
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Fig. 1 Examplar point clouds and corresponding 3D vectorizedmodels
of an indoor case “area3” from S3DIS Armeni et al. (2017) on top, and
two outdoor cases “Village” and “Taian Ancient Street” on left bottom
and right bottom, by our vectorized modeling pipeline, with rectan-
gular regions magnified to show the vectorized structure details. For
case “area3” we also compare our method with SOTA works PolyFit
Nan and Wonka (2017), KSR Bauchet and Lafarge (2020) and VecIM
Han et al. (2021a), with the number of participated planar primitives
and modeling accuracy by Mean Hausdorff Error (MHE) Cignoni et al.

(1998) and Root Mean Squared Error (RMSE) in meters also given for
each method. For the two large-scale outdoor cases, only PolyFit and
KSR are compared, since VecIM even cannot succeed due to its lim-
itation to indoor scenes. From the detailed comparison results we can
see that our vectorization method can well handle large-scale compli-
cated scenes composed of piecewise-planar main structure and isolated
objects, by assembling the largest number of primitives to achieve the
best geometrical completeness, details and accuracy
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This paper is organized as follows. Section2 briefly
presents related work. Section3 gives an overview of the
proposed vectorized modeling system. The semantic scene
segmentationmodule and the scene vectorizationmodule are
described in Sects. 4 and 5 respectively. Finally, we evaluate
the proposed solution in Sect. 6.

2 RelatedWork

Vectorizedmodelingmethods reconstruct aCADstylemodel
from 3D point cloud or raw triangle mesh of an object. Exist-
ing state-of-the-art (SOTA) works usually start with a planar
primitive abstraction procedure, followed by the reconstruc-
tion of polygonal vectorized model from the abstracted
planar primitives. Planar primitive abstraction is generally
achieved by performing region growing algorithm (Marshall
et al., 2001; Rabbani et al., 2006) or RANSAC Schnabel
et al. (2007) on the input data. Some works like (Boulch
et al., 2014; Fang et al., 2021; Nan and Wonka, 2017)
additionally merge the coplanar primitives to reduce the
over-segmentation regions, or regularize them based on the
prior structure knowledge of man-made architecture such as
parallelism and orthogonality (Fang et al., 2021; Li et al.,
2016b; Monszpart et al., 2015; Verdie et al., 2015). Recently,
Yu and Lafarge (2022) propose to refine the planar prim-
itives from unorganized 3D point clouds by optimizing a
multi-objective energy function, which shows efficacy for
the quality improvement of the reconstructed compact mesh.

After planar primitive abstraction finishes, all the planar
primitives are assembled together to form a compact polyg-
onal surface mesh, which is the most difficult step. Existing
polygonal vectorized model reconstruction methods can be
generally divided into two categories: connectivity-based
methods and slicing-based methods. The connectivity-based
methods like (Arikan et al., 2013; Chen and Chen, 2008;
Schindler et al., 2011) usually analyse the adjacency relation-
ship of the planar primitives and reconstruct the vectorized
model based on the boundary information of each primi-
tive, including the corners, edges and facets. For example,
Chen and Chen (2008) compute the edges through plane
intersections and human interactions, and the corners are
extracted from a cluster graph and arranged to constitute the
final polygonal surface mesh. Arikan et al. (2013) propose
an interactive 3D modeling system, which creates an initial
polygonal surface mesh by detecting planar polygon prim-
itives from point clouds and automatically snapping them
together according to the local polygon adjacency relations.
Then, the users are allowed to interactively modify the poly-
gons, which are interleaved with the automatic snapping to
further refine the polygonal mesh. However, most of these
methods require user interactions and rely heavily on the
quality of the input data, which restricts their availability in

the real-world applications with noisy and large-scale point
clouds captured by consumer-level devices or generated by
multi-view stereo (MVS) methods. The slicing-based meth-
ods such as (Boulch et al., 2014; Bauchet and Lafarge, 2020;
Bouzas et al., 2020; Chauve et al., 2010; Fang and Lafarge,
2020; Fang et al., 2021; Han et al., 2021a; Huang et al., 2022;
Li et al., 2016b; Mura et al., 2016; Nan and Wonka, 2017;
Oesau et al., 2014; Wang et al., 2017) are more robust to
defect-laden data, whose idea is to first partition the whole
3D space, which is commonly the 3D bounding box of the
input data, into an intermediate set of polygonal facets sliced
by the detected planar primitives. A typical SOTA work of
this category is PolyFit Nan andWonka (2017), which slices
the space by expanding all the planar primitives infinitely
to produce a set of extremely dense polygonal facets. This
exhaustive slicing way is difficult to process a scene con-
taining more than one hundred planar primitives due to its
hugememory and time complexity.Recently, somemore effi-
cient partition methods are proposed to speed up the slicing
process. For example, Bauchet and Lafarge (2020) design
a kinetic data structure where all the planar shapes grow
at constant speed until collisions occur. Fang and Lafarge
(2020) propose a hybrid slicing method by finding out the
structural facets first and constrain the slicing range of the
other primitives according to their spacial relationship. Han
et al. (2021a) convert the 3D space partition problems to
multiple 2D segment or cell assembly optimizations, which
is mainly designed for indoor scenes. Another kind of more
light-weight slicing method is based on BSP tree (Boulch
et al., 2014; Chauve et al., 2010; Fang et al., 2021; Murali
and Funkhouser, 1997; Mura et al., 2016), which inserts pla-
nar primitives sequentially, with each primitive only splitting
the polyhedral cells that are traversed. The main challenge
of BSP based methods is to choose a proper insertion order
for the planar primitives to generate a correct light-weight
partition in a time efficient way. Some BSP based piecewise-
planar reconstructionworks like (Boulch et al., 2014; Chauve
et al., 2010; Fang et al., 2021) sort primitives according to
their sizes and structures, and Fang et al. (2021) additionally
consider the adjacency relationships of the primitives dur-
ing the slicing procedure to ensure the correctness of the
partition. After the slicing process completes, the vector-
ized model is extracted by labeling the cells with a min-cut
formulation (Bauchet and Lafarge, 2020; Fang et al., 2021;
Li et al., 2016b; Mura et al., 2016), or selecting a portion
of polygonal facets to form the final surface mesh through
mixed-integer programming approach (Boulch et al., 2014;
Fang and Lafarge, 2020; Nan and Wonka, 2017). As verified
in the practical experiments of KSR Bauchet and Lafarge
(2020), the min-cut solver is much more stable and faster
than the integer programming, especially if we have a huge
number of polyhedral cells. Inspired by the slicing-based
methods, our vectorization approach also uses BSP tree for
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space partition. However, unlike most existing BSP based
works that can hardly handle thousands of planar primitives
efficiently, we propose a novel BSP strategy to solve it in an
efficient way.

Recently, deep learning based methods are also proposed
for object vectorization. For example, Zeng et al. (2018)
design a sequence of shape grammar rules and reconstruct
buildings through a deep neural network. Chen et al. (2020)
propose BSP-Net for training a network to reconstruct polyg-
onal surfacemesh frompoint cloud.Yu et al. (2022) introduce
CAPRI-Net to learn 3D CAD shapes via constructive solid
geometry operations. However, due to the complexity of the
vectorization problem, most of these networks are limited to
vectorize small objects.

In addition, there are lots of works which focus on vector-
izing urban buildings in the form of levels of detail (LODs).
Most of these methods build city models with levels of detail
ranging from LOD2 to LOD3 (Arefi et al., 2008; Han et al.,
2021b; Verdie et al., 2015; Xie et al., 2021; Zhu et al., 2018,
2020), or specially reconstruct 2.5D models (Bauchet and
Lafarge, 2019; Duan and Lafarge, 2016; Lafarge and Mallet,
2012; Li et al., 2016; Poullis and You, 2009), while our goal
is to provide a complete and detailed 3D vectorizedmodel for
more complicated general scenes including urban buildings
and indoor scenes.

Most existing vectorization methods are effective for
small-scale scenes, but can hardly be directly used for a
complicated city-scale scene which contains more than ten
thousands of planar primitives, due to their huge memory
and time consumption. To reconstruct large-scale vectorized
models, some of these methods such as (Fang et al., 2021;
Han et al., 2021a; Mura et al., 2016; Oesau et al., 2014)
semantically decompose the input 3D point clouds into iso-
lated parts, and only vectorize the main structure such as
ceilings, walls, grounds and buildings, with other isolated
objects ignored. The 3D semantic segmentation methods
can be divided into three categories: geometric feature based
methods,machine learning based approaches, and neural net-
work based methods. The geometric feature based methods
(Fang et al., 2021; Mura et al., 2016) decompose the scene
according to the geometric attributes of planar primitives,
including the size, elevation, planarity, horizontality, verti-
cality, and z-direction of the scene. This kind of methods
usually depend on strong prior knowledge about the scene
and are not suitable for uncommon or complex environments.
The machine learning based methods also compute the geo-
metric attributes first, and then label the entire scene through
traditionalMarkov RandomFields (MRF) (Lafarge andMal-
let, 2012; Rouhani et al., 2017; Verdie et al., 2015; Zhu et
al., 2018) or Conditional Random Fields (CRF) optimization
(Hermans et al., 2014; Pham et al., 2019; Wolf et al., 2015;
Yang et al., 2017). Recently, many neural network based
methods are proposed to solve the decomposition problem.

There are already some 2D CNNs based semantic segmen-
tation works such as (Chen et al., 2018; Wang et al., 2020)
which perform successfully on natural scenes. Choy et al.
(2019) and Graham et al. (2018) extend the feature extrac-
tion ability of 2D CNNs to fit 3D data and achieves good
performance on indoor 3D scenes. However, 3DCNNs based
methods would consume lots of time and memory when it
comes to large-scale outdoor scenes. Instead of extracting
features from 3D data, Kundu et al. (2020) choose to fuse
2D segmentation results into 3D scenes with camera-world
translation, which avoids time and computation consuming
process of training and inferencing in 3D data. After the
semantic scene decomposition completes, these works only
reconstruct the main vectorized structures, and ignore the
other isolated objects. Fang et al. (2021) try to complete
the structures of the isolated objects by performing vertex
filling and Poisson Surface Reconstruction Kazhdan et al.
(2006), instead of vectorizing these objects. In comparison,
our system can achieve geometrically complete and topolog-
ical consistent vectorized modeling with geometric details
preserved for both main structure and isolated objects of
complicated large-scale scenes in a time and memory effi-
cient way.

3 SystemOverview

We now outline the main steps of the proposed vector-
ized modeling system, as shown in Fig. 2. Suppose we have
a large-scale normal oriented dense point cloud denoted
as D and its corresponding N multi-view source images
I = {Ii | i = 1, . . . , N } and camera parameters {Mi =
Ki [Ri ti ] | i = 1, . . . , N } as input. The point cloud can be
captured by 3D laser scanner or generated by SOTA MVS
methods with the multi-view images and camera parameters.
Our system first carries out a semantic segmentation mod-
ule to decompose the scene into main structure including
the grounds, walls and ceilings, and isolated objects which
do not belong to any part of the main structure. When the
semantic decomposition completes, we start to vectorize the
main structure first, by abstracting and expanding their pla-
nar primitives according to the adjacency relationships, and
partitioning the space into an intermediate set of polyhedrons
through our well designed BSP tree. The vectorized model
of main structure is extracted by labeling the cells as inside
or outside via a min-cut optimization. After that, the vector-
ized model of the main structure is fed back to the semantic
segmentation module to refine the semantic labeling accu-
racy of the entire scene including the main structure and the
isolated objects. The updated semantic segmentation leads a
second time of vectorization to get the final vectorized model
of the main structure with better geometry. After we have a
refined semantic segmentation and vectorized model of the
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Fig. 2 System framework of our vectorized modeling pipeline, which
starts from a semantic segmentation step to divide the scene point cloud
into the main structure part and the isolated object parts, followed by
vectorization processes for each part to get its polygonal model. Espe-
cially, the main vectorized structure provides feedback for semantic

segmentation refinement to lead a second time of main vectorized struc-
ture extraction, and is also used as prior to guide the vectorization of the
isolated objects for topological consistency. The vectorized models of
the main structure and the isolated objects make up the final complete
polygonal model of the scene

Table 1 The influence of different settings of wc and wb on the num-
ber of sliced space cells |Cm|, the number of associated polygonal faces
|Fm|, time (seconds) and memory consumption (GB) of the main struc-
ture space partition for case “Office”

wc/wb |Cm| |Fm| Mem.(GB) Time(s)

20/10 213,199 728,553 0.55 30.2

5/10 246,486 845,693 0.63 33.8

10/10 223,751 764,076 0.57 32.1

50/10 227,028 775,541 0.59 48.3

20/5 220,509 754,391 0.58 39

20/25 247,372 845,391 0.62 32.2

20/50 261,118 893,118 0.66 38.8

The entries with best performance are given in bold

main structure, the vectorization of the isolated objects is
guided with the main vectorized structure as priors to ensure
their topological consistency. The refined polygonal surface
meshes of the main structure and the isolated objects con-
stitute the final vectorized model of the whole scene whose
polygonal facets are denoted as F , as shown in Fig. 1. In the
following sections, each step will be described in detail.

4 Semantic Scene Segmentation

To semantically decompose the scene into main structure
including the grounds,walls and ceilings, and isolatedobjects

of the rest parts, a 3D semantic segmentation of the input
point cloud is necessary to classify each 3D point into seman-
tic labels S including ground, ceiling, wall, roof, building,
car and other object. We use a 2D-to-3D fusion strategy to
ensure generalization of the 3D semantic point cloud seg-
mentation. First, a DeeplabV3+ network Chen et al. (2017)
is applied for inferring per-pixel semantic probability fea-
tures of each source image Ii , where every pixel x ∈ Ii
has its semantic probability Ps(x, s) for each semantic label
s ∈ S. We pre-train our 2D semantic segmentation model on
ADE20K dataset (Zhou et al., 2017, 2019) for indoor scenes
and Semantic Drone Dataset1 for outdoor scenes, and then
fine-tune it with additionally five UAV captured cases. Then,
the inferred 2D semantic probability features are mapped to
the 3D point cloud, by projecting each 3D point X ∈ D
to the multiple source images using the camera parameters
{Mi = Ki [Ri ti ] | i = 1, . . . , N }, where Ki is the projec-
tion matrix and [Ri ti ] is the global-to-local pose matrix of
Ii including the rotation part Ri and translation part ti . The
semantic probability features of all the visible projections
are fused using a similar fusion approach to Kundu et al.
(2020). Here we filter out invisible projections by checking
the consistency of the rendered depth buffer and the projec-
tion depths of each image view. The semantic probability

1 http://dronedataset.icg.tugraz.at.
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Table 2 The semantic segmentation accuracy measurements of “Village” and “Office” before and after semantic segmentation refinement, with
Intersection over Union (IoU) given for each semantic type, and Mean Intersection over Union (MIoU) given for total semantic accuracy metrics

Cases Accuracy Wall Building Ground Ceiling Roof Car Other MIoU

Village Before Refine N/A 70.81% 67.28% N/A 76.63% 61.01% 47.14% 64.57%

After Refine N/A 84.52% 91.41% N/A 84.82% 61.01% 47.14% 73.78%

Office Before Refine 77.54% N/A 75.95% 84.03% N/A N/A 79.03% 79.14%

After Refine 91.91% N/A 87.2% 94.27% N/A N/A 92.76% 91.54%

The entries with best performance are given in bold

features of all the visible projections are simply averaged to
obtain the fused 3D semantic probability features as inKundu
et al. (2020), where each 3D point X has its semantic proba-
bility Ps(X, s) for each semantic label s ∈ S. With the fused
semantic probability feature, each 3Dpoint is assigned by the
semantic with the maximal probability as its semantic label
S(X) = argmax

s
Ps(X, s). The 2D and 3D segmentation

results of indoor case “Office” and outdoor case “Village” are
shown in Fig. 3, with the 3D semantic segmentation accuracy
measurements on the two cases given in the “Before Refine.”
rows of Table 2, where we use manually annotated semantic
ground-truth (GT) to compute Intersection over Union (IoU)
for each semantic type and Mean Intersection over Union
(MIoU) for total semantic accuracy metrics of each case.
From the semantic accuracy evaluation we can see that our
2D-to-3D fusion strategy can ensure a reliable 3D semantic
prediction of the scene point cloud with high MIoU for the
following scene vectorization process.

5 Large-Scale Scene Vectorization

Since we have the 3D semantic labeling of the scene point
cloud, we can divide the scene into main structure and iso-
lated objects, then vectorize the two parts respectively to
reduce the computational complexity andmemory consump-
tion for large-scale scenes. For simplification of the semantic
categories,we rearrange the original semantic labels into four
categories by keeping the semantic labels ground, ceiling and
wall which belongs to the main structure, and unifying the
other semantic labels as object to denote isolated objects.
Additionally, the original labels door and window are rela-
beled as part of wall for simplification. In this way, each
3D point X has its relabeled semantic category denoted as
Ŝ(X). Vectorized modeling is carried out on the main struc-
ture and isolated object parts decomposed by the relabeled
semantic segmentation. Especially, the vectorized model of
themain structurewill be used to refine the semantic segmen-
tation accuracy and guide the vectorization of the isolated
objects.Wewill describe the vectorizedmodeling and seman-
tic refinement steps in detail.

Fig. 3 a Examplar 2D semantic segmentations of cases “Village” and
“Office”. b The fused 3D semantic segmentations for point clouds of
“Village” and “Office”

5.1 Planar Primitive Abstraction

Given the semantic relabeled 3D point cloudD, our goal is to
abstract a set of planar primitives P = {Pi | i = 1, . . . , N }
from the point cloud and classify them into main structure
and isolated objects. Each primitive Pi consists of a set of
inlier 3D points and a supporting 3D plane which fits the
inliers. For 3D points of each semantic category, we perform
the region growing algorithm implemented in CGAL library
Lafarge and Mallet (2012) to detect the planar primitives,
considering 3D points with Euclidean distance smaller than
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a sphere radius rs = 5sa as neighborhood with sa denot-
ing the average spacing of D. For each primitive, at least 10
inliers are required by region growing with each inlier point
lying within maximal tolerances of absolute Euclidean dis-
tance 0.1m and normal deviation 25◦ from the plane position
and normal of the primitive respectively. Finally, the planar
primitiveswith the semantic categories ofground, ceiling and
wall constitute the main structure and the connected primi-
tives with object semantic category are grouped as isolated
objects, as shown in Fig. 4c.

5.2 Space Partition

After we have the division of the planar primitives into main
structure and isolated objects, we start to successively vec-
torize the main structure part and the isolated object parts.
For vectorized modeling of each part, unlike the exhaus-
tive slicing strategies proposed by Oesau et al. (2014), Nan
and Wonka (2017), we use a light-weight BSP based space
slicing strategy which inserts planar primitives successively
with each primitive only slicing the polyhedral cells which
are traversed. Most existing BSP tree based methods like
(Boulch et al., 2014; Chauve et al., 2010; Mura et al., 2016)
cannot ensure correct space slicing boundaries with vari-
ous improper orders in which the primitives are inserted.
An incorrect space slicing is illustrated as 2D simulation in
Fig. 5a, b. More importantly, space slicing with more primi-
tives will promote model vectorization with better geometric
details and completeness, but at the cost of much more
time and memory, as the number of polyhedral cells usu-
ally increase rapidly with the insertion of planar primitives.
Besides, the time and memory efficiency of space partition
depends heavily on a proper insertion order of primitives. To
better solve these problems,we propose a novel slicing-based
space partition approach by determining the proper bound-
aries of all the planar primitives based on their neighborhood
relationships beforehand to ensure the partition intersection
correctness, and applying a novel primitive insertion order to
partition the space with a large number of primitives in a time
and memory efficient way. To be precise, given a set of pla-
nar primitives Ps and their 3D bounding box Bs for the main
structure part or one of the isolated object part, our goal is
to efficiently slice Bs into an intermediate set of polyhedrons
Cs, where the final vectorized model can be extracted.

Inspired by Fang and Lafarge (2020) and Fang et al.
(2021), an adjacency graph G is constructed for all the pla-
nar primitives P by finding the adjacent neighborhood of all
the planar primitives as shown in Fig. 5d, with each pair of
primitives considered adjacently connected if the minimal
distance between their inlier points is less than rs . We ini-
tialize the boundary of each primitive as the convex hull of
the inlier point projections on its supporting plane as shown

in Fig. 4d, and expand the boundary towards its neighbor-
ing primitives in the adjacency graph. In this way, the final
boundary intersections can be determined in advance before
slicing, rather than expanding the boundaries during the slic-
ing procedure as in Fang et al. (2021), so as to avoid incorrect
space partition caused by an inproper primitive insertion
order. To determine the final boundary B(Pi ) of each primi-
tive Pi , we perform uniform sampling on its initial boundary
with the average spacing as sa and each sample vertex is
expanded along the direction away from the centroid of the
initial boundary towards its adjacent planar primitives. We
traverse all the intersection points where the sample vertices
collide with the intersection lines between Pi and its adja-
cent primitives, and determine its final boundary as the set of
intersection points with the furthest distances from the initial
sample vertex positions within a maximal expansion range
threshold, whose setting depends on the completeness of the
point cloud. NoisyMVS point cloud usually requires a larger
threshold to increase the probability of collisions between
neighboring primitives, but might produce more unneces-
sary polyhedral cells. We empirically set it to 2m, which
turns out to be large enough for all our experimental cases.
Finally, we update the boundaries of all the planar primi-
tives with the expanded sample vertices, to effectively avoid
incorrect space slicing caused by inproper insertion order
of planar primitives. The entire primitive pre-expansion pro-
cess is summarized in Algorithm 1. Figure5 illustrates that
a specific insertion order of primitives in Fig. 5a will result
in incorrect space partition and vectorized model without
pre-expansion of primitive boundaries as shown in Fig. 5b, c,
while Fig. 5d–g demonstrate that our primitive pre-expansion
strategy can ensure the correctness of the space slicing by
the same insertion order and extract a correct vectorized
model. Figure6 is a real example of the case “Village”, where
the primitive abstraction strategy with expansion during the
insertion process will generate abnormal structures such as
the protrusion highlighted in red rectangle of Fig. 6c. As can
be seen in Fig. 6f, our primitive pre-expansion strategy avoids
the incorrect structures by precomputing the expanded primi-
tive boundaries, with the expanded boundary sample vertices
marked as red points in Fig. 6d.

With the pre-computed primitive boundaries, we then
insert the planar primitives Ps into the bounding box Bs to
generate its space partition which consists of a set of poly-
hedrons whose edges are consistent with the pre-determined
boundaries. An intuitive primitive insertion strategy is to sort
planar primitives according to their sizes and structures, and
insert them in the sorted order, which is applied in some
works like (Boulch et al., 2014; Chauve et al., 2010; Fang
et al., 2021). This is a simple but inefficient method, which
turns out to have difficulties in handling actual scenes con-
taining thousands of planar primitives. To better solve the
problem of time and memory consumption during space
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Fig. 4 a 3D point clouds of cases “Village” and “Office”. b Decomposition of (a) by semantic categories. c 3D planar primitives of (b). d The
supporting planes of (c) with convex polygonal boundaries of their inlier projections, denoted by corresponding colors

Fig. 5 A 2D simulation of space partition and vectorized model extrac-
tion with and without planar primitive pre-expansion. a A set of planar
primitives with the insertion order denoted by the number, which are
abstracted without pre-expansion. b Space partition and in/out labeling

by (a). c Incorrect vectorized surface extraction from (b). d Adjacency
graph constructed from (a). e Pre-expansion of (a) by adjacency graph
of (d). f Correct space partition and in/out labeling by (e). g Vectorized
model extracted from (f) with correct surfaces

Algorithm 1 Planar Primitive Pre-expansion
Require:
P = {Pi | i = 1, . . . , N }: initial planar primitive set;
G: adjacent graph of P;
sa : average spacing of input point cloud D;

Output: Plane primitive set P with expanded boundaries;
1: for Pi ∈ P do
2: Denote the initial boundary of Pi as B(Pi );
3: Find the neighboring primitives set of Pi from G as N (Pi );
4: Calculate the intersection lines between Pi and N (Pi ) as L(Pi );
5: Perform uniform sampling on B(Pi ) by sa with the sample ver-

tices denoted as Vs(Pi );
6: for V ∈ Vs(Pi ) do
7: Denote the initial position of V as V̂;
8: while V is within 2m from V̂ do
9: Expand V along the direction away from the centroid of

B(Pi )

10: if V collides with any line of L(Pi ) then
11: Update the position of V;
12: end if
13: end while
14: end for
15: Update B(Pi ) as Vs(Pi ) with the expanded positions;
16: end for

division, we innovatively propose a new planar primitive
insertion order strategywhich considers more about the posi-

Fig. 6 A real 3D space partition example of the case “Village” with and
without primitive pre-expansion. aA set of primitives. b Space partition
by (a). c Vectorized surface extraction from (b) with incorrect structure
as highlighted in red rectangle. d Pre-expansion of (a). e Space partition
by (d). f Correct vectorization of (e)

tional relationships of primitives to solve the space partition
problem in a more efficient way.

Considering that themore spaces are partitioned, themore
time and memory consumption is required for the space
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partition procedure, we tend to design the insertion order
of the planar primitives that minimize the final number of
polyhedral cells. To achieve this goal, we select an opti-
mal planar primitive respectively for each polyhedral cell
to be sliced into two subspaces, by taking into account the
positional relationships among the planar primitives. Specif-
ically, for all the polyhedral cells of the BSP tree leaf nodes
{Ck | k = 1, . . . , K }, we keep a list of associated primitive
sets {P̂k | k = 1, . . . , K }, with each associated primitive set
P̂k containing all the planar primitiveswhich traverse through
the space cellCk . For each planar primitive Pi ∈ P̂k , we cal-
culate its score Wk(Pi ) for slicing Ck with the formula as
follow:

Wk(Pi ) = A(Pi )|P̂k | − wc|P̂c
k | − wb||P̂ l

k | − |P̂r
k ||, (1)

where |P̂k | is the number of primitives in P̂k , and A(Pi ) is a
normalized area of primitive Pi divided by the average of the
maximal ten primitive areas, which encourages larger prim-
itives to be selected. |P̂ l

k |, |P̂r
k | and |P̂c

k | count the number

of primitives in P̂k that lie on the left side, right side, and
across both sides of the primitive Pi respectively accrord-
ing to the positional relationships of the planar primitive set
P̂k . wc and wb are the weights set to 20 and 10 respectively
in our experiments. The variation of the two weights won’t
sensitively affect the final vectorization result, but will have
influence on the number of sliced space cells and the time
and memory consumptions. Table 1 gives the statistics of
the number of partitioned polyhedral cells denoted by |Cm|,
the number of associated polygonal faces by |Fm|, time effi-
ciency and memory consumption of different weight settings
to verify that our setting of wc and wb is the best to achieve
the lowest time and memory costs. The cross term −wc|P̂c

k |
discourages the selected primitive to have too many inter-
sections with other primitives, so that the planar primitives
sliced to the left subspace will not affect the subsequent divi-
sion of the right subspace and vice versa. The balance term
−wb||P̂ l

k | − |P̂r
k || encourages the remaining planar primi-

tives to be bisected into the two subspaces equally. We select
the planar primitive with the maximal score in P̂k to divide
the convex polyhedral cell space Ck into two new subspaces
Cl
k and Cr

k . For the rest planar primitives in P̂k , we check
their intersections with the two newly generated subspaces
and assign them to the associated primitive sets ofCl

k andC
r
k .

We iteratively perform these operations on all the polyhedral
cells including the recursively generated ones, until all the
leaf node spaces can no longer be divided. The entire space
partition process is summarized in Algorithm 2.

Actually, the positional relationships among the planar
primitives which record whether each primitive lies on the
left side, right side or across both sides of another primitive,
are fixed after the planar primitive expansion finishes. There-

Algorithm 2 BSP Space Partition
Require:
Cs = {Bs}: initial polyhedral cells as a single-node BSP tree, which
contains only the bounding box of Ps;

Output:
Cs = {Ck | k = 1, . . . , K }: the final polyhedral cells partitioned by
our BSP slicing;

1: while Cs contains newly generated leaf nodes do
2: for each new leaf node Ck ∈ Cs do
3: Denote P̂k as the associated primitive set of Ck ;
4: if P̂k �= ∅ then
5: for Pi ∈ P̂k do
6: Compute the score of Pi as Wk(Pi );
7: end for
8: Select the primitive with the maximal score as Pm ;
9: Divide Ck into two subspaces Cl

k and Cr
k with Pm ;

10: Add Cl
k andC

r
k to BSP tree as new child leaf nodes of Ck ;

11: Assign the rest primitives in P̂k to Cl
k and Cr

k as their
associated primitive sets;

12: end if
13: end for
14: Update Cs with the current leaf nodes of BSP tree;
15: end while

fore, we precompute a positional relationship map of all the
primitives beforehand in our implementation for speeding up
the score calculation during the space partition.

We give a 2D simulated example in Fig. 7 to illustrate
that a proper planar primitive insertion order can reduce the
number of sliced polyhedral cells while ensuring the correct-
ness of the space partition result. Lines of various lengths
in Fig. 7a represent planar primitives of different areas, with
the dotted line sections indicating the adjacency relationship
between the lines. Figure7b is the space partition result by
the exhaustive insertion strategy of PolyFit Nan and Wonka
(2017) which generates a great many polyhedral cells. Fig-
ure7c is the space division result by the insertion order of
maximal area without considering the primitive adjacency
relationship, which generates fewer polyhedrons but might
has some partition errors in the space associated with mul-
tiple primitive intersections as highlighted in the rectangle.
Figure7d gives the result of insertion order by maximal area
taking into consideration the primitive adjacency relationship
by precomputing the primitive boundaries, which generates
a correct space partition with fewer polyhedrons than Poly-
Fit. Figure7e shows the result of our space partition strategy,
which demonstrates that our insertion order can reduce the
number of sliced polyhedrons for better time and memory
efficiency compared to Fig. 7d, while ensuring the correct-
ness of the partition result. Figure8 is a real example for a
local region of the scene “Village”, from which we can see
that our space partition strategy can perform the best in both
minimal number of polyhedral cells and space partition cor-
rectness. We further gives the statistical comparison of the
numbers of cells together with time and memory consump-
tions of the space partition step for the city-scale case “SUM
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Fig. 7 A2D simulation of space partitionwith different primitive inser-
tion strategies. a A set of planar primitives. bAdjacency graph of (a). c
The space partition result by PolyFit Nan and Wonka (2017). d Incor-
rect space partition by insertion order ofmaximal areawithout primitive

adjacency relationship. e Correct result of insertion order by maximal
area considering the adjacency relationship of (b). f The result of our
space partition strategy, which is the best in both minimal number of
cells and space partition correctness

Fig. 8 A real example of space partition with different primitive inser-
tion strategies for a local region of the scene “Village”. a Point cloud.
b Space partition result by PolyFit. c Space partition by insertion order
of maximal area without primitive adjacency relationship. d The result

of insertion order by maximal area with the adjacency relationship. e
The result of our space partition strategy, which turns out to be the best
in minimal number of cells with correct space partition

Benchmark” on PolyFit, insertion order by maximal area
considering the primitive adjacency, and our partition strat-
egy using different numbers of planar primitives in Fig. 9, to
demonstrate that our method generates the minimal number
of cells with the least consumption of time andmemory. Also
note that the time and memory consumption and the num-
ber of generated cells strongly depends on the number of
primitives used for space partition. A larger number of prim-
itives are preferred for better preserving geometric details
of the vectorized model. Therefore, for high-quality large-
scale vectorization, the time and memory efficiency of space
partition step with over thousands of primitives is of great
importance.

5.3 Main Vectorized Structure Extraction

After the space partition of the main structure primitives Pm

completes, we extract a polygonal surface mesh from the set
of intermediate polyhedral cells Cm = {Ci | i = 1, . . . , M}
with all their polygonal facets denoted as Fm = {Fi | i =
1, . . . , F}. AMRF formulation is applied to label the polyhe-
dral cells as inside or outside, and the final vectorized model
is made of the polygonal facets whose two adjacent cells are
labeled differently, as illustrated by 2D simulation in Fig. 14f,
g.

Our energy function contains a data term Ed and a smooth
term Es defined as follows:

E (L) = Ed (L) + λEs (L) ,

Ed (L) = 1

A

∑

Ci∈Cm

∑

F j∈∂Ci

D
(L(Ci ), I(F j )

)
,

Es (L) = 1

A

∑

(Ci ,C j )∈N (Cm)

V
(L(Ci ),L(C j )

)
, (2)

where L = {L(Ci ) | Ci ∈ Cm} with L(Ci ) ∈ {in, out}
denoting the in/out labeling of polyhedral cells, A is the total
area of all the facets of Fm, ∂Ci are the set of polygonal
facets which compose the boundary of Ci , and I(Fi ) are all
the supporting inlier 3D points inside the polygonal facet
Fi . Inspired by KSR Bauchet and Lafarge (2020), the data
term Ed measures the coherence between the in/out label
of each polyhedra Ci and the normal orientations of all the
supporting inliers inside its boundary polygonal facets ∂Ci .
Specifically, D

(L(Ci ), I(F j )
)
is a voting function to eval-

uate the confidence of the label L(Ci ), which is defined as
follows:

D
(L(Ci ), I(F j )

)

= min

⎛

⎝A(F j ), λdπs
2
a

∑

X∈I(F j )

d (X,L(Ci ))

⎞

⎠ ,
(3)

where sa is the average spacing of D, λd is a weight set to
0.7 in our experiments, and d (X,L(Ci )) ∈ {0, 1} is a binary
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Fig. 9 The statistical comparisons of the numbers of generated cells,
and time and memory consumption for case “SUM Benchmark” on
different primitive insertion strategies, which verify that our strategy
produces the minimal number of cells with the smallest time and mem-
ory consumption

function to check the consistency between the normal of X
and the label L(Ci ). We define �n(X) as the normal of X and
�v(X) is the direction fromX to the centroid of polyhedraCi .
If �n(X) · �v(X) > 0, d (X, in) = 1 and d (X, out) = 0. Other-
wise, d (X, in) = 0 and d (X, out) = 1. All the inlier points
in I(Fi ) are checked to vote for the label L(Ci ). The smooth
term Es controls the complexity of the extracted surface
mesh by minimize its total area, in whichN (Cm) represents

all the pairs of adjacent cells in Cm. If L(Ci ) �= L(C j ),
V

(L(Ci ),L(C j )
) = A(∂Ci ∩∂C j ), where ∂Ci ∩∂C j is the

common boundary facet of Ci and C j , and A(∂Ci ∩ ∂C j ) is
its area. Otherwise, V

(L(Ci ),L(C j )
) = 0. λ ∈ [0, 1] is a

weight we use to balance the data term and smooth term. As
shown in Fig. 10, a small value of λ will improve the com-
pleteness of the vectorized model for the missing input point
cloud, but produce a less compact model with more facets,
while λ with too large value will generate a more compact
model but result in the disappearance of some structures. We
set λ = 0.2 for the main structure of outdoor scenes, and
λ = 0.5 for indoor main structure and isolated objects in our
experiments to best balance the completeness and compact-
ness of the vectorized model.

Such MRF formulation can be solved by graph-cut algo-
rithm proposed in Boykov et al. (2001), Kolmogorov and
Zabin (2004) and Boykov and Kolmogorov (2004) to get an
optimal in/out labeling of the main structure polyhedrons
Cm. All the polygonal facets Fm whose two adjacent cells
have different labels are assembled to construct the vector-
ized model of the main structure, as shown in Fig. 11. Then,
we iteratively merge two coplanar neighboring facets which
have only one common edge to remove the redundant edges
in the extracted polygonal surface model. Figure12a gives a
2D simulated example of facet merging process, from which
we can see that the iterativemerging stops if the currentmerg-
ing step will produce an inner hole structure, to make sure of
a simple polygonal surface representation without hole. This
iterative facet merging will produce a more compact vec-
torized model, as the real case “Office” shown in Fig. 12d.
In addition, the inlier 3D points of the planar primitives are
attached to the corresponding polygonal facets, whichwill be
used as important priors for the vectorization of the isolated
objects, as described in Sect. 5.4.

5.4 Object VectorizedModel Extraction

The vectorized models of the isolated objects are recon-
structed by a pipeline similar to that for the main structure
described in Sect. 5.3, except for the difference that the vec-
torized model of the main structure is used as priors for
vectorizing isolated objects to ensure topological consistency
on the intersections between the objects and the main struc-
ture, since our system aims at reconstructing a geometrically
complete and topological consistent polygonal surface mesh
of the entire scene.

To ensure topological consistency of the intersections
between each isolated object and the main structure, our
straightforward solution is to slightly enlarge the bounding
box of the isolated object by 1m, and consider those polygo-
nal facets of the main structure vectorized model entirely or
partially contained by the expanded bounding box as prior
primitives, as illustrated in Fig. 13a, b. These prior primi-
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Fig. 10 The influence of different values of smooth weight λ on completeness and compactness of the vectorized model of case “Office”. a Point
cloud. b Planar primitives. c–e Vectorized models by different values of λ

Fig. 11 Main structure vectorization results. a Point cloud of case “Office”. bMain structure planar primitives of (a). c Main structure vectorized
modeling of (a). d Vectorized main structure of case “area3”
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tives are used along with the primitives of the isolated object
together for its vectorized modeling, with the main struc-
ture inlier points and the inliers of the object treated equally
for the in/out labeling voting of data term as in Eq.3. How-
ever, this strategywill suffer from the inlier lack problem that
some polygonal facets of the main structure do not have any
supporting inlier, which might cause these prior primitives
to disappear during the vectorized modeling of the isolated
object. As shown in the 2D simulated example of Fig. 14a,
the inlier lack problem is mainly caused by two or more
planar primitives which are approximately coplanar but sep-
arated by the isolated object. Since only one of them will be
extracted as a polygonal facet of the vectorized main struc-
ture model in most of these cases like in Fig. 14b, the inlier
points of the other approximately coplanar primitives will
not appear in the main structure polygonal facets like the
primitive on the right side of the object in Fig. 14c, which
generates incorrect space cell labeling and leads to topolog-
ical inconsistency in the vectorized model of the object as
shown in Fig. 14c. To solve this problem, we propose to rear-
range the inlier points of the main structure, by finding out
all the inliers of the original main structure planar primitives
which haven’t been attached to any of the main structure
polygonal facet, and attaching each inlier point to the closest
polygonal facet which meets the following three conditions.
First, the normal deviation between the polygonal facet and
the inlier point does not exceeds an angular threshold whose
value depends on the normal smoothness of the point cloud,
and is empirically set to 35◦ for all the scenes reconstructed
by MVS. Second, the distance from the inlier point to the
facet is smaller than 1m. Third, the perpendicular projec-
tion of the inlier point is inside the boundary of the facet,
which is always a convex hull in our cases. After the inlier
rearrangement finishes, those primitives which lack inliers
will have sufficient inlier voting supports for in/out labeling.
All the main structure polygonal facets which are entirely
or partially contained by the isolate object bounding box
with their rearranged inliers constitute the prior primitives,
and are then combined with the planar primitives of the iso-
lated object for space partition and in/out labeling to ensure
a better topological consistency of the extracted vectorized
model, as shown in Fig. 14d. The space cell labeling and
polygonal surface extraction for the objects are performed
with the same approach as the main structure. Figure15a–f
gives a real example of case “Village” (Fig. 13). Figure15b
contains two approximately coplanar ground prior primitives
colored in blue and red, where the red colored primitive con-
tains no inlier, which leads to a vectorized object model
with inconsistent topology in Fig. 15c. After applying our
inlier rearrangement strategy, both prior primitives contains
enough inliers which ensures correct in/out labeling to gener-
ate topological consistent vectorized object model, as shown
in Fig. 15d.

Fig. 12 a A 2D simulation of facet merging process. b Point cloud of
case “Office”. c Main structure vectorized model of (b) before facet
merging. d Vectorized model of (b) after merging, which is a more
compact polygonal surface without redundant edges

To avoid topological redundancy between the isolated
objects and the main structure surface such as the blue col-
ored polygonal facets shown in Fig. 15e, we further clean
up the vectorized model of each object by removing those
polygonal facets which exactly overlap with the vectorized
model of main structure or contain only supporting inliers
from themain structure. The cleaned vectorized objectmodel
is shown in Fig. 15f. The vectorizedmodels of all the isolated
objects and the main structure compose a complete vector-
izedmodel of the entire scene, as the cases “Village”, “area3”
and “area1” shown in Fig. 15g.

5.5 Semantic Segmentation Refinement

The accuracy of the semantic decomposition is crucial for
high-quality vectorizedmodeling of themain structure.How-
ever, there might exist some semantic segmentation errors
which will influence the vectorization result, as shown in
Fig. 16b, c. To further improve the vectorized modeling
result, we propose to feed the vectorized model of the main
structure back to the 3D semantic segmentation module to
improve the segmentation accuracy.

As can be seen in Fig. 16b, most semantic segmentation
errors occur at the boundaries of different semantic labels.
We can re-segment 3D points to the semantic labels by tak-
ing the vectorizedmain structure as geometric constraints. To
take semantic label ground as an example, points segmented
as ground within a distance threshold dr to the vectorized
ground planes are considered as determined, while points
with ground label but more than distance dr far from the
vectorized ground structure will be considered as uncertain
points. The setting of dr generally depends on the smoothness
of the surface point cloud. In our experiments, we empiri-
cally set it to 0.1m for indoor scenes and 0.2m for outdoor
ones. We conduct the same uncertainty determination for all
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Fig. 13 2D simulation of a failure case of vectorizing a non-watertight
object. a A vectorized main structure and an incomplete table point
cloud to be vectorized, with only two primitives abstracted. b The
expanded bounding box of the table and themain structure prior. c Space

partition for the table with inside/outside labeling optimization. d The
vectorization result of (b), in which the table disappears. eAcompletely
scanned table with all its planar primitives abstracted, which produces
a correct final vectorized model with the table structure extracted

Fig. 14 A 2D simulation of the inlier lack problem. a A set of pla-
nar primitives with two approximately coplanar ground primitives. b
Vectorizedmain structure of ground. c Space partition by the object pla-
nar primitives with ground structure as prior, which generates incorrect

in/out labeling and inconsistent topology caused by inlier lack problem.
d Correct space cell labeling by our inlier rearrangement strategy with
ground structure as prior, which ensures topological consistency of the
entire vectorized model

the main structure semantic labels ground, ceiling and wall,
and apply aMRF formulation to perform semantic segmenta-
tion refinement for the uncertain points.We formulate energy
function for the segmentation refinement problem as follows:

E (S) = Ed (S) + λs Es (S) ,

Ed (S) =
∑

X∈D
Ds (X, S(X)) ,

Es (S) =
∑

(X,Y)∈N (D)

Vs (S(X), S(Y)) , (4)

where S(X) ∈ S is the semantic label of 3D pointX to be pre-
dicted, and N (D) denotes the set of neighboring point pairs
with a maximal distance threshold dn between each neigh-
boring pair (X,Y). We empirically set dn to 1m, which turns
out to be large enough to semantically relate possible neigh-
boring points for large-scale scenes. The data term Ed (S)

measures the probability of each 3D point X segmented to
S(X), where function Ds (X, S(X)) has different probability
definitions for determined points and uncertain points, which
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Fig. 15 Real examples of object vectorization. aA local region of point
cloud for case “Village”. b Planar primitives of (a). c Object vectoriza-
tion of (a) with inconsistent topology caused by inlier lack problem.
d Object vectorization with topological consistency ensured by inlier
rearrangement. e Topological redundancy between the objects and the

ground structure, colored in blue. f Vectorized object model of (a) after
cleaning up redundancy. g Other local regions of the entire vectorized
models of cases “Village” in top row, “area3” in bottom left and “area1”
in bottom right, all of which contain both isolated objects and main
structure

is defined as follows:

Ds (X, S(X))

=
{

−log (Ps(X, S(X))) X is determined

−log( 1
|S| ) X is uncertain

,
(5)

where we continue to use the fused 3D semantic probabil-
ity Ps(X, S(X)) for a determined point, while an averaged
probability is simply used for an uncertain 3D point instead
to eliminate the influence of the inaccurate semantic prob-
ability feature. The smooth term Es (S) encourages the
uncertain points to be relabeled semantically consistent
with the neighboring determined points. If S(X) �= S(Y),
Vs (S(X), S(Y)) = −log (arccos (�n(X) · �n(Y)) /π), where
�n(X) and �n(Y) are the normals of X and Y respectively.
Otherwise, Vs (S(X), S(Y)) = 0. Such smooth term defi-
nition forces the segmentation boundaries to coincide with
the geometric boundaries with inconsistent normals between

neighboring points. λs is the smoothness weight, which we
set to 0.1 in our experiments.

We solve the energy minimization problem by max-
flow/min-cut algorithm proposed in Boykov et al. (2001),
Boykov and Kolmogorov (2004) and Kolmogorov and Zabin
(2004) to get an optimized semantic labeling S∗ for the 3D
point cloud D. The refined semantic labels are mapped to
the semantic categories to get a refined semantic category
labeling Ŝ∗ for D. From the refined semantic segmenta-
tion shown in Fig. 16d, we can see that by incorporating the
vectorized main structure model as geometric constraints,
the segmentation errors at the boundaries between different
semantic categories can be significantly reduced. As demon-
strated in the two cases “Village” and “Office” of Table 2,
the semantic segmentation accuracy in MIoU is significantly
improved after the refinement step, compared to the semantic
MIoU before refinement. With the refined semantic labeling,
the scene is re-decomposed into main structure and isolated
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objects. Planar primitive abstraction and space partition are
performed on the relabeled point cloud to obtain the finally
refined polygonal surface meshes of main structure and iso-
lated objects, as shown in Fig. 16e.

6 Experimental Evaluation

In this section, we evaluate our vectorized modeling pipeline
on both high-quality point clouds captured by 3D scanner
and more noisy point clouds generated by MVS approach.
We experiment on twenty cases composed of ten indoor
scenes and ten outdoor ones. Seventeen of them are with
MVS point clouds including ten outdoor cases “Village”
captured by DJI Phantom 4 Pro, “Century Park1”, “Cen-
tury Park2” and “ZJU CCE” by DJI Phantom 4 RTK, “Taian
Ancient Street” by DJI Mavic 2, “Lingang” and “World
Expo” by DJI Matrice 300 RTK + Zenmuse P1, “Barn”
and “Light House” from the Tanks and Temples Benchmark
Knapitsch et al. (2017), and the city-scale “SUM Bench-
mark” Gao et al. (2021), and seven indoor scenes “Office”
captured by Insta360 ONE R, “Tea Room” by Insta360 ONE
RS, and “Church”, “Auditorium”, “Ballroom”, “Museum”
and “Meeting Room” from the Tanks and Temples, each
of which is composed of multi-view digital images, cam-
era poses and dense point cloud reconstructed by DP-MVS
Zhou et al. (2021) except for the SUM Benchmark whose
meshes are generated by off-the-shelf commercial software
ContextCapture2 as claimed by the benchmark team, and fur-
ther upsampled by us using Poisson-disk sampling Corsini
et al. (2012) with average spacing as 0.4m to generate a
more dense and well-distributed input point cloud. We also
experiment on another three indoor cases “area1”, “area3”
and “area4” from Stanford Large-Scale 3D Indoor Spaces
Dataset (S3DIS)Armeni et al. (2017),with each case contain-
ingmulti-view images, cameraposes andpoint cloud scanned
by Matterport Camera equipped with three structured-light
sensors and annotated with predefined semantic labels. Note
that for each S3DIS case, we skip the semantic segmentation
and refinement steps because reliable semantic labeling is
already given together with the scanned point cloud as prior.
All the experiments are conducted on a computing platform
with a 14-Core Intel Xeon E5-2680 CPU and 500 GB mem-
ory by Red Hat Linux 4.8.5-4 OS, except for KSR whose
Windows executable program runs on a desktop PC with
Intel Core i7-11700 CPU and 128 GB memory by Windows
10 OS. Quantitative and qualitative comparisons of our work
to the SOTA vectorization methods are reported to show that
our vectorized modeling pipeline achieves the best quality
in geometric accuracy and details for point clouds of indoor
and outdoor scenes. We also report the time and memory

2 https://www.bentley.com/en/products/brands/contextcapture

consumption of different methods to show the contributions
of our work to the outstanding reconstruction scalability and
time andmemory efficiency of vectorizedmodeling for large-
scale scenes.

Figures1, 15 and 16 have already demonstrated the vec-
torized models of cases “Village”, “Office” and “area3” in
details, together with the accuacy evaluation to show the
effectiveness of our vectorized modeling pipeline in better
vectorization quality. Figures17 and 18 provide the vector-
ized modeling results of cases “Taian Ancient Street” and
“SUM Benchmark” respectively, from which we can see
that our pipeline can faithfully vectorize high-quality city-
scale models while preserving local geometric details as
well in a polygonal surface representation, like the magni-
fied local regions shown in Figs. 17e and 18e. For the cases
“Church”, “area1” and “area4”, we qualitatively and quan-
titatively compare our vectorization approach against other
SOTA vectorizedmodeling works including PolyFit Nan and
Wonka (2017), KSR Bauchet and Lafarge (2020) and VecIM
Han et al. (2021a) on the generated vectorized models, since
other cases even cannot be run successfully by all the SOTA
methods on our computing platform due to their huge mem-
ory consumption on large-scale point clouds. For PolyFit,
apart from directly experimenting it on the three cases, we
also combine it with the semantic segmentations of each
case, by applying PolyFit on the main structure and each
isolated object part separately. As the comparison results of
“Church”, “area1” and “area4” shown in Figs. 19, 20 and
21 respectively, PolyFit, KSR and VecIM focus on vector-
izing the main structure of the scenes, and will lose some
geometric details of isolated objects in the final polygo-
nal models if the scenes are large with complicated object
structures. This is because for large-scale scenes the num-
ber of planar primitives used for vectorization should be
large enough to ensure the geometric details, which will
causes PolyFit, KSR and VecIM to consume huge execu-
tion time. Too many primitives will cost PolyFit extremely
long time in its mixed-integer programming based optimiza-
tion step. Therefore, empirically, there should be no more
than 120 primitives for PolyFit to make sure of a successful
vectorization, which will inevitably lose some local details.
Moreover, VecIM turns out to be more suitable for Man-
hattan World indoor scenes, and might have difficulties in
handling planar surfaces with nondominant directions or iso-
lated objects. KSR handles the collisions of planar primitives
dynamically to improve space partition efficiency, but still
requires more than one day and huge memory to process a
large scenewith over two thousands primitives due to its high
computational and memory cost. As can be seen in Figs. 19,
20 and 21, PolyFit combined with semantic segmentation
can extract polygonal structures of some isolated objects,
but the geometric accuracy of the vectorized objects is not
guaranteed because only 30 ∼ 70 primitives are used for
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Fig. 16 Semantic segmentation refinement of case “Village” for top
row, and “Office” for middle and bottom rows. a Point clouds. b
Semantic segmentations with errors highlighted in red rectangles. c

Vectorization results by (b) with incorrect structures. d Refined seman-
tic segmentations. e Refined vectorized models by (d)

Fig. 17 a Point cloud of “Taian Ancient Street”. b Segmentation by semantic categories. c Planar primitives. d Vectorized modeling result. e
Magnified local regions of (a) and (d) to show the preserved geometric details in the vectorized model

each isolated object part to ensure successful vectorization.
In comparison, our vectorization pipeline can successfully
handle thousands of primitives and perform better than the
other works in the finally generated high-quality vectorized
models with more complete polygonal surfaces and better
local geometric details of complicated structures. We further
provide quantitative evaluation of the vectorization results of
the three cases by PolyFit, PolyFit with semantic segmenta-
tion, KSR, VecIM, and our method in Fig. 22. For vectorized

modeling accuracy evaluation, we use MeshLab3 to produce
MeanHausdorff Error (MHE) Cignoni et al. (1998) and Root
Mean Squared Error (RMSE) between the vectorizedmodels
and their input point clouds. From the model accuracy eval-
uation in Fig. 22 we can see that our pipeline reconstructs
the vectorized models with a centimeter-to-decimeter-level
accuracy, which turns out to be the best overall in both MHE
and RMSE. Beside “Church”, “area1”, “area3” and “area4”,

3 https://www.meshlab.net.
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Fig. 18 a Point cloud of “SUM Benchmark”. b Semantic segmentation. c Planar primitives. d Vectorized model. e Magnified regions of a and d
to show the recovered geometric details in polygonal surface representation

we also provide quantitative comparison of our method to
PolyFit with semantic segmentation, VecIM and KSR on all
the other six indoor cases and ten outdoor cases in Table 3,
including the evaluation of the number of used primitives, the
peak memory consumption, the total execution time, and the
geometric accuracy by MHE and RMSE. Note that VecIM
cannot work successfully on outdoor scenes, and even fails
on the two indoor cases “Auditorium” and “Museum” due to
its piece-wise planar indoor hypothesis. As can be seen in the
table, KSR produces lower accuracy for outdoor scenes than
indoor ones due to the disappearance of the ground struc-
ture and some geometric details in its vectorized models. All
the quantitative comparisons demonstrate that our approach
can assemble more planar primitives to robustly reconstruct
a polygonal model with better geometric accuracy than other
methods in a time and memory efficient way, especially for
large-scale outdoor cases.

Figures19, 20 and 21 also gives a comparison of the time
and memory consumption of our method to other SOTA
works. For each method, we report the number of used prim-
itives denoted as |P|, the number of generated polygonal
facets as |F |, the execution time, and the peak memory con-
sumption. It can be seen that our pipeline is the most efficient
on time, memory and the number of primitives supported,
which runs more than twice faster than PolyFit, PolyFit
with semantic segmentation, and VecIM, and costs moderate
memory with far more primitives used to generate polygonal
facets with higher quality. PolyFit and VecIM cannot sup-
port so many primitives as ours to accomplish a successful

vectorization due to the time and memory limitation. PolyFit
with semantic segmentation is able to support more primi-
tives at the cost of longer execution time. Table 4 gives the
time statistics of our pipeline on all the steps, together with
the peak memory consumption for cases “Church”, “Office”,
“area4”, “Village”, “TaianAncient Street” and “SUMBench-
mark”. Note that for “area4” and “SUM Benchmark”, we
skip the semantic segmentation and refinement steps and use
the given semantic labeling of the point cloud as prior. From
the statistics we can see that the time and memory efficiency
of the vectorization process strongly depends on the size of
the input point cloud and the number of primitives used for
vectorized modeling. However, even the largest scale case
“SUMBenchmark” with 30.4 millions of points and 493428
planar primitives can be successfully finished in 3.1 h by our
method, for which other SOTA methods definitely will have
both time and memory limitations.

7 Discussion

Our system is not designed to vectorize a non-watertight
objectwell by the inside/outside labelingoptimization,which
is similar to SOTA works (Bauchet and Lafarge, 2020; Fang
et al., 2021; Han et al., 2021a; Nan and Wonka, 2017). The
non-watertight point cloud is usually caused by insufficient
scanning of only its partial faces, such as the incomplete table
shown in Fig. 15g. Such incomplete object might disappear
or produce inaccurate structure in the final vectorized model.
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Fig. 19 Comparison of our pipeline with SOTAworks PolyFit Nan and
Wonka (2017), PolyFit with semantic segmentation, KSR Bauchet and
Lafarge (2020) and VecIM Han et al. (2021a) on case “Church”, with

number of used primitives, time consumption, peak memory cost, and
magnified local vectorized models given for each method

Fig. 20 Comparison of our method with PolyFit, PolyFit with semantic segmentation, KSR and VecIM on case “area1”, with time and memory
consumption, and magnified local vectorized model details given for each method
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Fig. 21 Comparison of our method with PolyFit, PolyFit with semantic segmentation, KSR and VecIM on case “area4”, with time and memory
consumption, and magnified local vectorized model details given for each method

Fig. 22 Accuracy evaluation of the vectorized models of cases “Church”, “area1” and “area4” by PolyFit, PolyFit with semantic segmentation,
KSR, VecIM and our method, which are given by MHE and RMSE in meters
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Table 4 The time statistics on
all the steps of our pipeline
(minutes), and the peak memory
consumption (GB) for cases
“Church”, “Office”, “area4”,
“Village”, “Taian Ancient
Street” and “SUM Benchmark”

Cases Church Office area4 Village Taian SUM

#Points (millions) 0.9 6.5 10.6 2.5 20.7 30.4

#Main structure primitives 1,058 2,805 1,414 97 1,337 10,702

#Object primitives 2,046 2,056 9,604 7,323 99,794 482,726

#Objects 27 21 152 38 1,636 2,698

Semantic segmentation 1.3 36.7 N/A 2.4 60.9 N/A

Primitive abstraction 0.2 1.1 1.6 0.4 5.4 4.9

Primitive pre-expansion 0.2 1.9 3.9 0.2 2.4 4.6

Main structure vectorization 0.1 3.2 0.9 0.3 3.4 20.2

Segmentation refinement 3.8 13.5 N/A 5 38.3 N/A

Object vectorization 3.7 1.5 8.6 1.2 34.3 158.2

Total time (minutes) 9.8 64.1 14.8 10.4 155.9 187.9

Peak mem. (GB) 0.8 6.5 3.5 1.1 9.1 31.3

A 2D simulated example is shown in Fig. 13 for easy under-
standing. The incomplete table has only twoplanar primitives
abstracted in Fig. 13a, including a top surface and a front side
of its supporting column, with other faces missing, which
causes this table to disappear by our inside/outside labeling
as can be seen in Figs. 13c, d and 15g, since it is a non-
watertight structure when combined with the main structure.
However, if the table is completely scanned with all its faces
composing a watertight point cloud, its six primitives can be
fully abstracted and assembled with the main structure for a
correct inside/outside labeling, so as to produce a complete
vectorized model as illustrated in Fig. 13e.

Additionally, our vectorization results depends on the
accuracy of semantic segmentation. For unknown scenes,
severe segmentation errors will influence the final vectorized
models, and even cannot be well corrected by the segmenta-
tion refinement step. Besides, the semantic segmentation step
consumes a large proportion of the total time. How to reduce
the influence of semantic segmentation while still keeping
the time and memory efficiency of our large-scale vectorized
modeling is a problem worth studying in future. Besides, for
city-scale scenes far larger than “SUMBenchmark”, the time
and memory limitations might still become a problem for
vectorized modeling. How to further partition these scenes
into small blocks for parallel processing as a more powerful
time and memory efficient city-scale vectorization strategy
remains to be our future work.

8 Conclusion

A novel vectorization pipeline is proposed in this work for
high-quality vectorized modeling of large-scale scenes with
point clouds as input. The large-scale scenes are decomposed
by 3D semantic segmentation into main structure and iso-
lated objects, which are vectorized respectively to a global

polygonal surface model for a time and memory efficient
purpose. To better preserve geometric details in the gener-
ated polygonal model, we propose a novel BSP strategy for a
light-weight space partition to efficiently assemble thousands
of planar primitives, which is difficult for other SOTAvector-
ization methods. Moreover, we innovatively use the already
vectorized main polygonal structures as prior to guide the
vectorization of the isolated objects and further refine the 3D
semantic segmentation, so as to reconstruct a high-quality
vectorized model with complete geometry, consistent topol-
ogy and correct semantic attributes.
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