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Abstract

Humans are able to continuously detect and track sur-
rounding objects by constructing a spatial-temporal memory
of the objects when looking around. In contrast, 3D ob-
ject detectors in existing tracking-by-detection systems often
search for objects in every new video frame from scratch,
without fully leveraging memory from previous detection
results. In this work, we propose a novel system for in-
tegrated 3D object detection and tracking, which uses a
dynamic object occupancy map and previous object states
as spatial-temporal memory to assist object detection in fu-
ture frames. This memory, together with the ego-motion
from back-end odometry, guides the detector to achieve more
efficient object proposal generation and more accurate ob-
Jject state estimation. The experiments demonstrate the ef-
fectiveness of the proposed system and its performance on
the ScanNet and KITTI datasets. Moreover; the proposed
system produces stable bounding boxes and pose trajecto-
ries over time, while being able to handle occluded and
truncated objects. Code is available at the project page:
https://zju3dv.github.io/UDOLO.

1. Introduction

Humans start to develop the spatial working memory
in an early age [38, 50], resulting in the awareness of the
spatial object arrangement of their surroundings as part of
the mental “World Model” [20]. With this memory serving
as prior knowledge of 3D object locations, together with an
estimation of the ego-motion of the eyes, we would anticipate
objects to appear in certain regions in the field of view when
we look around. This ability enables humans to continuously
locate, track and recognize objects in the 3D space, even
under severe occlusion or truncation.

However, 3D object detection in most of the existing
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Figure 1. The spatial-temporal memory in UDOLO is repre-
sented by the object occupancy map and the object future states.
The system is able to feedback this memory into the detection
pipeline as strong prior to produce better object detection results.
Red arrows represent the information flow of the feedback.

tracking-by-detection systems still processes each input im-
age from a video stream individually and searches for objects
in every new frame from scratch. Then, object tracking is
usually performed as a post-processing step to associate the
detected bounding boxes with the previously observed track-
lets, followed by a recursive filter or optimization to improve
the accuracy and temporal stability of the estimated object
states. Although this late integration of temporal information
would improve the results, the object detection module is
still performed on a per-frame basis without using the mem-
ory of the objects in the surrounding scene, which is not only
counter-intuitive but also very inefficient.

We argue that the key to making full use of temporal infor-
mation is not only to track objects and smooth object states,
but more importantly to feed the temporally-accumulated
memory of object states back to the detection module, yield-
ing an integrated detection and tracking system. To this
end, we propose a novel system named UDOLO that en-
ables the object detector to take the spatial-temporal memory
as a strong prior for more efficient and accurate 3D object
detection and tracking, as illustrated in Fig. 1.
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Specifically, UDOLO simultaneously detects and tracks
3D objects in a point cloud sequence, either obtained di-
rectly from depth sensors or estimated with multiple views
of images. The core idea of UDOLO is to maintain a dy-
namic object occupancy map (OOM) and object future state
predictions as spatial-temporal memory to assist object de-
tection in future frames. The OOM is a 2D Bird’s Eye View
(BEV) map which shows the likelihood of a location being
occupied by an object in the world frame. The OOM is
constructed by registering the 3D observations in previous
frames to the world frame, given the camera poses from the
back-end odometry, and fusing the occupancy states at each
location. Next, the UDOLO system integrates the spatial-
temporal memory into the modern two-stage object detection
pipeline [40,47] at two different levels: early integration and
middle integration. With the early integration, the Region
Proposal Network (RPN) in the front-end object detector
extracts object proposals only in the regions that have high
object occupancy scores given by the OOM and unobserved
regions where new objects may appear. The early integration
design essentially reduces the search space during the region
proposal stage and saves the effort on evaluating tens of thou-
sands of densely arranged predefined anchors in the standard
3D object detector [40,47], thus leading to more efficient
detection. With the middle integration, current-frame ob-
ject proposals are fused with back-end object future state
predictions by combining the Rol point clouds and passing
them through the second stage of the detector to produce the
front-end bounding box estimation. The middle integration
design enables the detector to leverage the optimized and
predicted object future states from back-end, in order to pro-
duce more accurate bounding boxes and handle truncation
and occlusion.

We evaluate our system on the ScanNet and KITTI
datasets and provide ablation analyses on different com-
ponents of the system. The experiments show that, with the
spatial-temporal memory fed back into the object detection
pipeline, 3D object detection performance can be largely im-
proved compared to single-frame detection-only baselines in
both indoor and outdoor scenes. For the dynamic scenes on
KITTI, 3D multiple object tracking (MOT) is also improved
by a large margin. The system is also capable of detecting oc-
cluded or truncated objects in cluttered indoor environments
and produces more stable object bounding boxes.

In summary, our contributions are as follows:

* A novel framework of integrated detection and tracking
that feeds the spatial-temporal memory of objects all the
way through the detection pipeline to improve both effi-
ciency and accuracy, which has not been explored in the
literature to our knowledge.

* An early integration scheme based on a new represen-
tation named object occupancy map (OOM) to generate
high-quality object proposals and speed up detection and

tracking.

* A middle integration design to fuse object state predictions
from previous frames with estimations at the current frame
to achieve better detection and tracking performance and
truncation or occlusion handling.

2. Related Work

3D Object Detection in Point Clouds. 3D object detection
plays a central role in our framework. Because of the na-
ture of the proposed method, we only focus on 3D object
detectors that are based on point cloud input. To estimate
3D bounding box of objects, the point cloud is usually cap-
tured by 3D sensors (RGB-D camera or LiDAR) [7,48] or
estimated from images [6,57]. In the indoor environment,
VoteNet [39, 40] takes the reconstructed point cloud of a
scene as input and regresses voting offsets to extract object
proposals. In the outdoor driving scenario, PointRCNN [47]
and PV-RCNN [46] directly take the point cloud representa-
tion as input and design a two-stage pipeline similar to the
2D detection counterpart [43] and achieve impressive perfor-
mance. Pseudo-LiDAR and its subsequent works [41,51,60]
use point cloud estimated from images as the input for point-
cloud-based 3D detectors and demonstrated state-of-the-art
performance. Although these detectors achieve high AP re-
sults on benchmarks, they still suffer from occlusion or miss-
ing detection in real-world practices since the system has
no memory of the surrounding scene. Our work attempts to
tackle this problem by incorporating spatial-temporal mem-
ory as strong priors into the detection pipeline.

Object Tracking in Video. Other than the object detection
module, a typical tracking-by-detection system usually con-
sists of a Multi-Object Tracking (MOT) module to provide
object association and an object state estimation module to
fuse temporal observations of the same object and estimate
its state (position, heading, velocity, etc.) [21]. Recent works
on 3D MOT [8, 17,44, 45,52, 54, 62] primarily focus on
the data association problem based on geometric or appear-
ance cues. The detected bounding boxes are measured with
the cues and linked by solving a linear-assignment problem.
For object state estimation, [12, 15] combine 2D object de-
tection with visual-inertial odometry achieved by Extended
Kalman Filter (EKF) to make persistent 3D state estimation
of objects. [31] proposed a novel pipeline to estimate 3D
object states in a nonlinear least-square optimization setting.
3D object bounding boxes are initialized by a 2D detection
front-end and then optimized by re-projection error of sparse
features anchored on the objects. A similar pipeline is pro-
posed in [58]. This pipeline is recently extended with an
learning-based object coordinate estimation front-end in [32]
and achieves impressive performance. Other than using a
3D object detection front-end to provide direct 3D observa-
tions, the major difference between these works and ours
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is the feedback design, which fully utilizes the optimized
object state from back-end to assist 3D detection front-end
at the next time step. It is also worth noting that the overall
objective of OOM-Guided RPN in the proposed framework
is similar to some related work in 2D and 3D single object
tracking [19,30,61], in the sense of reducing the search space
for object proposals with temporal accumulated information.
However, the major focus of UDOLO is to leverage the ac-
cumulated objectness distribution as spatial prior without
explicitly distinguishing between individual objects, instead
of relocalizing the same object between frames with similar-
ity search based on the appearance.

Integrated Detection and Tracking. Our work is also
closely related to the field of video object detection, where
the major goal is to leverage temporal information to boost
object detection performance. Several works attempt to
tackle this problem by temporal feature aggregation in the
context of 2D object detection [27,28,56,66]. Notably, [16]
proposed to integrate detection and tracking into a unified
neural network. [63] proposed a tracklet-conditioned 2D de-
tection pipeline, where object proposals produced from RPN
are re-scored before the NMS process according to feature
embedding similarities. [56] proposed a spatial-temporal
memory module to fuse and align temporal convolutional
features of objects. Tracktor++ [3] and CenterTrack [64]
directly use the bounding box regression modules from ob-
ject detection for tracking. As for 3D object detection and
tracking, [33,34] proposed a unified neural network to jointly
perform 3D object detection, tracking and motion predic-
tion. [24] proposed a joint detection and tracking system
with monocular images input. [5] integrates a 3D Kalman
filter into a 3D detection system to improve localization ac-
curacy. [26,59] use RNNSs to aggregate temporal information
for more accurate 3D object detection. There are also some
works that exploit BEV map representations that are related
to the proposed OOM. Notably, [11, 14,22, 37] proposed
OGM [13] and Dynamic OGM (DOGMa) [36] for object
detection or tracking. The major difference between OGM
and OOM is that OOM represents the likelihood of a location
being occupied by any object, while OGM is a geometric
map representation constructed from fusing multiple sensor
sources. Recently, [25] proposed a visibility map in BEV to
assist distinguishing the ambiguities in 3D object detection.

The proposed method UDOLO falls into this category, but
with an emphasis on the feedback of spatial-temporal mem-
ory into the detection pipeline. None of the above-mentioned
works, especially on the 3D side, attempts to maintain an
explicit and persistent object occupancy representation as
spatial memory and integrates it into the object proposal
stage of the detection pipeline. Without the early integration
scheme proposed in our framework, the detector still cannot
leverage temporal prior knowledge at the stage that searches
for objects, resulting in less efficient object proposal and

missing detection due to occlusion or truncation.

3. Methods

Given a point cloud sequence {P} and camera pose tra-
jectory {&;} € SE(3) provided by an odometry system, the
goal is to detect and track all the 3D bounding boxes {b; }
of interesting objects and estimate true object states {x;}
with temporal accumulated observations'. Following con-
ventions in the SLAM community, we consider the modules
that make current-frame predictions as front-end and the
modules that aggregate temporal observations and predict
future object states as back-end. The system diagram and
pipeline overview are given in Fig. 2. Different from the
standard tracking-by-detection system, UDOLO consists of
two feedback designs that deeply integrate temporal infor-
mation as prior knowledge into the object detection pipeline.

3.1. Object Occupancy Map

Previous works use object tracklets that contain linked
3D bounding boxes to represent and preserve history obser-
vations. However, the bounding box representation alone
cannot capture the full state of previous detections. Ideally,
the representation of human-like spatial-temporal memory
should not only tell us where there are objects but also where
there should be no object. We propose a map representation
to record and accumulate the object occupancy state in the
world frame. The OOM is constructed with the point cloud
input and the corresponding object future state predictions
produced at the last time step from the back-end motion
prediction module. As shown in Sec. 3.2, this representation
can serve as a selective attention mechanism to the surround-
ing world that guides the object detector to only focus on the
important part of the scene.

The object occupancy map is represented as a 2D grid in
the BEV (top-down view), and each grid cell corresponds
to an area in the world frame defined by grid size. The
updating process of OOM is visually illustrated in Fig. 3.
Conceptually, the OOM construction is similar to the 2D
BEV version of the mapping process in dense reconstruction
systems like KinectFusion [35]. The major difference is
that for OOM construction the goal is to fuse the object
occupancy state observations from each frame, instead of
reconstructing dense geometry. Formally, object occupancy
map M, is updated by the following equation:

M; = Voxelize(o(&; 1 (Py))) + My,

where ¢(p;) = + if point p; is in any bounding box of
object future states and —1 otherwise. v = As! is the fused
object classification score rescaled by a factor A\, which we
will further illustrate in Sec. 3.3. We use &; ' (+) to represent

I'Since the system processes different objects independently, only one
object instance from one category is considered to simplify the notation.
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Figure 2. UDOLO system diagram. Solid arrows denote the major data flow. Red arrows denote the feedback mechanism design. At each
time step, the front-end region proposal network (OOM-Guided RPN) takes the point cloud as input, extracts current-frame object proposals
only in the regions that have high object occupancy scores (red points) given by the object occupancy map, as well as the unobserved regions
(blue points) where new objects may appear. These proposals are later fused with back-end object future state predictions from the last frame
and passed through the second stage of the detector (Fusion R-CNN). After association with the tracklet, current front-end predictions

are fed into the

to produce the fused object states as the final bounding box prediction. Then the object occupancy map is

updated according to the future object states given by the motion prediction module. Best viewed in color (zoom in for details).

the transformation from the camera frame to the world frame
and Voxelize(-) to represent the operation that converts the
world-frame point cloud into a 2D grid. M) is initialized as
a 2D grid with all zero values.

3.2. Early Integration: OOM-Guided RPN

In order to make the detector only detect in the previously
unobserved region and continue detecting observed objects,
the integration must happen at the very beginning of the
detection pipeline.

Given the object occupancy map from the last frame, by
selecting a threshold o, the input point cloud is separated
into three parts according to the corresponding occupancy
score in grid locations (z,y) in the world frame:

Mt(xvy) >0
Mt(x7y) < -0
—0 < My(z,y) <o unobserved area

high occupancy area

low occupancy area

Since we don’t need to detect in the areas that are certain
to have no object, only the point cloud in the high occupancy
area and the unobserved area is passed through the point
cloud backbone and RPN. This process is visually illustrated
in Fig. 3. By discarding areas that contain no object based
on the temporally fused OOM, the computational cost is

saved at the backbone since fewer points are passed into. The
number of anchors and generated proposals is also drastically
reduced, thus saving the computation time on the RPN and
3D Non-maximum Suppression (NMS) without skipping
any input frames. The non-stop detection in each frame
potentially improves the reliability of the system compared
to some video object detection methods [65] that skip input
frames to speed up the detection pipeline.

3.3. Middle Integration: Fusion R-CNN

After object proposals are generated from the RPN, the
spatial-temporal memory is further integrated at the R-CNN
stage. The fusion step involves two groups of bounding
boxes: current-frame object proposals {b,0,} and object
future state prediction samples from the back-end {bp,eq }.
which makes the fusion process conceptually similar to the
correction step in the Kalman Filter. These bounding boxes
are first fused in the bounding box regression network by
passing through the combination of the Rol point cloud of
{bprop} and {bpreq} cropped by the 3D Rol Pooling module
[40,47]. {bprea} also participates in the 3D NMS process
with the fused object score, where the fusion is achieved

by a moving average of the object confidence scores of

t t—1
t sb+asx

sequential observations: sy = =2 st denotes the
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Figure 3. OOM update process and OOM-Guided RPN illus-
tration. Red: high occupancy area. Green: low occupancy area.
Blue: unobserved area. Best viewed in color (zoom in for details).

score for back-end bounding box from frame ¢ and s}, is the
score for detected 3D bounding box from frame ¢. « € [0, 1]
is a decay parameter. Fusion R-CNN produces the current-
frame observations at the front-end, denoted as {brons ;- A
visual illustration of the Fusion R-CNN is given in Fig. 4.

The Fusion R-CNN incorporates current-frame object
proposals and temporally fused and predicted back-end ob-
ject future states into the bounding box regression network
(R-CNN), which makes the front-end bounding box predic-
tions more accurate and stable. The Rol point cloud fusion
step before the R-CNN will ensure that the point cloud of the
corresponding object of interest will be passed through the
network in case the RPN failed to produce accurate object
proposals. With the integration of {b,,.q} into the NMS
process, the temporally-optimized object state from previous
frames further contributes to the overall robustness of the
system. Even the R-CNN fails to predict bounding boxes
with a high-enough confidence score due to severe trunca-
tion or occlusion, the NMS module will still be able to select
the correct predictions with the highest score from {by,eq }
thanks to the score fusion process.

3.4. Other Components

Association. The role of the association module is to find
correspondences between current-frame detection results
{bfront} With back-end tracklets. Although more compli-
cated methods can be used, since similarity estimation and
correspondence searching are not the major focus of this
work, we simply choose 3D IoU based association and solve
the bipartite matching with the Hungarian algorithm [29].

Kalman Filter and Motion Prediction. The Kalman filter
(KF) is used to fuse {by,on:} and future state predictions
{bpreq } from the last frame and estimate the true object states
with temporal observations. We follow AB3DMOT [52] for

future object state samples

£ SN
<

Figure 4. Fusion R-CNN illustration. : current
frame proposals ({bprop }). Green boxes: proposals sampled from
back-end object state prediction ({bpreq }). Purple boxes: proposals
after R-CNN refinement. Blue boxes: front-end 3D box ({b front })-

all the parameter settings in the KF. At each time ¢, object
motion predictions on ¢ + 1 are predicted by the KF, which
are later used in the OOM construction process and the
Fusion R-CNN. More details on this process can be found in
the supplementary material.

3.5. Discussion

For a standard 3D object detector, each input frame is
treated equally as it is from an entirely new scene. It does
not make use of the previous detection results of observed
objects to achieve more accurate state estimation, while wast-
ing computations on looking for objects in empty regions
that are certain to have no object of interest. The proposed
UDOLO system attempts to solve these problems by con-
structing and feeding back the OOM and memorized object
future states as spatial-temporal memory, making object de-
tection operate on temporal prior information throughout
the entire pipeline. This integration also blurs the boundary
between detection and tracking. Thus we consider UDOLO
as an integrated detection and tracking system. Notably, we
observe a similar trend in the field of 2D object detection
and tracking, with examples like Tracktor++ [3] and Center-
Track [64] that directly use modules from object detection
for tracking or combine the two tasks in a more coherent way.
We believe the idea of early and middle integration proposed
in UDOLO is valuable to the community to integrate these
two tasks more closely with each other.

4. Experiments

In this section, we conduct a series of experiments to
demonstrate the effectiveness of the spatial-temporal mem-
ory feedback design in UDOLO and give a detailed ablation
study to analyze the importance of different components of
our system in Sec. 4.4. We further discuss the motivation
behind the experiment design in the supplementary material.
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chair  sofa bed stove table bathtub cabinet trsbin bkslf printer washer flcab | mAP
VoteNet || 41.14 2459 33.61 22.08 14.87 13.36 9.31 490 487 371 2.86 1.69 | 14.75
All Ours 51.63 32.65 40.32 2584 20.04 14.38 12.19 566 6.52  6.02 346 240 | 1843
Depth w/o early || 51.53 32.17 40.06 25.77 19.94 14.33 12.04 550 644  6.18 2.96 225 | 18.26
w/omid. || 41.17 2489 33.62 22.13 1494 13.39 9.32 491 481 3.72 2.85 1.63 | 14.78

Oce VoteNet 6.67 020 022 050 0.74 1.42 0.11 0.81  0.01 0.01 0.04 0.13 | 091

Ours 19.11 4.68 230 322 4.03 2.11 0.85 138 036 0.13 0.07 0.57 | 3.23

All VoteNet || 11.30 847 1887 3.14 3.30 2.41 232 091 098 0.21 0.31 0.64 | 441

RGB Ours 2192 13.75 2289 9.69 6.09 3.30 4.23 112 198 0.14 1.32 1.36 | 7.32
Oce VoteNet 0.47 191 1024 058 022 1.10 0.26 0.02  0.01 0.01 0.01 0.03 | 1.24

Ours 653 586 1389 6.56 1.75 1.67 1.37 0.09 0.60 0.12 035 033 | 3.26

Table 1. 3D object detection results on ScanNet validation set. 12 categories are considered in the experiment, using single frame
depth/RGB imagery as input, evaluated with mAP@0.5 IoU (%). Ablation studies of our method without early/middle integration are

presented in grey background.

H H chair  sofa bed stove  table bathtub cabinet trsbin bkslf printer washer flcab [ Overall
Std. Trans. VoteNet 1.08 1.23 033 0.61 1.38 1.11 0.94 095 0.18 - 0.43 - 1.07
Ours 1.02  0.03 012 0.52 0.98 0.11 0.77 026 1.82 - 0.05 - 0.76

Std. Rot. VoteNet || 37.88 12.12 18.71 47.22 3288 3833 4028 276 210 - 5.12 - 37.98
Ours 31.82 6.54 444 1045 1997 11.83 12.66 6.93  14.09 - 19.78 028 | 17.88
Std. Dim VoteNet || 0.85 0.21 1.73 0.67 0.73 0.92 0.67 0.06 0.05 - 0.08 - 0.79
Ours 054 011 018 0.21 0.37 0.17 0.45 0.12 054 - 0.19 0.04 0.37

Table 2. Stability on ScanNet validation set with metrics suggested in [18] using single frame depth input. Lower is better for all the

metrics.

4.1. Datasets, Metrics and Baselines

4.1.1 Indoor Environment: ScanNet

The indoor environment has always been challenging for 3D
object detectors since indoor objects are usually more diverse
in category and also much more cluttered in space. We use
the ScanNet [9] dataset to demonstrate the effectiveness
of the feedback design of the spatial-temporal memory in
UDOLO. Although UDOLO can handle moving objects in
indoor scenes, we remove the motion prediction module
since all objects in ScanNet are static.

Baseline. Due to the real-time and incremental nature of our
approach, the experiment setting is different from most of
the baseline methods [23,40] using this dataset. VoteNet
detects axis-aligned bounding boxes defined in the world
frame with the complete point cloud of the entire scene as
input. We instead use single-view point clouds of each frame
as input data and predict oriented bounding boxes in the cam-
era frame, which is more practical in real-time applications.
Thanks to the aligned CAD model ground truth annotations
from Scan2CAD [1], we train the single-view variant of
VoteNet with oriented 3D bounding boxes directly. We fur-
ther evaluate UDOLO with the point clouds reconstructed
from multi-view RGB images by DeepV2D [49] , denoted
as RGB in Table 1.

Categories and Metrics. We experiment with 20 classes in
Scan2CAD and present 12 classes with AP greater than 1%.
In order to demonstrate the ability of occlusion or truncation
handling of UDOLO, we create a new difficulty level named

“occluded” with strongly occluded or truncated objects only.
We use 3D object detection mAP@0.5 IoU as the major
metrics. We don’t evaluate the MOT metrics considering the
objects in ScanNet are static in the world frame. Due to the
space constraint, we leave the results on all 20 categories,
the results with IoU threshold at 0.25, the detailed ground
truth preparation process, and the metrics for bounding box
stability to the supplementary material.

4.1.2 Outdoor Environment: KITTI

In order to demonstrate that UDOLO can also be applied to
dynamic scenes, we further evaluate it on the KITTI Track-
ing and KITTT Object datasets. For stereo images input, the
point cloud input for the 3D detector is converted from the es-
timated disparity following the method proposed in pseudo-
lidar [51]. The Multi-Object Tracking (MOT) performance
is measured with the metrics proposed in AB3DMOT [52],
which are 3D variants of the CLEAR metrics [4]. We also
consider AB3DMOT as the baseline method for LiDAR
input since we share the same 3D detector (PointRCNN),
association method (IoU-based association) and state fusion
method (Kalman Filter). We further compare our method
with [32] and [31] that use sequential stereo images as input.
The training/validation splits used in all the experiments are
made identical with the corresponding baselines to maintain
a fair comparison. The 2D MOT results on the test set of
the public benchmark are presented in the supplementary
material.
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Method Tnput 3D IoU =0.25 3D IoU =0.5 3D IoU =0.7
(sA7TA/)MOTA \ (AMOTP || (sA7JA/)MOTA \ (A)MOTP || (sA7JA/)MOTA \ (A)MOTP
JT [24] Mono -/-1-15.6 -1479 -/-1-55.6 -/63.8 - -
ST [31] Stereo -/-133 -/151.7 -/-1-34.1 -1654 - -
JST [32] Stereo -/-156.7 -/62.3 -/-1294 -/69.4 - -
Ours Stereo || 63.8/22.4/53.7 | 53.1/71.7 || 54.8/16.9/45.5 | 48.4/74.4 26.8/4.3/20.0 | 32.4/80.6
mmMOT [62] || LiDAR || 70.6/33.1/74.1 | 72.5/78.2 || 69.1/32.8/73.5 | 72.2/78.5 || 63.9/24.9/51.9 | 67.3/80.7
FANTrack [2] || LiDAR || 83.0/40.0/74.3 | 75.0/75.2 || 80.1/38.2/72.7 | 73.6/74.9 || 62.7/24.7/49.2 | 66.1/79.0
AB3DMOT LiDAR || 93.3/45.4/86.2 | 77.4/78.4 || 90.4/42.8/84.0 | 75.7/79.0 || 69.8/27.3/57.1 | 67.0/82.4
GNN3D [53] LiDAR || 93.9/45.8/86.0 | 78.1/79.0 -/-1- -/- -/-1- -/-
GNNTrKF [55] || LiDAR || 94.4/46.2/86.9 | 76.8/78.3 -/-1/- -/- -/-1- -/-
Ours LiDAR || 94.9/47.4/87.9 | 80.7/79.8 || 92.7/45.2/86.2 | 78.9/80.0 | 75.7/31.0/65.8 | 69.7/82.6

Table 3. 3D multi-object tracking results on the KITTI Tracking validation set. We report 3D MOT metrics of the car category.
(sA/A)MOTA stands for sSAMOTA/AMOTA/MOTA and (A)MOTP stands for AMOTP/MOTP. The evaluation is conducted in the 3D space
using the 3D MOT evaluation tool provided in [52]. The 3D IoU is the threshold value used for True Positive (TP) assignments. Higher is

better for all the metrics.

Table 4. 3D object detection results on the KITTI Object vali-
dation set. We report APs;p(in%) of the car category. PL stands
for pseudo-lidar [60].

4.2. Implementation Details

In principle, the proposed framework works with all kinds
of two-stage 3D object detectors. For indoor scenes, we use
VoteNet as the base detector and consider the point cloud
“voting, sampling and grouping” process in VoteNet as RPN
and the bounding box regression module as R-CNN. For
outdoor scenes, we use PointRCNN [47] as the base detector,
where the “Bin-based 3D Box Generation” module is con-
sidered as RPN and the “Bin-based 3D Box Refinement” as
R-CNN. During the training process on ScanNet and KITTI,
we use the same hyperparameters as the original implemen-
tation. Because of the flexibility of the point cloud backbone,
it is not necessary to finetune the networks to adapt to the
different modalities of the input point cloud during inference
within UDOLO. Since it is impractical to construct an OOM
that covers the entire outdoor scene on KITTI, we construct
a moving OOM in front of the camera which moves with the
vehicle. Specifically, the area of the OOM is set to 8m x 8m
on ScanNet and 25m x 15m on KITTI, with the voxel size
set to 0.04m x 0.04m and 0.5m x 0.5m, respectively. The
threshold o in the OOM-Guided RPN is set to 3 on ScanNet
and 8 on KITTI. The scale parameter A is set to 100. We
use 50 current frame proposals and 50 back-end future state
samples in the Fusion R-CNN. The camera ego-motion is
obtained from BundleFusion [10] on ScanNet and VINS-
Fusion [42] on KITTI.

AP3,(IoU=0.5) | AP3,(I10U=0.7) AP34(IoU=0.25) AP34(IoU=0.5)

Method Input ‘ 3d 3d 3d

etho ‘ Py [ Easy [ Mod. | Hard || Easy [ Mod. | Hard Method Type Easy [Moderate| Hard || Easy [Moderate| Hard

PLP(;(/;YO? ) glereo Zgzg ;ggg gigg gigg ;‘Zig 2??8 [3DOP [6][single-frame[[80.62] 70.01 [65.76][53.73] 4227 [35.87]
-PointNet tereo . . 5. 5 J0. 1. -

PL(PointRCNN) || Stereo || 89.01 | 74.36 | 67.11 || 62.51 | 45.78 | 39.50 ST[31] | multi-frame || 86.57) 74.13 16896 ||48.51| 37.13 |34.54
Ours Stereo 89.32 75.43 67.42 70.27 48.11 41.05 Ours multi-frame 86.69 75.71 68.09 86.45 67.49 59.66

Table 5. 3D object detection results on the KITTI tracking vali-
dation set. We report A P3p(in%) of the car category using stereo
images as input, evaluated with IoU thresholds of 0.25 and 0.5. The
results for 3DOP come from [31].

4.3. Evaluation Results

3D object detection performance on ScanNet. The result
on ScanNet is given in Table 1. Our method also produces
much better performance compared to the single-frame detec-
tion baseline (the reproduced single-view variant of VoteNet).
In particular, on the “occluded” split, the improvement in
mAP is up to 250% in the ratio (from 0.91 to 3.23). The ex-
periments with point clouds reconstructed from multi-view
RGB images also show consistent improvements. The signif-
icant improvements benefit from UDOLQ’s ability to handle
severe truncation and occlusion in the cluttered indoor scene.
The feedback of the bounding boxes from the back-end to
the front-end enables the system to memorize previously
detected objects and reuse this information in the current
time step.

Stability evaluation on ScanNet. The results are reported
in Table 2. Cells without numbers mean no stable bounding
box predictions in any two adjacent frames. With the strong
prior provided by the spatial-temporal memory, our method
is more stable than the single-frame detection baseline. The
improvement in bounding box stability can be also observed
in the supplementary video.

3D MOT performance on KITTI Tracking. The results
on the validation and test set of KITTI Tracking are sum-
marized in Table 3. In terms of 3D MOT results on the
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Figure 5. Trade-off between
speed and accuracy. Speed
is measured by runtime per
frame (in ms) and accuracy is
measured by APs;p (in %) at
IoU=0.7 for car. The curve
that is more closer to the top-
right corner is better.

Figure 6. Ablation study on
the OOM threshold parameter
o on the KITTI tracking set
with stereo input. We report
MOTA (in %) of the car cate-
gory evaluated in the 3D space.
o = 8 is used in our experi-
ments.

validation set, our method outperforms the corresponding
baselines that share the same input by a large margin, es-
pecially under the 0.5 IoU threshold. We observe that our
method has a substantially lower amount of false positives
compared with baseline method JST, thus leading to large
improvements on MOTA. For results with LiDAR input,
our method surpasses the baseline method AB3DMOT with
most of the metrics. Since AB3DMOT shares most of the
same modules used in UDOLO (namely the 3D detector,
Kalman Filter, and motion prediction), the improvements
validate the effectiveness of the feedback of spatial-temporal
memory.

3D object detection performance on KITTI Object and
KITTI Tracking. The results are summarized in Table
4 and 5. For 3D object detection performance, as shown
in the tables, our system surpasses the baseline methods
(PL(PointRCNN) and ST) by a substantial margin with the
detection metrics. Since PL(PointRCNN) is used as the base
detector for UDOLO, the comparison between Ours and
PL(PointRCNN) demonstrates that UDOLO also improves
the performance with the detection metrics.

4.4. Ablation Study

Feedback design (effectiveness of middle integration).
The results are presented in Table 1 with background colored
in grey. We validate the spatial-temporal memory feedback
design by separately removing the early (titled w/o early.)
and middle integration (w/o mid.). The rest of the system
remains unchanged. Comparing to the full system (Ours),
the performance drops significantly in experiments without
middle integration design (w/o mid.). The results w/o early.
further demonstrate that although input points have been
removed by the early integration design, the results do not
decrease significantly. As shown later, the early integration
design increases runtime speed without losing detection pre-
cision. These results demonstrate that the improvements in

detection precision are mainly contributed by the middle in-
tegration. Particularly on the “chair” category, the AP suffers
a severe drop of 10.5% (21% in the ratio) when the middle
integration is removed.

Runtime speed (effectiveness of early integration). As
explained in Sec. 3.2, the early integration design in the
OOM-Guided RPN will save runtime on both the backbone
and the RPN since less amount of point cloud is passed
through. We analyze the runtime speed up in the backbone
and RPN brought by the early integration on KITTI Ob-
ject with PointRCNN. The runtime is reduced from 42ms to
32ms, with an improvement of 23.8%. We give an analysis
of the trade-off between speed and accuracy in UDOLO with
the plot in Fig. 5. The trade-off is achieved by choosing
a different number of the overall object proposals, starting
from 100 to 10 with a step size of 10. For our method, both
{bprop} and {byeq} are used as proposals and the number
ratio between them is kept fixed. The experiment is per-
formed on KITTT Object with LiDAR data input. The plot
reveals the effectiveness of our spatial-temporal memory
feedback design on runtime speed. Our system can retain the
precision of prediction even when the number of proposals
is reduced to half of the original number, while the precision
of single-frame detection baseline rapidly decreases.
Effects on different OOM threshold value 0. As shown
in Fig. 6, the AMOTA score [52] first increases and then
decreases with the increasing of . With a smaller value
of o, a larger part of point cloud will be removed even the
number of observations at the corresponding location is not
enough, thus decreasing the overall performance. When
the threshold gets larger than 20, most of the point cloud
is passed through the network since there are few locations
that have a number of observations more than the threshold,
and the OOM-Guided RPN degrades to the vanilla version
of RPN that takes the entire point cloud as input.

5. Conclusion

In this paper, we introduced UDOLO, an integrated detec-
tion and tracking system that incorporates object occupancy
map and object states as spatial-temporal memory and feeds
this memory all the way through the detection pipeline to
improve efficiency and accuracy of 3D detection. We demon-
strated the effectiveness of the proposed feedback design in
the experiments, which surpassed baseline methods in both
3D multi-object tracking and single-frame 3D object detec-
tion on outdoor and indoor datasets.
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