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In this supplementary document, we provide additional
ablation studies and justify the choice of parameters used
for our experiments in Sec. 1. Then we show more compar-
isons with state-of-the-art methods which work in a batch-
wise way in Sec. 2. In Sec. 3, we present more training de-
tails and in Sec. 4, we introduce FLOPs computation. Then
we analyze the computation complexity of our pixel queue
based radius search in Sec. 5 and prove that using our slide
convolution to process events one by one is equivalent to us-
ing original spatial convolution to process all events at once
in Sec. 6. Finally, we visualize some examples of datasets
used in our experiments in Sec. 7. In this document, refer-
ences that point to the main manuscript will be referenced
as “P-”.

1. Ablation study
In this section, we explore how performance and com-

plexity are affected when changing the key parameters of
our approach. First of all, we explore the performance when
changing the depth of the graph convolution layer. Concern-
ing the graph construction, we also study the time interval
under which we extract events and the radius distance used
to define the connectivity of the nodes. All experiments re-
ported are conducted on the N-Caltech101 dataset, since it
has the highest number of classes among all datasets.
Depth. In the implementation details of Sec.P-5.1, we de-
scribe the network architecture, whose backbone is com-
prised of D blocks (a block consists of “GraphConv-ELU-
Bn” layers), each block followed by a voxel grid pooling
layer. In the following experiment, we vary D from 2 to 5,
to find the best setting of depth with respect to accuracy and
complexity. The number of output channels in each con-
volution layer and the voxel size in each pooling layers are
shown in Tab. 1. The results are shown in Tab 4. While the
highest accuracy is obtained when the depth is 5, the com-
plexity of the network substantially increases in comparison
to D = 4. Therefore, in our paper, we set the depth of the
graph convolution layer to D = 4. The network saturates
when the depth is larger than five, which is in line with the
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well-known limitation of “over-smoothing” [3]. This prob-
lem is beyond our topic because it is a general problem of
GCN. Except for the accuracy, we also evaluate the ratio
of baseline’s FLOPs divided by SlideGCN’s FLOPs (notice
that the difference between SlideGCN and baseline is that
SlideGCN uses slide convolution), which is denoted as B/S
ratio. The ratio decrease with deeper layers because gener-
ally Vn expands along the receptive field while the number
of nodes decreases because of pooling layers (Please refer
to the ratio shown in the fourth and seventh rows in Tab. 2).
Currently, many graph-based architectures are still shallow
due to “over smoothing” problem. In this depth setting, our
method brings excellent gain. In future work, we will ex-
plore the technology to keep the gain in a deeper layer.

D Output Channels Voxel Size
2 (64, 128) (4, 8)
3 (64, 128, 256) (4, 8, 16)
4 (64, 128, 256, 512) (4, 8, 16, 32)
5 (64, 128, 256, 512, 512) (4, 8, 16, 32, 64)
6 (64, 128, 256, 512, 512, 512) (4, 8, 12, 24, 32, 64)

Table 1. Parameters setting for different depths.
ith layer 1 2 3 4
Na 18392 1285 429 124
Nv 1 5 8 10
Na/Nv 18392.0 257.0 53.6 12.4
Nr 146591 3877 1170 345
Ne 7 4 12 17
Nr/Ne 20941.6 969.3 97.5 20.3

Table 2. An example of number of nodes/edges at different lay-
ers. Here Na and Nr are the number of nodes at that layer and
the number of edges at that layer respectively. Nv and Ne are the
number of Vn and En in Eq.P-6 and Eq.P-7.

Time Interval. For each event stream, we extract events
within a fixed time interval as input. In this study, we test
under various time intervals, i.e., 10, 30, 50 and 70 millisec-
onds, to see their effect on the accuracy and computation.
The results are shown in Tab. 5. With a similar reason on
choosing depth, we opted for extracting 50 ms-events, to
strike a balance between accuracy and complexity.



N-Caltech101 N-Cars
Methods Representation Acc ↑ Mps/ev ↓ Acc ↑ Mps/ev ↓
SSC [4] VoxelGrid 0.761 1621 0.945 321
EST [2] VoxelGrid 0.817 4150 0.925 1050

Matrix-LSTM [1] VoxelGrid 0.857 2086 0.9565 616.319
Ev2Vid [5] Image 0.866 21585 0.91 6126

NVS-B (Ours) Graph 0.670 221 0.915 57.9
NVS-S (Ours) Graph 0.670 7.8 0.915 5.2
EvS-B (Ours) Graph 0.761 1152 0.931 251
EvS-S (Ours) Graph 0.761 11.5 0.931 6.1

Table 3. Comparison with batch-wise methods.
Radius Distance. In this ablation study, we vary the ra-
dius distance as R = {2, 3.5, 5, 6.5} , to find the best dis-
tance with respect to accuracy and complexity. The results
are shown in Tab 6, where we demonstrate that radius dis-
tance above 5 improves the model performance little while
incurring increased complexity. Therefore, in our paper, we
set the radius distance to 5. Note that when radius dis-
tance changes from 5 to 6.5, the required computation in-
creases only slightly because the maximum connectivity de-
gree Dmax is set to 30.

It is worth noting that B/S ratio increases with longer
time intervals and bigger radius, which demonstrates that
the SlideGCN’s complexity grows slower than the baseline
method when the graph size of nodes and edges increases.

Depth 2 3 4 5 6
Accuracy 0.630 0.702 0.761 0.774 0.771
MFLOPs-B 564 887 1152 1774 2420
MFLOPs-S 4.1 7.1 11.5 22.7 36.2
B/S Ratio 137.6 125.0 100.2 78.1 66.9

Table 4. The performances with different depths of convolution
layers. *-B denotes baseline method, *-S denotes SlideGCN.

Interval 10 30 50 70
Accuracy 0.635 0.710 0.761 0.766
MFLOPs-B 415 720 1152 1402
MFLOPs-S 5.14 8.1 11.5 12.9
B/S Ratio 80.7 88.9 100.2 108.7

Table 5. The performances with different time intervals. *-B
is denoted as baseline method, *-S is denoted as our method with
slide convolution.

Radius 2 3.5 5 6.5
Accuracy 0.675 0.724 0.761 0.763
MFLOPs-B 522 820 1152 1302
MFLOPs-S 7.73 9.7 11.5 12.9
B/S Ratio 67.5 84.5 100.2 100.9

Table 6. The performances with different radius distances. *-B
is denoted as baseline method, *-S is denoted as our method with
slide convolution.

2. More Comparisons

In this section, we show comparisons with state-of-the-
art methods that work in a batch-wise way, as shown in
Table 3. Generally, SlideGCN is much more efficient on
event data than batch-wise methods (ours 11.5 MFLOPs
v.s. 21585 MFLOPs of Ev2Vid [5]), although sacrificing
some accuracy (ours 0.76 v.s. 0.86). It is worth noting
that a ConvLSTM [6]-like method is included in our com-
parison, i.e., Matrix-LSTM [1]. Some readers may think
that ConvLSTM-like methods is similar to ours as they also
rely on a buffer of events but in the way of memorizing
hidden state. We respectfully argue that ConvLSTM is
designed to build long-term dependencies but cannot pro-
cess sparse and asynchronous data, which is the nature of
events. Specifically, although Matrix-LSTM have been im-
proved upon original ConvLSTM, its efficiency is far below
our SlideGCN in an event-wise processing manner (2086
MFLOPSs v.s. ours 11.5 MFLOPs).

3. Training Details

In this section, we present more training details used in
our experiments in Sec.P-5. Our training consists of two
steps. First of all, We train the main branch with 60 epochs
and a batch size of 16. The first five epochs is trained with a
warm-up strategy, with the learning rate increased linearly
from zero to the initial learning rate. Our initial learning
rate is set to 5e-3 and decayed with a polynomial learning
rate schedule. Secondly, we freeze the main branch and start
training the state-aware module. We set the initial learning
rate to 1e-5. Other parameters like batch size and training
epochs stay unchanged.

4. FLOPs Computation

In Tab. 7, we show the number of FLOPs for differ-
ent operations of baseline and our slide convolution. The
FLOPs needed for the baseline can be split into two parts:
message passing (denoted as MP) and aggregation (de-
noted as Aggr). The FLOPs needed for message passing
is NrCout(2Cin−1), which is the result of performing Cin
multiplications and Cin − 1 additions for each edge and



each output channel. For each node’s aggregation, we con-
sider adding transformed root node features to the output,
which needs to perform CinCout multiplications. We need
to perform Cout additions to sum up root node features and
edge features and perform Cout divisions to normalize final
node features with node degree. The total FLOPs needed
for aggregation is NaCout(2 + Cin) (excluding bias). We
can see for FLOPs of slide convolution, it is simply replac-
ing Nr with Ne (similar for Na). This is because the slide
convolution works only on a part of nodes/edges instead of
computing full nodes/edges.

Baseline Slide Convolution
MP NrCout(2Cin − 1) NeCout(2Cin − 1)
Aggr NaCout(2 + Cin) NvCout(2 + Cin)
Pooling NaCout NvCout
FC 2CinCout 2CinCout

Table 7. FLOPs computation at each layer. Here Na and Nr are
the number of nodes at that layer and the number of edges at that
layer respectively. Nv and Ne are the number of Vn and En in
Eq.P-6 and Eq.P-7.

5. Pixel Queue based Radius Search

In this section, we further analyze the computation com-
lexity of our pixel queue based radius search. We maintain
a queue for each pixel (namely pixel queues), accessed by
the (x, y) index. When inserting an event, we first find the
queue at the cost of O(1), and then append the event to the
end of the queue (notice that in the main manuscript, we
show that event data may be stochastic, but its timestamp
must be in increasing order). To support delete operations,
we maintain a global queue. When an event slides out of
the window, we pop it from the global queue at the cost of
O(1) because it is the ”oldest” event. We obtain this event,
subsequently, find its corresponding pixel queue, and pop it
from this local queue. All these operations can be done at
the cost of O(1), so both the cost of insertion and deletion
is O(1).

As for searching, we use a two-stage algorithm. In grid
search, for a given radius R and a query event (x0, y0, t0),
we find candidate pixels whose distance is less than R′ on
the image grid. We can precompute candidate pixels for a
specific integer radius. So this step can be done at the cost
of O(1). In the second step, for each queue correspond-
ing to the candidate pixels, we need to find events whose
timestamp are in range (t0 −

√
R2 − (δx2 + δy2), t0 +√

R2 − (δx2 + δy2)). (δx, δy) is 2D offset relative to the
query event. This can be done by searching the bound
through binary search. Therefore, the total cost of the search
is π∗R′2∗logM , where M is the average queue length. The
cost can be optimized by searching candidate queues from
inner to outer with an early stop if connectivity degree is
limited to Dmax. The experiment shown in Fig.P-5 is eval-

Figure 1. An example for recursive update of V and E. The left
figure shows a newly added and newly deleted node at Layer 0.
The right figure shows the update of V and E according to Eq.P-6
and Eq.P-7.

uated on an i7-9700K CPU (using a single core).

6. Slide Convolution

In the main manuscript, we use Eq.P-5 to represent the
recursive processing, whose key idea is evolving Vn and
En (See the example in Fig. 1). The equation is suitable for
V up. While for V add and V del, we directly compute Xt+1

for V addn and assign Xt+1 to zero for V deln . The complete
algorithm is described in Algo. 1.

In the following, we will prove that processing events
one by one with this algorithm is equivalent to processing
all events at once based on Eq.P-4.

For convenience, we use (setb, seta) to represent
{(j, i) | for i ∈ seta then ∀j ∈ N(i) ∧ j ∈ setb}. Firstly
we rewrite equation Eq.P-4 as following:

xt+1
n+1(i) =

∑
(j,i)∈(At+1

n ,At+1
n+1)

xt+1
n (j)hθ

According to Eq.P-6, we can split (At+1
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n+1(i), we
get:



xt+1
n+1(i) =

∑
(j,i)∈(At+1

n ,V add
n+1)

xt+1
n (j)hθ

+
∑

(j,i)∈(At+1
n ,At

n+1\V del
n+1)

xt+1
n (j)hθ

︸ ︷︷ ︸
marked as wodelx

t+1
n+1(i)

+ (
∑

(j,i)∈(At+1
n ,V del

n+1)

xt+1
n (j)hθ

−
∑

(j,i)∈(At+1
n ,V del

n+1)

xt+1
n (j)hθ)

The first and last two lines correspond to lines 12-13 and
14 of the algorithm 1, respectively. We know both delx

t+1
n+1

and addx
t
n are zeros, so we can rewrite wodelx

t+1
n+1(i) as

Eq. (1).
Apparently, ∆n(j) is only non-zero for j ∈ Vn, and we

know Vn ⊂ {At+1
n ∪ V deln } = {Atn ∪ V addn }, so we can di-

vide At+1
n ∪V deln into two parts, one of which is Vn. There-

fore, We have:
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line 9−11 in Algo.1

So far, we have proved that incrementally updating from
t to t + 1 with Algo. 1 is equivalent to processing all the
events at t + 1 via Eq.P-4. In this way, we can readily ob-
tain the immediate result at any time point of event stream
through this incremental mechanism, instead of calculating
a period of events from scratch. This is also verified through
our experiment (Sec.P-5) in the main manuscript.

7. Visualization of Datasets
We sample some sequences from used datasets for visu-

alization, as shown in Fig. 2. Among them, N-Cars have
only two categories. In particular, the car category has a
similar texture, which makes it easy to recognize. On the
contrary, N-Caltehc101 and CIFAR10-DVS have a variety
of different appearances, which is even noisy and fuzzy,
thus leading to low accuracy. It is worth noting that our

proposed method can also recognize an object in foreground
from events triggered by both foreground and background
patterns. We show eight samples in Fig. 3, which are all
successfully identified.

Algorithm 1 slide convolution at layer n

Input: Vn−1, Xt+1
n−1

Output: Vn, Xt+1
n

1: if n equals to 0 then
2: Vn = {added : new events, deleted :
events out of window}

3: Xt+1
n = {added : input feature, deleted : 0}

4: else
5: compute Vn using Eq.P-6 with Vn−1, Atn
6: update At+1

n using Eq.P-6 according to Vn
7: compute En using Eq.P-7 with Vn−1, Vn and At+1

n

8: expand Xt
n−1 according to V addn−1 and assign new

part to zeros
9: for i ∈ V upn do

10: compute ∆n(i) using Eq.P-5 with Eupn , Xt
n−1,

Xt+1
n−1

11: update Xt+1
n (i) using Eq.P-5 with Xt

n, ∆n(i)

12: for i ∈ V addn do
13: compute Xt+1

n (i) using Eq.P-4 with Eaddn

14: set deleted vertex(V deln ) in Xt+1
n to zeros

15: Return Vn, Xt+1
n

Figure 2. Examples of datasets used in our experiments.
(Red/Cyan: ON/OFF events).

Figure 3. Some examples with rich background. (Red/Cyan:
ON/OFF events).
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